| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istdrg2 | Structured version Visualization version GIF version | ||
| Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| istdrg2.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| istdrg2.b | ⊢ 𝐵 = (Base‘𝑅) |
| istdrg2.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| istdrg2 | ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istdrg2.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 3 | 1, 2 | istdrg 24079 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp)) |
| 4 | istdrg2.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | istdrg2.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 2, 5 | isdrng 20646 | . . . . . . . 8 ⊢ (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ { 0 }))) |
| 7 | 6 | simprbi 496 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (Unit‘𝑅) = (𝐵 ∖ { 0 })) |
| 9 | 8 | oveq2d 7362 | . . . . 5 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → (𝑀 ↾s (Unit‘𝑅)) = (𝑀 ↾s (𝐵 ∖ { 0 }))) |
| 10 | 9 | eleq1d 2816 | . . . 4 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) → ((𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp ↔ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
| 11 | 10 | pm5.32i 574 | . . 3 ⊢ (((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
| 12 | df-3an 1088 | . . 3 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp)) | |
| 13 | df-3an 1088 | . . 3 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp) ↔ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing) ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | . 2 ⊢ ((𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (Unit‘𝑅)) ∈ TopGrp) ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
| 15 | 3, 14 | bitri 275 | 1 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 {csn 4576 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 ↾s cress 17138 0gc0g 17340 mulGrpcmgp 20056 Ringcrg 20149 Unitcui 20271 DivRingcdr 20642 TopGrpctgp 23984 TopRingctrg 24069 TopDRingctdrg 24070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-drng 20644 df-tdrg 24074 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |