| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrgtrg | Structured version Visualization version GIF version | ||
| Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015.) (Proof shortened by AV, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| nrgtrg | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrgtgp 24558 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp) | |
| 2 | nrgring 24549 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 4 | 3 | ringmgp 20124 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ Mnd) |
| 6 | tgptps 23965 | . . . . . 6 ⊢ (𝑅 ∈ TopGrp → 𝑅 ∈ TopSp) | |
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopSp) |
| 8 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | eqid 2729 | . . . . . 6 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
| 10 | 8, 9 | istps 22819 | . . . . 5 ⊢ (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
| 11 | 7, 10 | sylib 218 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
| 12 | 3, 8 | mgpbas 20030 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
| 13 | 3, 9 | mgptopn 20033 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘(mulGrp‘𝑅)) |
| 14 | 12, 13 | istps 22819 | . . . 4 ⊢ ((mulGrp‘𝑅) ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
| 15 | 11, 14 | sylibr 234 | . . 3 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopSp) |
| 16 | rlmnlm 24574 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (ringLMod‘𝑅) ∈ NrmMod) | |
| 17 | rlmsca2 21103 | . . . . 5 ⊢ ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅)) | |
| 18 | rlmscaf 21111 | . . . . 5 ⊢ (+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅)) | |
| 19 | rlmtopn 21105 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅)) | |
| 20 | baseid 17123 | . . . . . . . . 9 ⊢ Base = Slot (Base‘ndx) | |
| 21 | 20, 8 | strfvi 17101 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘( I ‘𝑅)) |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (Base‘𝑅) = (Base‘( I ‘𝑅))) |
| 23 | tsetid 17257 | . . . . . . . . 9 ⊢ TopSet = Slot (TopSet‘ndx) | |
| 24 | eqid 2729 | . . . . . . . . 9 ⊢ (TopSet‘𝑅) = (TopSet‘𝑅) | |
| 25 | 23, 24 | strfvi 17101 | . . . . . . . 8 ⊢ (TopSet‘𝑅) = (TopSet‘( I ‘𝑅)) |
| 26 | 25 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (TopSet‘𝑅) = (TopSet‘( I ‘𝑅))) |
| 27 | 22, 26 | topnpropd 17340 | . . . . . 6 ⊢ (⊤ → (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅))) |
| 28 | 27 | mptru 1547 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅)) |
| 29 | 17, 18, 19, 28 | nlmvscn 24573 | . . . 4 ⊢ ((ringLMod‘𝑅) ∈ NrmMod → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅))) |
| 30 | 16, 29 | syl 17 | . . 3 ⊢ (𝑅 ∈ NrmRing → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅))) |
| 31 | eqid 2729 | . . . 4 ⊢ (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅)) | |
| 32 | 31, 13 | istmd 23959 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ TopMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑅) ∈ TopSp ∧ (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅)))) |
| 33 | 5, 15, 30, 32 | syl3anbrc 1344 | . 2 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopMnd) |
| 34 | 3 | istrg 24049 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd)) |
| 35 | 1, 2, 33, 34 | syl3anbrc 1344 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 I cid 5513 ‘cfv 6482 (class class class)co 7349 ndxcnx 17104 Basecbs 17120 TopSetcts 17167 TopOpenctopn 17325 +𝑓cplusf 18511 Mndcmnd 18608 mulGrpcmgp 20025 Ringcrg 20118 ringLModcrglmod 21076 TopOnctopon 22795 TopSpctps 22817 Cn ccn 23109 ×t ctx 23445 TopMndctmd 23955 TopGrpctgp 23956 TopRingctrg 24041 NrmRingcnrg 24465 NrmModcnlm 24466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-plusf 18513 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-subrng 20431 df-subrg 20455 df-abv 20694 df-lmod 20765 df-scaf 20766 df-sra 21077 df-rgmod 21078 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cn 23112 df-cnp 23113 df-tx 23447 df-hmeo 23640 df-tmd 23957 df-tgp 23958 df-trg 24045 df-xms 24206 df-ms 24207 df-tms 24208 df-nm 24468 df-ngp 24469 df-nrg 24471 df-nlm 24472 |
| This theorem is referenced by: nrgtdrg 24579 nlmtlm 24580 iistmd 33869 qqhcn 33958 |
| Copyright terms: Public domain | W3C validator |