MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2l Structured version   Visualization version   GIF version

Theorem itg2l 24799
Description: Elementhood in the set 𝐿 of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
Assertion
Ref Expression
itg2l (𝐴𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)))
Distinct variable groups:   𝑥,𝑔,𝐴   𝑔,𝐹,𝑥
Allowed substitution hints:   𝐿(𝑥,𝑔)

Proof of Theorem itg2l
StepHypRef Expression
1 itg2val.1 . . 3 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
21eleq2i 2830 . 2 (𝐴𝐿𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))})
3 simpr 484 . . . . 5 ((𝑔r𝐹𝐴 = (∫1𝑔)) → 𝐴 = (∫1𝑔))
4 fvex 6769 . . . . 5 (∫1𝑔) ∈ V
53, 4eqeltrdi 2847 . . . 4 ((𝑔r𝐹𝐴 = (∫1𝑔)) → 𝐴 ∈ V)
65rexlimivw 3210 . . 3 (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)) → 𝐴 ∈ V)
7 eqeq1 2742 . . . . 5 (𝑥 = 𝐴 → (𝑥 = (∫1𝑔) ↔ 𝐴 = (∫1𝑔)))
87anbi2d 628 . . . 4 (𝑥 = 𝐴 → ((𝑔r𝐹𝑥 = (∫1𝑔)) ↔ (𝑔r𝐹𝐴 = (∫1𝑔))))
98rexbidv 3225 . . 3 (𝑥 = 𝐴 → (∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔))))
106, 9elab3 3610 . 2 (𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))} ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)))
112, 10bitri 274 1 (𝐴𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝐴 = (∫1𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  Vcvv 3422   class class class wbr 5070  dom cdm 5580  cfv 6418  r cofr 7510  cle 10941  1citg1 24684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376  df-fv 6426
This theorem is referenced by:  itg2lr  24800
  Copyright terms: Public domain W3C validator