| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2l | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set 𝐿 of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
| Ref | Expression |
|---|---|
| itg2l | ⊢ (𝐴 ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2val.1 | . . 3 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ 𝐿 ↔ 𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 = (∫1‘𝑔)) | |
| 4 | fvex 6899 | . . . . 5 ⊢ (∫1‘𝑔) ∈ V | |
| 5 | 3, 4 | eqeltrdi 2841 | . . . 4 ⊢ ((𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 ∈ V) |
| 6 | 5 | rexlimivw 3138 | . . 3 ⊢ (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)) → 𝐴 ∈ V) |
| 7 | eqeq1 2738 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 = (∫1‘𝑔) ↔ 𝐴 = (∫1‘𝑔))) | |
| 8 | 7 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)))) |
| 9 | 8 | rexbidv 3166 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔)))) |
| 10 | 6, 9 | elab3 3669 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
| 11 | 2, 10 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝐴 = (∫1‘𝑔))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∃wrex 3059 Vcvv 3463 class class class wbr 5123 dom cdm 5665 ‘cfv 6541 ∘r cofr 7678 ≤ cle 11278 ∫1citg1 25586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-rex 3060 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4888 df-iota 6494 df-fv 6549 |
| This theorem is referenced by: itg2lr 25701 |
| Copyright terms: Public domain | W3C validator |