| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2l | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set 𝐿 of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
| Ref | Expression |
|---|---|
| itg2l | ⊢ (𝐴 ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2val.1 | . . 3 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ 𝐿 ↔ 𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 = (∫1‘𝑔)) | |
| 4 | fvex 6835 | . . . . 5 ⊢ (∫1‘𝑔) ∈ V | |
| 5 | 3, 4 | eqeltrdi 2839 | . . . 4 ⊢ ((𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 ∈ V) |
| 6 | 5 | rexlimivw 3129 | . . 3 ⊢ (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 ∈ V) |
| 7 | eqeq1 2735 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = (∫1‘𝑔) ↔ 𝐴 = (∫1‘𝑔))) | |
| 8 | 7 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)))) |
| 9 | 8 | rexbidv 3156 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)))) |
| 10 | 6, 9 | elab3 3642 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
| 11 | 2, 10 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 ∘r cofr 7609 ≤ cle 11144 ∫1citg1 25541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rex 3057 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-uni 4860 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: itg2lr 25656 |
| Copyright terms: Public domain | W3C validator |