| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2lr | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
| Ref | Expression |
|---|---|
| itg2lr | ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (∫1‘𝐺) = (∫1‘𝐺) | |
| 2 | breq1 5112 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 ∘r ≤ 𝐹 ↔ 𝐺 ∘r ≤ 𝐹)) | |
| 3 | fveq2 6860 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (∫1‘𝑔) = (∫1‘𝐺)) | |
| 4 | 3 | eqeq2d 2741 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((∫1‘𝐺) = (∫1‘𝑔) ↔ (∫1‘𝐺) = (∫1‘𝐺))) |
| 5 | 2, 4 | anbi12d 632 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔)) ↔ (𝐺 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺)))) |
| 6 | 5 | rspcev 3591 | . . 3 ⊢ ((𝐺 ∈ dom ∫1 ∧ (𝐺 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺))) → ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
| 7 | 1, 6 | mpanr2 704 | . 2 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
| 8 | itg2val.1 | . . 3 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
| 9 | 8 | itg2l 25636 | . 2 ⊢ ((∫1‘𝐺) ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
| 10 | 7, 9 | sylibr 234 | 1 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 class class class wbr 5109 dom cdm 5640 ‘cfv 6513 ∘r cofr 7654 ≤ cle 11215 ∫1citg1 25522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 |
| This theorem is referenced by: itg2ub 25640 |
| Copyright terms: Public domain | W3C validator |