| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2lr | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
| Ref | Expression |
|---|---|
| itg2lr | ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (∫1‘𝐺) = (∫1‘𝐺) | |
| 2 | breq1 5127 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 ∘r ≤ 𝐹 ↔ 𝐺 ∘r ≤ 𝐹)) | |
| 3 | fveq2 6881 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (∫1‘𝑔) = (∫1‘𝐺)) | |
| 4 | 3 | eqeq2d 2747 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((∫1‘𝐺) = (∫1‘𝑔) ↔ (∫1‘𝐺) = (∫1‘𝐺))) |
| 5 | 2, 4 | anbi12d 632 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔)) ↔ (𝐺 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺)))) |
| 6 | 5 | rspcev 3606 | . . 3 ⊢ ((𝐺 ∈ dom ∫1 ∧ (𝐺 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺))) → ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
| 7 | 1, 6 | mpanr2 704 | . 2 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
| 8 | itg2val.1 | . . 3 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
| 9 | 8 | itg2l 25687 | . 2 ⊢ ((∫1‘𝐺) ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
| 10 | 7, 9 | sylibr 234 | 1 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 ∘r cofr 7675 ≤ cle 11275 ∫1citg1 25573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: itg2ub 25691 |
| Copyright terms: Public domain | W3C validator |