MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2l Structured version   Visualization version   GIF version

Theorem itg2l 25786
Description: Elementhood in the set 𝐿 of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
Assertion
Ref Expression
itg2l (𝐴𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)))
Distinct variable groups:   𝑥,𝑔,𝐴   𝑔,𝐹,𝑥
Allowed substitution hints:   𝐿(𝑥,𝑔)

Proof of Theorem itg2l
StepHypRef Expression
1 itg2val.1 . . 3 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
21eleq2i 2836 . 2 (𝐴𝐿𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))})
3 simpr 484 . . . . 5 ((𝑔r𝐹𝐴 = (∫1𝑔)) → 𝐴 = (∫1𝑔))
4 fvex 6935 . . . . 5 (∫1𝑔) ∈ V
53, 4eqeltrdi 2852 . . . 4 ((𝑔r𝐹𝐴 = (∫1𝑔)) → 𝐴 ∈ V)
65rexlimivw 3157 . . 3 (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)) → 𝐴 ∈ V)
7 eqeq1 2744 . . . . 5 (𝑥 = 𝐴 → (𝑥 = (∫1𝑔) ↔ 𝐴 = (∫1𝑔)))
87anbi2d 629 . . . 4 (𝑥 = 𝐴 → ((𝑔r𝐹𝑥 = (∫1𝑔)) ↔ (𝑔r𝐹𝐴 = (∫1𝑔))))
98rexbidv 3185 . . 3 (𝑥 = 𝐴 → (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔))))
106, 9elab3 3702 . 2 (𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)))
112, 10bitri 275 1 (𝐴𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488   class class class wbr 5166  dom cdm 5700  cfv 6575  r cofr 7715  cle 11327  1citg1 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rex 3077  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6527  df-fv 6583
This theorem is referenced by:  itg2lr  25787
  Copyright terms: Public domain W3C validator