MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istdrg2 Structured version   Visualization version   GIF version

Theorem istdrg2 23317
Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istdrg2.m 𝑀 = (mulGrp‘𝑅)
istdrg2.b 𝐵 = (Base‘𝑅)
istdrg2.z 0 = (0g𝑅)
Assertion
Ref Expression
istdrg2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))

Proof of Theorem istdrg2
StepHypRef Expression
1 istdrg2.m . . 3 𝑀 = (mulGrp‘𝑅)
2 eqid 2738 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
31, 2istdrg 23305 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp))
4 istdrg2.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
5 istdrg2.z . . . . . . . . 9 0 = (0g𝑅)
64, 2, 5isdrng 19983 . . . . . . . 8 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
76simprbi 497 . . . . . . 7 (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
87adantl 482 . . . . . 6 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
98oveq2d 7284 . . . . 5 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (𝑀s (Unit‘𝑅)) = (𝑀s (𝐵 ∖ { 0 })))
109eleq1d 2823 . . . 4 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → ((𝑀s (Unit‘𝑅)) ∈ TopGrp ↔ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
1110pm5.32i 575 . . 3 (((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
12 df-3an 1088 . . 3 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp))
13 df-3an 1088 . . 3 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
1411, 12, 133bitr4i 303 . 2 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
153, 14bitri 274 1 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cdif 3884  {csn 4562  cfv 6427  (class class class)co 7268  Basecbs 16900  s cress 16929  0gc0g 17138  mulGrpcmgp 19708  Ringcrg 19771  Unitcui 19869  DivRingcdr 19979  TopGrpctgp 23210  TopRingctrg 23295  TopDRingctdrg 23296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-iota 6385  df-fv 6435  df-ov 7271  df-drng 19981  df-tdrg 23300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator