![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2lr | Structured version Visualization version GIF version |
Description: Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
Ref | Expression |
---|---|
itg2lr | ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (∫1‘𝐺) = (∫1‘𝐺) | |
2 | breq1 5151 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 ∘r ≤ 𝐹 ↔ 𝐺 ∘r ≤ 𝐹)) | |
3 | fveq2 6907 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (∫1‘𝑔) = (∫1‘𝐺)) | |
4 | 3 | eqeq2d 2746 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((∫1‘𝐺) = (∫1‘𝑔) ↔ (∫1‘𝐺) = (∫1‘𝐺))) |
5 | 2, 4 | anbi12d 632 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔)) ↔ (𝐺 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺)))) |
6 | 5 | rspcev 3622 | . . 3 ⊢ ((𝐺 ∈ dom ∫1 ∧ (𝐺 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺))) → ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
7 | 1, 6 | mpanr2 704 | . 2 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
8 | itg2val.1 | . . 3 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
9 | 8 | itg2l 25779 | . 2 ⊢ ((∫1‘𝐺) ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
10 | 7, 9 | sylibr 234 | 1 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 class class class wbr 5148 dom cdm 5689 ‘cfv 6563 ∘r cofr 7696 ≤ cle 11294 ∫1citg1 25664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 |
This theorem is referenced by: itg2ub 25783 |
Copyright terms: Public domain | W3C validator |