MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgtrg Structured version   Visualization version   GIF version

Theorem nrgtrg 24600
Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015.) (Proof shortened by AV, 31-Oct-2024.)
Assertion
Ref Expression
nrgtrg (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing)

Proof of Theorem nrgtrg
StepHypRef Expression
1 nrgtgp 24582 . 2 (𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp)
2 nrgring 24573 . 2 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
3 eqid 2728 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
43ringmgp 20172 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
52, 4syl 17 . . 3 (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ Mnd)
6 tgptps 23977 . . . . . 6 (𝑅 ∈ TopGrp → 𝑅 ∈ TopSp)
71, 6syl 17 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ TopSp)
8 eqid 2728 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2728 . . . . . 6 (TopOpen‘𝑅) = (TopOpen‘𝑅)
108, 9istps 22829 . . . . 5 (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
117, 10sylib 217 . . . 4 (𝑅 ∈ NrmRing → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
123, 8mgpbas 20073 . . . . 5 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
133, 9mgptopn 20079 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘(mulGrp‘𝑅))
1412, 13istps 22829 . . . 4 ((mulGrp‘𝑅) ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
1511, 14sylibr 233 . . 3 (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopSp)
16 rlmnlm 24598 . . . 4 (𝑅 ∈ NrmRing → (ringLMod‘𝑅) ∈ NrmMod)
17 rlmsca2 21085 . . . . 5 ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅))
18 rlmscaf 21093 . . . . 5 (+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅))
19 rlmtopn 21087 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅))
20 baseid 17176 . . . . . . . . 9 Base = Slot (Base‘ndx)
2120, 8strfvi 17152 . . . . . . . 8 (Base‘𝑅) = (Base‘( I ‘𝑅))
2221a1i 11 . . . . . . 7 (⊤ → (Base‘𝑅) = (Base‘( I ‘𝑅)))
23 tsetid 17327 . . . . . . . . 9 TopSet = Slot (TopSet‘ndx)
24 eqid 2728 . . . . . . . . 9 (TopSet‘𝑅) = (TopSet‘𝑅)
2523, 24strfvi 17152 . . . . . . . 8 (TopSet‘𝑅) = (TopSet‘( I ‘𝑅))
2625a1i 11 . . . . . . 7 (⊤ → (TopSet‘𝑅) = (TopSet‘( I ‘𝑅)))
2722, 26topnpropd 17411 . . . . . 6 (⊤ → (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅)))
2827mptru 1541 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅))
2917, 18, 19, 28nlmvscn 24597 . . . 4 ((ringLMod‘𝑅) ∈ NrmMod → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅)))
3016, 29syl 17 . . 3 (𝑅 ∈ NrmRing → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅)))
31 eqid 2728 . . . 4 (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅))
3231, 13istmd 23971 . . 3 ((mulGrp‘𝑅) ∈ TopMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑅) ∈ TopSp ∧ (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅))))
335, 15, 30, 32syl3anbrc 1341 . 2 (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopMnd)
343istrg 24061 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd))
351, 2, 33, 34syl3anbrc 1341 1 (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wtru 1535  wcel 2099   I cid 5569  cfv 6542  (class class class)co 7414  ndxcnx 17155  Basecbs 17173  TopSetcts 17232  TopOpenctopn 17396  +𝑓cplusf 18590  Mndcmnd 18687  mulGrpcmgp 20067  Ringcrg 20166  ringLModcrglmod 21050  TopOnctopon 22805  TopSpctps 22827   Cn ccn 23121   ×t ctx 23457  TopMndctmd 23967  TopGrpctgp 23968  TopRingctrg 24053  NrmRingcnrg 24481  NrmModcnlm 24482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-plusf 18592  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-mulg 19017  df-subg 19071  df-cntz 19261  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-subrng 20476  df-subrg 20501  df-abv 20690  df-lmod 20738  df-scaf 20739  df-sra 21051  df-rgmod 21052  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cn 23124  df-cnp 23125  df-tx 23459  df-hmeo 23652  df-tmd 23969  df-tgp 23970  df-trg 24057  df-xms 24219  df-ms 24220  df-tms 24221  df-nm 24484  df-ngp 24485  df-nrg 24487  df-nlm 24488
This theorem is referenced by:  nrgtdrg  24603  nlmtlm  24604  iistmd  33497  qqhcn  33586
  Copyright terms: Public domain W3C validator