![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istdrg2 | Structured version Visualization version GIF version |
Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istdrg2.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
istdrg2.b | ⊢ 𝐵 = (Base‘𝑅) |
istdrg2.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
istdrg2 | ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istdrg2.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | eqid 2725 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | 1, 2 | istdrg 24114 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp)) |
4 | istdrg2.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑅) | |
5 | istdrg2.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 2, 5 | isdrng 20640 | . . . . . . . 8 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
7 | 6 | simprbi 495 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
8 | 7 | adantl 480 | . . . . . 6 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
9 | 8 | oveq2d 7435 | . . . . 5 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (𝑀 ↾s (Unit‘𝑅)) = (𝑀 ↾s (𝐵 ∖ { 0 }))) |
10 | 9 | eleq1d 2810 | . . . 4 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → ((𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp ↔ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
11 | 10 | pm5.32i 573 | . . 3 ⊢ (((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
12 | df-3an 1086 | . . 3 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp)) | |
13 | df-3an 1086 | . . 3 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) | |
14 | 11, 12, 13 | 3bitr4i 302 | . 2 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
15 | 3, 14 | bitri 274 | 1 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∖ cdif 3941 {csn 4630 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 ↾s cress 17212 0gc0g 17424 mulGrpcmgp 20086 Ringcrg 20185 Unitcui 20306 DivRingcdr 20636 TopGrpctgp 24019 TopRingctrg 24104 TopDRingctdrg 24105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ov 7422 df-drng 20638 df-tdrg 24109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |