![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2lr | Structured version Visualization version GIF version |
Description: Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
Ref | Expression |
---|---|
itg2lr | ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘𝑟 ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2826 | . . 3 ⊢ (∫1‘𝐺) = (∫1‘𝐺) | |
2 | breq1 4877 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 ∘𝑟 ≤ 𝐹 ↔ 𝐺 ∘𝑟 ≤ 𝐹)) | |
3 | fveq2 6434 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (∫1‘𝑔) = (∫1‘𝐺)) | |
4 | 3 | eqeq2d 2836 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((∫1‘𝐺) = (∫1‘𝑔) ↔ (∫1‘𝐺) = (∫1‘𝐺))) |
5 | 2, 4 | anbi12d 626 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑔 ∘𝑟 ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔)) ↔ (𝐺 ∘𝑟 ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺)))) |
6 | 5 | rspcev 3527 | . . 3 ⊢ ((𝐺 ∈ dom ∫1 ∧ (𝐺 ∘𝑟 ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺))) → ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
7 | 1, 6 | mpanr2 697 | . 2 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘𝑟 ≤ 𝐹) → ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
8 | itg2val.1 | . . 3 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
9 | 8 | itg2l 23896 | . 2 ⊢ ((∫1‘𝐺) ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
10 | 7, 9 | sylibr 226 | 1 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘𝑟 ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 {cab 2812 ∃wrex 3119 class class class wbr 4874 dom cdm 5343 ‘cfv 6124 ∘𝑟 cofr 7157 ≤ cle 10393 ∫1citg1 23782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-nul 5014 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-iota 6087 df-fv 6132 |
This theorem is referenced by: itg2ub 23900 |
Copyright terms: Public domain | W3C validator |