![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2lr | Structured version Visualization version GIF version |
Description: Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
Ref | Expression |
---|---|
itg2lr | ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (∫1‘𝐺) = (∫1‘𝐺) | |
2 | breq1 5155 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 ∘r ≤ 𝐹 ↔ 𝐺 ∘r ≤ 𝐹)) | |
3 | fveq2 6902 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (∫1‘𝑔) = (∫1‘𝐺)) | |
4 | 3 | eqeq2d 2739 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((∫1‘𝐺) = (∫1‘𝑔) ↔ (∫1‘𝐺) = (∫1‘𝐺))) |
5 | 2, 4 | anbi12d 630 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔)) ↔ (𝐺 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺)))) |
6 | 5 | rspcev 3611 | . . 3 ⊢ ((𝐺 ∈ dom ∫1 ∧ (𝐺 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺))) → ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
7 | 1, 6 | mpanr2 702 | . 2 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
8 | itg2val.1 | . . 3 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
9 | 8 | itg2l 25679 | . 2 ⊢ ((∫1‘𝐺) ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
10 | 7, 9 | sylibr 233 | 1 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2705 ∃wrex 3067 class class class wbr 5152 dom cdm 5682 ‘cfv 6553 ∘r cofr 7690 ≤ cle 11287 ∫1citg1 25564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-nul 5310 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 |
This theorem is referenced by: itg2ub 25683 |
Copyright terms: Public domain | W3C validator |