Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istdrg2 | Structured version Visualization version GIF version |
Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istdrg2.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
istdrg2.b | ⊢ 𝐵 = (Base‘𝑅) |
istdrg2.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
istdrg2 | ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istdrg2.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | eqid 2733 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
3 | 1, 2 | istdrg 23345 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp)) |
4 | istdrg2.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑅) | |
5 | istdrg2.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 2, 5 | isdrng 20023 | . . . . . . . 8 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
7 | 6 | simprbi 496 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
9 | 8 | oveq2d 7311 | . . . . 5 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (𝑀 ↾s (Unit‘𝑅)) = (𝑀 ↾s (𝐵 ∖ { 0 }))) |
10 | 9 | eleq1d 2818 | . . . 4 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → ((𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp ↔ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
11 | 10 | pm5.32i 574 | . . 3 ⊢ (((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
12 | df-3an 1087 | . . 3 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp)) | |
13 | df-3an 1087 | . . 3 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) | |
14 | 11, 12, 13 | 3bitr4i 302 | . 2 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
15 | 3, 14 | bitri 274 | 1 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ∖ cdif 3886 {csn 4564 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 ↾s cress 16969 0gc0g 17178 mulGrpcmgp 19748 Ringcrg 19811 Unitcui 19909 DivRingcdr 20019 TopGrpctgp 23250 TopRingctrg 23335 TopDRingctdrg 23336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-iota 6399 df-fv 6455 df-ov 7298 df-drng 20021 df-tdrg 23340 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |