| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrgtrg | Structured version Visualization version GIF version | ||
| Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015.) (Proof shortened by AV, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| nrgtrg | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrgtgp 24609 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp) | |
| 2 | nrgring 24600 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
| 3 | eqid 2735 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 4 | 3 | ringmgp 20197 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ Mnd) |
| 6 | tgptps 24016 | . . . . . 6 ⊢ (𝑅 ∈ TopGrp → 𝑅 ∈ TopSp) | |
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopSp) |
| 8 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | eqid 2735 | . . . . . 6 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
| 10 | 8, 9 | istps 22870 | . . . . 5 ⊢ (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
| 11 | 7, 10 | sylib 218 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
| 12 | 3, 8 | mgpbas 20103 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
| 13 | 3, 9 | mgptopn 20106 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘(mulGrp‘𝑅)) |
| 14 | 12, 13 | istps 22870 | . . . 4 ⊢ ((mulGrp‘𝑅) ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
| 15 | 11, 14 | sylibr 234 | . . 3 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopSp) |
| 16 | rlmnlm 24625 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (ringLMod‘𝑅) ∈ NrmMod) | |
| 17 | rlmsca2 21155 | . . . . 5 ⊢ ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅)) | |
| 18 | rlmscaf 21163 | . . . . 5 ⊢ (+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅)) | |
| 19 | rlmtopn 21157 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅)) | |
| 20 | baseid 17229 | . . . . . . . . 9 ⊢ Base = Slot (Base‘ndx) | |
| 21 | 20, 8 | strfvi 17207 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘( I ‘𝑅)) |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (Base‘𝑅) = (Base‘( I ‘𝑅))) |
| 23 | tsetid 17365 | . . . . . . . . 9 ⊢ TopSet = Slot (TopSet‘ndx) | |
| 24 | eqid 2735 | . . . . . . . . 9 ⊢ (TopSet‘𝑅) = (TopSet‘𝑅) | |
| 25 | 23, 24 | strfvi 17207 | . . . . . . . 8 ⊢ (TopSet‘𝑅) = (TopSet‘( I ‘𝑅)) |
| 26 | 25 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (TopSet‘𝑅) = (TopSet‘( I ‘𝑅))) |
| 27 | 22, 26 | topnpropd 17448 | . . . . . 6 ⊢ (⊤ → (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅))) |
| 28 | 27 | mptru 1547 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅)) |
| 29 | 17, 18, 19, 28 | nlmvscn 24624 | . . . 4 ⊢ ((ringLMod‘𝑅) ∈ NrmMod → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅))) |
| 30 | 16, 29 | syl 17 | . . 3 ⊢ (𝑅 ∈ NrmRing → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅))) |
| 31 | eqid 2735 | . . . 4 ⊢ (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅)) | |
| 32 | 31, 13 | istmd 24010 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ TopMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑅) ∈ TopSp ∧ (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅)))) |
| 33 | 5, 15, 30, 32 | syl3anbrc 1344 | . 2 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopMnd) |
| 34 | 3 | istrg 24100 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd)) |
| 35 | 1, 2, 33, 34 | syl3anbrc 1344 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 I cid 5547 ‘cfv 6530 (class class class)co 7403 ndxcnx 17210 Basecbs 17226 TopSetcts 17275 TopOpenctopn 17433 +𝑓cplusf 18613 Mndcmnd 18710 mulGrpcmgp 20098 Ringcrg 20191 ringLModcrglmod 21128 TopOnctopon 22846 TopSpctps 22868 Cn ccn 23160 ×t ctx 23496 TopMndctmd 24006 TopGrpctgp 24007 TopRingctrg 24092 NrmRingcnrg 24516 NrmModcnlm 24517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-plusf 18615 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-mulg 19049 df-subg 19104 df-cntz 19298 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-subrng 20504 df-subrg 20528 df-abv 20767 df-lmod 20817 df-scaf 20818 df-sra 21129 df-rgmod 21130 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cn 23163 df-cnp 23164 df-tx 23498 df-hmeo 23691 df-tmd 24008 df-tgp 24009 df-trg 24096 df-xms 24257 df-ms 24258 df-tms 24259 df-nm 24519 df-ngp 24520 df-nrg 24522 df-nlm 24523 |
| This theorem is referenced by: nrgtdrg 24630 nlmtlm 24631 iistmd 33879 qqhcn 33968 |
| Copyright terms: Public domain | W3C validator |