MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrgtrg Structured version   Visualization version   GIF version

Theorem nrgtrg 24554
Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015.) (Proof shortened by AV, 31-Oct-2024.)
Assertion
Ref Expression
nrgtrg (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing)

Proof of Theorem nrgtrg
StepHypRef Expression
1 nrgtgp 24536 . 2 (𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp)
2 nrgring 24527 . 2 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
3 eqid 2729 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
43ringmgp 20124 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
52, 4syl 17 . . 3 (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ Mnd)
6 tgptps 23943 . . . . . 6 (𝑅 ∈ TopGrp → 𝑅 ∈ TopSp)
71, 6syl 17 . . . . 5 (𝑅 ∈ NrmRing → 𝑅 ∈ TopSp)
8 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
9 eqid 2729 . . . . . 6 (TopOpen‘𝑅) = (TopOpen‘𝑅)
108, 9istps 22797 . . . . 5 (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
117, 10sylib 218 . . . 4 (𝑅 ∈ NrmRing → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
123, 8mgpbas 20030 . . . . 5 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
133, 9mgptopn 20033 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘(mulGrp‘𝑅))
1412, 13istps 22797 . . . 4 ((mulGrp‘𝑅) ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅)))
1511, 14sylibr 234 . . 3 (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopSp)
16 rlmnlm 24552 . . . 4 (𝑅 ∈ NrmRing → (ringLMod‘𝑅) ∈ NrmMod)
17 rlmsca2 21082 . . . . 5 ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅))
18 rlmscaf 21090 . . . . 5 (+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅))
19 rlmtopn 21084 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅))
20 baseid 17158 . . . . . . . . 9 Base = Slot (Base‘ndx)
2120, 8strfvi 17136 . . . . . . . 8 (Base‘𝑅) = (Base‘( I ‘𝑅))
2221a1i 11 . . . . . . 7 (⊤ → (Base‘𝑅) = (Base‘( I ‘𝑅)))
23 tsetid 17292 . . . . . . . . 9 TopSet = Slot (TopSet‘ndx)
24 eqid 2729 . . . . . . . . 9 (TopSet‘𝑅) = (TopSet‘𝑅)
2523, 24strfvi 17136 . . . . . . . 8 (TopSet‘𝑅) = (TopSet‘( I ‘𝑅))
2625a1i 11 . . . . . . 7 (⊤ → (TopSet‘𝑅) = (TopSet‘( I ‘𝑅)))
2722, 26topnpropd 17375 . . . . . 6 (⊤ → (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅)))
2827mptru 1547 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅))
2917, 18, 19, 28nlmvscn 24551 . . . 4 ((ringLMod‘𝑅) ∈ NrmMod → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅)))
3016, 29syl 17 . . 3 (𝑅 ∈ NrmRing → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅)))
31 eqid 2729 . . . 4 (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅))
3231, 13istmd 23937 . . 3 ((mulGrp‘𝑅) ∈ TopMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑅) ∈ TopSp ∧ (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅))))
335, 15, 30, 32syl3anbrc 1344 . 2 (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopMnd)
343istrg 24027 . 2 (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd))
351, 2, 33, 34syl3anbrc 1344 1 (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wtru 1541  wcel 2109   I cid 5525  cfv 6499  (class class class)co 7369  ndxcnx 17139  Basecbs 17155  TopSetcts 17202  TopOpenctopn 17360  +𝑓cplusf 18540  Mndcmnd 18637  mulGrpcmgp 20025  Ringcrg 20118  ringLModcrglmod 21055  TopOnctopon 22773  TopSpctps 22795   Cn ccn 23087   ×t ctx 23423  TopMndctmd 23933  TopGrpctgp 23934  TopRingctrg 24019  NrmRingcnrg 24443  NrmModcnlm 24444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-plusf 18542  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-abv 20694  df-lmod 20744  df-scaf 20745  df-sra 21056  df-rgmod 21057  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cn 23090  df-cnp 23091  df-tx 23425  df-hmeo 23618  df-tmd 23935  df-tgp 23936  df-trg 24023  df-xms 24184  df-ms 24185  df-tms 24186  df-nm 24446  df-ngp 24447  df-nrg 24449  df-nlm 24450
This theorem is referenced by:  nrgtdrg  24557  nlmtlm  24558  iistmd  33865  qqhcn  33954
  Copyright terms: Public domain W3C validator