Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2l | Structured version Visualization version GIF version |
Description: Elementhood in the set 𝐿 of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
Ref | Expression |
---|---|
itg2l | ⊢ (𝐴 ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg2val.1 | . . 3 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ 𝐿 ↔ 𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) |
3 | simpr 485 | . . . . 5 ⊢ ((𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 = (∫1‘𝑔)) | |
4 | fvex 6787 | . . . . 5 ⊢ (∫1‘𝑔) ∈ V | |
5 | 3, 4 | eqeltrdi 2847 | . . . 4 ⊢ ((𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 ∈ V) |
6 | 5 | rexlimivw 3211 | . . 3 ⊢ (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 ∈ V) |
7 | eqeq1 2742 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = (∫1‘𝑔) ↔ 𝐴 = (∫1‘𝑔))) | |
8 | 7 | anbi2d 629 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)))) |
9 | 8 | rexbidv 3226 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)))) |
10 | 6, 9 | elab3 3617 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
11 | 2, 10 | bitri 274 | 1 ⊢ (𝐴 ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 Vcvv 3432 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 ∘r cofr 7532 ≤ cle 11010 ∫1citg1 24779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-fv 6441 |
This theorem is referenced by: itg2lr 24895 |
Copyright terms: Public domain | W3C validator |