| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istdrg2 | Structured version Visualization version GIF version | ||
| Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| istdrg2.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| istdrg2.b | ⊢ 𝐵 = (Base‘𝑅) |
| istdrg2.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| istdrg2 | ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istdrg2.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | 1, 2 | istdrg 24060 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp)) |
| 4 | istdrg2.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | istdrg2.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 2, 5 | isdrng 20649 | . . . . . . . 8 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
| 7 | 6 | simprbi 496 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
| 9 | 8 | oveq2d 7406 | . . . . 5 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (𝑀 ↾s (Unit‘𝑅)) = (𝑀 ↾s (𝐵 ∖ { 0 }))) |
| 10 | 9 | eleq1d 2814 | . . . 4 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → ((𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp ↔ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
| 11 | 10 | pm5.32i 574 | . . 3 ⊢ (((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
| 12 | df-3an 1088 | . . 3 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp)) | |
| 13 | df-3an 1088 | . . 3 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | . 2 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
| 15 | 3, 14 | bitri 275 | 1 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 {csn 4592 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 0gc0g 17409 mulGrpcmgp 20056 Ringcrg 20149 Unitcui 20271 DivRingcdr 20645 TopGrpctgp 23965 TopRingctrg 24050 TopDRingctdrg 24051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-drng 20647 df-tdrg 24055 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |