| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2lr | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for elementhood in the set 𝐿. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg2val.1 | ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
| Ref | Expression |
|---|---|
| itg2lr | ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (∫1‘𝐺) = (∫1‘𝐺) | |
| 2 | breq1 5094 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 ∘r ≤ 𝐹 ↔ 𝐺 ∘r ≤ 𝐹)) | |
| 3 | fveq2 6822 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (∫1‘𝑔) = (∫1‘𝐺)) | |
| 4 | 3 | eqeq2d 2742 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((∫1‘𝐺) = (∫1‘𝑔) ↔ (∫1‘𝐺) = (∫1‘𝐺))) |
| 5 | 2, 4 | anbi12d 632 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔)) ↔ (𝐺 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺)))) |
| 6 | 5 | rspcev 3577 | . . 3 ⊢ ((𝐺 ∈ dom ∫1 ∧ (𝐺 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝐺))) → ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
| 7 | 1, 6 | mpanr2 704 | . 2 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
| 8 | itg2val.1 | . . 3 ⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
| 9 | 8 | itg2l 25655 | . 2 ⊢ ((∫1‘𝐺) ∈ 𝐿 ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ (∫1‘𝐺) = (∫1‘𝑔))) |
| 10 | 7, 9 | sylibr 234 | 1 ⊢ ((𝐺 ∈ dom ∫1 ∧ 𝐺 ∘r ≤ 𝐹) → (∫1‘𝐺) ∈ 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 ∘r cofr 7609 ≤ cle 11144 ∫1citg1 25541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: itg2ub 25659 |
| Copyright terms: Public domain | W3C validator |