MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgtrg Structured version   Visualization version   GIF version

Theorem nrgtrg 24531
Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015.) (Proof shortened by AV, 31-Oct-2024.)
Assertion
Ref Expression
nrgtrg (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing)

Proof of Theorem nrgtrg
StepHypRef Expression
1 nrgtgp 24513 . 2 (𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp)
2 nrgring 24504 . 2 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
3 eqid 2724 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
43ringmgp 20136 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
52, 4syl 17 . . 3 (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ Mnd)
6 tgptps 23908 . . . . . 6 (𝑅 ∈ TopGrp → 𝑅 ∈ TopSp)
71, 6syl 17 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ TopSp)
8 eqid 2724 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2724 . . . . . 6 (TopOpen‘𝑅) = (TopOpen‘𝑅)
108, 9istps 22760 . . . . 5 (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
117, 10sylib 217 . . . 4 (𝑅 ∈ NrmRing → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
123, 8mgpbas 20037 . . . . 5 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
133, 9mgptopn 20043 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘(mulGrp‘𝑅))
1412, 13istps 22760 . . . 4 ((mulGrp‘𝑅) ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
1511, 14sylibr 233 . . 3 (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopSp)
16 rlmnlm 24529 . . . 4 (𝑅 ∈ NrmRing → (ringLMod‘𝑅) ∈ NrmMod)
17 rlmsca2 21047 . . . . 5 ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅))
18 rlmscaf 21055 . . . . 5 (+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅))
19 rlmtopn 21049 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅))
20 baseid 17148 . . . . . . . . 9 Base = Slot (Base‘ndx)
2120, 8strfvi 17124 . . . . . . . 8 (Base‘𝑅) = (Base‘( I ‘𝑅))
2221a1i 11 . . . . . . 7 (⊤ → (Base‘𝑅) = (Base‘( I ‘𝑅)))
23 tsetid 17299 . . . . . . . . 9 TopSet = Slot (TopSet‘ndx)
24 eqid 2724 . . . . . . . . 9 (TopSet‘𝑅) = (TopSet‘𝑅)
2523, 24strfvi 17124 . . . . . . . 8 (TopSet‘𝑅) = (TopSet‘( I ‘𝑅))
2625a1i 11 . . . . . . 7 (⊤ → (TopSet‘𝑅) = (TopSet‘( I ‘𝑅)))
2722, 26topnpropd 17383 . . . . . 6 (⊤ → (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅)))
2827mptru 1540 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅))
2917, 18, 19, 28nlmvscn 24528 . . . 4 ((ringLMod‘𝑅) ∈ NrmMod → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅)))
3016, 29syl 17 . . 3 (𝑅 ∈ NrmRing → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅)))
31 eqid 2724 . . . 4 (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅))
3231, 13istmd 23902 . . 3 ((mulGrp‘𝑅) ∈ TopMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑅) ∈ TopSp ∧ (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅))))
335, 15, 30, 32syl3anbrc 1340 . 2 (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopMnd)
343istrg 23992 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd))
351, 2, 33, 34syl3anbrc 1340 1 (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wtru 1534  wcel 2098   I cid 5564  cfv 6534  (class class class)co 7402  ndxcnx 17127  Basecbs 17145  TopSetcts 17204  TopOpenctopn 17368  +𝑓cplusf 18562  Mndcmnd 18659  mulGrpcmgp 20031  Ringcrg 20130  ringLModcrglmod 21012  TopOnctopon 22736  TopSpctps 22758   Cn ccn 23052   ×t ctx 23388  TopMndctmd 23898  TopGrpctgp 23899  TopRingctrg 23984  NrmRingcnrg 24412  NrmModcnlm 24413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-map 8819  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-q 12931  df-rp 12973  df-xneg 13090  df-xadd 13091  df-xmul 13092  df-ico 13328  df-icc 13329  df-fz 13483  df-fzo 13626  df-seq 13965  df-exp 14026  df-hash 14289  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-hom 17222  df-cco 17223  df-rest 17369  df-topn 17370  df-0g 17388  df-gsum 17389  df-topgen 17390  df-pt 17391  df-prds 17394  df-xrs 17449  df-qtop 17454  df-imas 17455  df-xps 17457  df-mre 17531  df-mrc 17532  df-acs 17534  df-plusf 18564  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18988  df-subg 19042  df-cntz 19225  df-cmn 19694  df-abl 19695  df-mgp 20032  df-rng 20050  df-ur 20079  df-ring 20132  df-subrng 20438  df-subrg 20463  df-abv 20652  df-lmod 20700  df-scaf 20701  df-sra 21013  df-rgmod 21014  df-psmet 21222  df-xmet 21223  df-met 21224  df-bl 21225  df-mopn 21226  df-top 22720  df-topon 22737  df-topsp 22759  df-bases 22773  df-cn 23055  df-cnp 23056  df-tx 23390  df-hmeo 23583  df-tmd 23900  df-tgp 23901  df-trg 23988  df-xms 24150  df-ms 24151  df-tms 24152  df-nm 24415  df-ngp 24416  df-nrg 24418  df-nlm 24419
This theorem is referenced by:  nrgtdrg  24534  nlmtlm  24535  iistmd  33374  qqhcn  33463
  Copyright terms: Public domain W3C validator