MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2l Structured version   Visualization version   GIF version

Theorem itg2l 25246
Description: Elementhood in the set 𝐿 of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
Assertion
Ref Expression
itg2l (𝐴𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)))
Distinct variable groups:   𝑥,𝑔,𝐴   𝑔,𝐹,𝑥
Allowed substitution hints:   𝐿(𝑥,𝑔)

Proof of Theorem itg2l
StepHypRef Expression
1 itg2val.1 . . 3 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
21eleq2i 2825 . 2 (𝐴𝐿𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))})
3 simpr 485 . . . . 5 ((𝑔r𝐹𝐴 = (∫1𝑔)) → 𝐴 = (∫1𝑔))
4 fvex 6904 . . . . 5 (∫1𝑔) ∈ V
53, 4eqeltrdi 2841 . . . 4 ((𝑔r𝐹𝐴 = (∫1𝑔)) → 𝐴 ∈ V)
65rexlimivw 3151 . . 3 (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)) → 𝐴 ∈ V)
7 eqeq1 2736 . . . . 5 (𝑥 = 𝐴 → (𝑥 = (∫1𝑔) ↔ 𝐴 = (∫1𝑔)))
87anbi2d 629 . . . 4 (𝑥 = 𝐴 → ((𝑔r𝐹𝑥 = (∫1𝑔)) ↔ (𝑔r𝐹𝐴 = (∫1𝑔))))
98rexbidv 3178 . . 3 (𝑥 = 𝐴 → (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔))))
106, 9elab3 3676 . 2 (𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)))
112, 10bitri 274 1 (𝐴𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2709  wrex 3070  Vcvv 3474   class class class wbr 5148  dom cdm 5676  cfv 6543  r cofr 7668  cle 11248  1citg1 25131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rex 3071  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-pr 4631  df-uni 4909  df-iota 6495  df-fv 6551
This theorem is referenced by:  itg2lr  25247
  Copyright terms: Public domain W3C validator