![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrgtrg | Structured version Visualization version GIF version |
Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015.) (Proof shortened by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
nrgtrg | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrgtgp 24582 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp) | |
2 | nrgring 24573 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
3 | eqid 2728 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
4 | 3 | ringmgp 20172 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ Mnd) |
6 | tgptps 23977 | . . . . . 6 ⊢ (𝑅 ∈ TopGrp → 𝑅 ∈ TopSp) | |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopSp) |
8 | eqid 2728 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2728 | . . . . . 6 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
10 | 8, 9 | istps 22829 | . . . . 5 ⊢ (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
11 | 7, 10 | sylib 217 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
12 | 3, 8 | mgpbas 20073 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
13 | 3, 9 | mgptopn 20079 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘(mulGrp‘𝑅)) |
14 | 12, 13 | istps 22829 | . . . 4 ⊢ ((mulGrp‘𝑅) ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
15 | 11, 14 | sylibr 233 | . . 3 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopSp) |
16 | rlmnlm 24598 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (ringLMod‘𝑅) ∈ NrmMod) | |
17 | rlmsca2 21085 | . . . . 5 ⊢ ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅)) | |
18 | rlmscaf 21093 | . . . . 5 ⊢ (+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅)) | |
19 | rlmtopn 21087 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅)) | |
20 | baseid 17176 | . . . . . . . . 9 ⊢ Base = Slot (Base‘ndx) | |
21 | 20, 8 | strfvi 17152 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘( I ‘𝑅)) |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (Base‘𝑅) = (Base‘( I ‘𝑅))) |
23 | tsetid 17327 | . . . . . . . . 9 ⊢ TopSet = Slot (TopSet‘ndx) | |
24 | eqid 2728 | . . . . . . . . 9 ⊢ (TopSet‘𝑅) = (TopSet‘𝑅) | |
25 | 23, 24 | strfvi 17152 | . . . . . . . 8 ⊢ (TopSet‘𝑅) = (TopSet‘( I ‘𝑅)) |
26 | 25 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (TopSet‘𝑅) = (TopSet‘( I ‘𝑅))) |
27 | 22, 26 | topnpropd 17411 | . . . . . 6 ⊢ (⊤ → (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅))) |
28 | 27 | mptru 1541 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅)) |
29 | 17, 18, 19, 28 | nlmvscn 24597 | . . . 4 ⊢ ((ringLMod‘𝑅) ∈ NrmMod → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅))) |
30 | 16, 29 | syl 17 | . . 3 ⊢ (𝑅 ∈ NrmRing → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅))) |
31 | eqid 2728 | . . . 4 ⊢ (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅)) | |
32 | 31, 13 | istmd 23971 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ TopMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑅) ∈ TopSp ∧ (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅)))) |
33 | 5, 15, 30, 32 | syl3anbrc 1341 | . 2 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopMnd) |
34 | 3 | istrg 24061 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd)) |
35 | 1, 2, 33, 34 | syl3anbrc 1341 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 I cid 5569 ‘cfv 6542 (class class class)co 7414 ndxcnx 17155 Basecbs 17173 TopSetcts 17232 TopOpenctopn 17396 +𝑓cplusf 18590 Mndcmnd 18687 mulGrpcmgp 20067 Ringcrg 20166 ringLModcrglmod 21050 TopOnctopon 22805 TopSpctps 22827 Cn ccn 23121 ×t ctx 23457 TopMndctmd 23967 TopGrpctgp 23968 TopRingctrg 24053 NrmRingcnrg 24481 NrmModcnlm 24482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-rest 17397 df-topn 17398 df-0g 17416 df-gsum 17417 df-topgen 17418 df-pt 17419 df-prds 17422 df-xrs 17477 df-qtop 17482 df-imas 17483 df-xps 17485 df-mre 17559 df-mrc 17560 df-acs 17562 df-plusf 18592 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-mulg 19017 df-subg 19071 df-cntz 19261 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-subrng 20476 df-subrg 20501 df-abv 20690 df-lmod 20738 df-scaf 20739 df-sra 21051 df-rgmod 21052 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-cn 23124 df-cnp 23125 df-tx 23459 df-hmeo 23652 df-tmd 23969 df-tgp 23970 df-trg 24057 df-xms 24219 df-ms 24220 df-tms 24221 df-nm 24484 df-ngp 24485 df-nrg 24487 df-nlm 24488 |
This theorem is referenced by: nrgtdrg 24603 nlmtlm 24604 iistmd 33497 qqhcn 33586 |
Copyright terms: Public domain | W3C validator |