Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrgtrg | Structured version Visualization version GIF version |
Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015.) (Proof shortened by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
nrgtrg | ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrgtgp 23742 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp) | |
2 | nrgring 23733 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ Ring) | |
3 | eqid 2738 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
4 | 3 | ringmgp 19704 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ Mnd) |
6 | tgptps 23139 | . . . . . 6 ⊢ (𝑅 ∈ TopGrp → 𝑅 ∈ TopSp) | |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopSp) |
8 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | eqid 2738 | . . . . . 6 ⊢ (TopOpen‘𝑅) = (TopOpen‘𝑅) | |
10 | 8, 9 | istps 21991 | . . . . 5 ⊢ (𝑅 ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
11 | 7, 10 | sylib 217 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
12 | 3, 8 | mgpbas 19641 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
13 | 3, 9 | mgptopn 19647 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘(mulGrp‘𝑅)) |
14 | 12, 13 | istps 21991 | . . . 4 ⊢ ((mulGrp‘𝑅) ∈ TopSp ↔ (TopOpen‘𝑅) ∈ (TopOn‘(Base‘𝑅))) |
15 | 11, 14 | sylibr 233 | . . 3 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopSp) |
16 | rlmnlm 23758 | . . . 4 ⊢ (𝑅 ∈ NrmRing → (ringLMod‘𝑅) ∈ NrmMod) | |
17 | rlmsca2 20384 | . . . . 5 ⊢ ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅)) | |
18 | rlmscaf 20392 | . . . . 5 ⊢ (+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅)) | |
19 | rlmtopn 20386 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅)) | |
20 | baseid 16843 | . . . . . . . . 9 ⊢ Base = Slot (Base‘ndx) | |
21 | 20, 8 | strfvi 16819 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘( I ‘𝑅)) |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (Base‘𝑅) = (Base‘( I ‘𝑅))) |
23 | tsetid 16988 | . . . . . . . . 9 ⊢ TopSet = Slot (TopSet‘ndx) | |
24 | eqid 2738 | . . . . . . . . 9 ⊢ (TopSet‘𝑅) = (TopSet‘𝑅) | |
25 | 23, 24 | strfvi 16819 | . . . . . . . 8 ⊢ (TopSet‘𝑅) = (TopSet‘( I ‘𝑅)) |
26 | 25 | a1i 11 | . . . . . . 7 ⊢ (⊤ → (TopSet‘𝑅) = (TopSet‘( I ‘𝑅))) |
27 | 22, 26 | topnpropd 17064 | . . . . . 6 ⊢ (⊤ → (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅))) |
28 | 27 | mptru 1546 | . . . . 5 ⊢ (TopOpen‘𝑅) = (TopOpen‘( I ‘𝑅)) |
29 | 17, 18, 19, 28 | nlmvscn 23757 | . . . 4 ⊢ ((ringLMod‘𝑅) ∈ NrmMod → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅))) |
30 | 16, 29 | syl 17 | . . 3 ⊢ (𝑅 ∈ NrmRing → (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅))) |
31 | eqid 2738 | . . . 4 ⊢ (+𝑓‘(mulGrp‘𝑅)) = (+𝑓‘(mulGrp‘𝑅)) | |
32 | 31, 13 | istmd 23133 | . . 3 ⊢ ((mulGrp‘𝑅) ∈ TopMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑅) ∈ TopSp ∧ (+𝑓‘(mulGrp‘𝑅)) ∈ (((TopOpen‘𝑅) ×t (TopOpen‘𝑅)) Cn (TopOpen‘𝑅)))) |
33 | 5, 15, 30, 32 | syl3anbrc 1341 | . 2 ⊢ (𝑅 ∈ NrmRing → (mulGrp‘𝑅) ∈ TopMnd) |
34 | 3 | istrg 23223 | . 2 ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ TopMnd)) |
35 | 1, 2, 33, 34 | syl3anbrc 1341 | 1 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ TopRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 I cid 5479 ‘cfv 6418 (class class class)co 7255 ndxcnx 16822 Basecbs 16840 TopSetcts 16894 TopOpenctopn 17049 +𝑓cplusf 18238 Mndcmnd 18300 mulGrpcmgp 19635 Ringcrg 19698 ringLModcrglmod 20346 TopOnctopon 21967 TopSpctps 21989 Cn ccn 22283 ×t ctx 22619 TopMndctmd 23129 TopGrpctgp 23130 TopRingctrg 23215 NrmRingcnrg 23641 NrmModcnlm 23642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-plusf 18240 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-abv 19992 df-lmod 20040 df-scaf 20041 df-sra 20349 df-rgmod 20350 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-cnp 22287 df-tx 22621 df-hmeo 22814 df-tmd 23131 df-tgp 23132 df-trg 23219 df-xms 23381 df-ms 23382 df-tms 23383 df-nm 23644 df-ngp 23645 df-nrg 23647 df-nlm 23648 |
This theorem is referenced by: nrgtdrg 23763 nlmtlm 23764 iistmd 31754 qqhcn 31841 |
Copyright terms: Public domain | W3C validator |