MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istdrg2 Structured version   Visualization version   GIF version

Theorem istdrg2 24091
Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istdrg2.m 𝑀 = (mulGrp‘𝑅)
istdrg2.b 𝐵 = (Base‘𝑅)
istdrg2.z 0 = (0g𝑅)
Assertion
Ref Expression
istdrg2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))

Proof of Theorem istdrg2
StepHypRef Expression
1 istdrg2.m . . 3 𝑀 = (mulGrp‘𝑅)
2 eqid 2731 . . 3 (Unit‘𝑅) = (Unit‘𝑅)
31, 2istdrg 24079 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp))
4 istdrg2.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
5 istdrg2.z . . . . . . . . 9 0 = (0g𝑅)
64, 2, 5isdrng 20646 . . . . . . . 8 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 })))
76simprbi 496 . . . . . . 7 (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
87adantl 481 . . . . . 6 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (Unit‘𝑅) = (𝐵 ∖ { 0 }))
98oveq2d 7362 . . . . 5 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (𝑀s (Unit‘𝑅)) = (𝑀s (𝐵 ∖ { 0 })))
109eleq1d 2816 . . . 4 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → ((𝑀s (Unit‘𝑅)) ∈ TopGrp ↔ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
1110pm5.32i 574 . . 3 (((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
12 df-3an 1088 . . 3 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp))
13 df-3an 1088 . . 3 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
1411, 12, 133bitr4i 303 . 2 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (Unit‘𝑅)) ∈ TopGrp) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
153, 14bitri 275 1 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀s (𝐵 ∖ { 0 })) ∈ TopGrp))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cdif 3899  {csn 4576  cfv 6481  (class class class)co 7346  Basecbs 17117  s cress 17138  0gc0g 17340  mulGrpcmgp 20056  Ringcrg 20149  Unitcui 20271  DivRingcdr 20642  TopGrpctgp 23984  TopRingctrg 24069  TopDRingctdrg 24070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-drng 20644  df-tdrg 24074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator