MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2lr Structured version   Visualization version   GIF version

Theorem itg2lr 25611
Description: Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypothesis
Ref Expression
itg2val.1 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
Assertion
Ref Expression
itg2lr ((𝐺 ∈ dom ∫1𝐺r𝐹) → (∫1𝐺) ∈ 𝐿)
Distinct variable groups:   𝑥,𝑔,𝐹   𝑔,𝐺,𝑥
Allowed substitution hints:   𝐿(𝑥,𝑔)

Proof of Theorem itg2lr
StepHypRef Expression
1 eqid 2726 . . 3 (∫1𝐺) = (∫1𝐺)
2 breq1 5144 . . . . 5 (𝑔 = 𝐺 → (𝑔r𝐹𝐺r𝐹))
3 fveq2 6884 . . . . . 6 (𝑔 = 𝐺 → (∫1𝑔) = (∫1𝐺))
43eqeq2d 2737 . . . . 5 (𝑔 = 𝐺 → ((∫1𝐺) = (∫1𝑔) ↔ (∫1𝐺) = (∫1𝐺)))
52, 4anbi12d 630 . . . 4 (𝑔 = 𝐺 → ((𝑔r𝐹 ∧ (∫1𝐺) = (∫1𝑔)) ↔ (𝐺r𝐹 ∧ (∫1𝐺) = (∫1𝐺))))
65rspcev 3606 . . 3 ((𝐺 ∈ dom ∫1 ∧ (𝐺r𝐹 ∧ (∫1𝐺) = (∫1𝐺))) → ∃𝑔 ∈ dom ∫1(𝑔r𝐹 ∧ (∫1𝐺) = (∫1𝑔)))
71, 6mpanr2 701 . 2 ((𝐺 ∈ dom ∫1𝐺r𝐹) → ∃𝑔 ∈ dom ∫1(𝑔r𝐹 ∧ (∫1𝐺) = (∫1𝑔)))
8 itg2val.1 . . 3 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝐹𝑥 = (∫1𝑔))}
98itg2l 25610 . 2 ((∫1𝐺) ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔r𝐹 ∧ (∫1𝐺) = (∫1𝑔)))
107, 9sylibr 233 1 ((𝐺 ∈ dom ∫1𝐺r𝐹) → (∫1𝐺) ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2703  wrex 3064   class class class wbr 5141  dom cdm 5669  cfv 6536  r cofr 7665  cle 11250  1citg1 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-nul 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6488  df-fv 6544
This theorem is referenced by:  itg2ub  25614
  Copyright terms: Public domain W3C validator