Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2l | Structured version Visualization version GIF version |
Description: Elementhood in the set 𝐿 of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
Ref | Expression |
---|---|
itg2l | ⊢ (𝐴 ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg2val.1 | . . 3 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
2 | 1 | eleq2i 2843 | . 2 ⊢ (𝐴 ∈ 𝐿 ↔ 𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) |
3 | simpr 488 | . . . . 5 ⊢ ((𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 = (∫1‘𝑔)) | |
4 | fvex 6676 | . . . . 5 ⊢ (∫1‘𝑔) ∈ V | |
5 | 3, 4 | eqeltrdi 2860 | . . . 4 ⊢ ((𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 ∈ V) |
6 | 5 | rexlimivw 3206 | . . 3 ⊢ (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 ∈ V) |
7 | eqeq1 2762 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = (∫1‘𝑔) ↔ 𝐴 = (∫1‘𝑔))) | |
8 | 7 | anbi2d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)))) |
9 | 8 | rexbidv 3221 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)))) |
10 | 6, 9 | elab3 3597 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
11 | 2, 10 | bitri 278 | 1 ⊢ (𝐴 ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ∃wrex 3071 Vcvv 3409 class class class wbr 5036 dom cdm 5528 ‘cfv 6340 ∘r cofr 7410 ≤ cle 10727 ∫1citg1 24328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-nul 5180 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-sn 4526 df-pr 4528 df-uni 4802 df-iota 6299 df-fv 6348 |
This theorem is referenced by: itg2lr 24443 |
Copyright terms: Public domain | W3C validator |