MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istdrg2 Structured version   Visualization version   GIF version

Theorem istdrg2 23682
Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
istdrg2.m 𝑀 = (mulGrpβ€˜π‘…)
istdrg2.b 𝐡 = (Baseβ€˜π‘…)
istdrg2.z 0 = (0gβ€˜π‘…)
Assertion
Ref Expression
istdrg2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 β†Ύs (𝐡 βˆ– { 0 })) ∈ TopGrp))

Proof of Theorem istdrg2
StepHypRef Expression
1 istdrg2.m . . 3 𝑀 = (mulGrpβ€˜π‘…)
2 eqid 2733 . . 3 (Unitβ€˜π‘…) = (Unitβ€˜π‘…)
31, 2istdrg 23670 . 2 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 β†Ύs (Unitβ€˜π‘…)) ∈ TopGrp))
4 istdrg2.b . . . . . . . . 9 𝐡 = (Baseβ€˜π‘…)
5 istdrg2.z . . . . . . . . 9 0 = (0gβ€˜π‘…)
64, 2, 5isdrng 20361 . . . . . . . 8 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unitβ€˜π‘…) = (𝐡 βˆ– { 0 })))
76simprbi 498 . . . . . . 7 (𝑅 ∈ DivRing β†’ (Unitβ€˜π‘…) = (𝐡 βˆ– { 0 }))
87adantl 483 . . . . . 6 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) β†’ (Unitβ€˜π‘…) = (𝐡 βˆ– { 0 }))
98oveq2d 7425 . . . . 5 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) β†’ (𝑀 β†Ύs (Unitβ€˜π‘…)) = (𝑀 β†Ύs (𝐡 βˆ– { 0 })))
109eleq1d 2819 . . . 4 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) β†’ ((𝑀 β†Ύs (Unitβ€˜π‘…)) ∈ TopGrp ↔ (𝑀 β†Ύs (𝐡 βˆ– { 0 })) ∈ TopGrp))
1110pm5.32i 576 . . 3 (((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 β†Ύs (Unitβ€˜π‘…)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 β†Ύs (𝐡 βˆ– { 0 })) ∈ TopGrp))
12 df-3an 1090 . . 3 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 β†Ύs (Unitβ€˜π‘…)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 β†Ύs (Unitβ€˜π‘…)) ∈ TopGrp))
13 df-3an 1090 . . 3 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 β†Ύs (𝐡 βˆ– { 0 })) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 β†Ύs (𝐡 βˆ– { 0 })) ∈ TopGrp))
1411, 12, 133bitr4i 303 . 2 ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 β†Ύs (Unitβ€˜π‘…)) ∈ TopGrp) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 β†Ύs (𝐡 βˆ– { 0 })) ∈ TopGrp))
153, 14bitri 275 1 (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 β†Ύs (𝐡 βˆ– { 0 })) ∈ TopGrp))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   βˆ– cdif 3946  {csn 4629  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144   β†Ύs cress 17173  0gc0g 17385  mulGrpcmgp 19987  Ringcrg 20056  Unitcui 20169  DivRingcdr 20357  TopGrpctgp 23575  TopRingctrg 23660  TopDRingctdrg 23661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-drng 20359  df-tdrg 23665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator