MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth3 Structured version   Visualization version   GIF version

Theorem bcth3 24829
Description: Baire's Category Theorem, version 3: The intersection of countably many dense open sets is dense. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypothesis
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
bcth3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋) → ((cls‘𝐽)‘ ran 𝑀) = 𝑋)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝑘,𝑀   𝑘,𝑋

Proof of Theorem bcth3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmetmet 24784 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 23821 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
4 bcth.2 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
54mopntop 23927 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
65ad2antrr 725 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → 𝐽 ∈ Top)
7 ffvelcdm 7078 . . . . . . . . . 10 ((𝑀:ℕ⟶𝐽𝑘 ∈ ℕ) → (𝑀𝑘) ∈ 𝐽)
8 elssuni 4939 . . . . . . . . . 10 ((𝑀𝑘) ∈ 𝐽 → (𝑀𝑘) ⊆ 𝐽)
97, 8syl 17 . . . . . . . . 9 ((𝑀:ℕ⟶𝐽𝑘 ∈ ℕ) → (𝑀𝑘) ⊆ 𝐽)
109adantll 713 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ⊆ 𝐽)
11 eqid 2733 . . . . . . . . 9 𝐽 = 𝐽
1211clsval2 22535 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑀𝑘) ⊆ 𝐽) → ((cls‘𝐽)‘(𝑀𝑘)) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))))
136, 10, 12syl2anc 585 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((cls‘𝐽)‘(𝑀𝑘)) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))))
144mopnuni 23928 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1514ad2antrr 725 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → 𝑋 = 𝐽)
1613, 15eqeq12d 2749 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 ↔ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽))
17 difeq2 4114 . . . . . . . 8 (( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽 → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ( 𝐽 𝐽))
18 difid 4368 . . . . . . . 8 ( 𝐽 𝐽) = ∅
1917, 18eqtrdi 2789 . . . . . . 7 (( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽 → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ∅)
20 difss 4129 . . . . . . . . . . . 12 ( 𝐽 ∖ (𝑀𝑘)) ⊆ 𝐽
2111ntropn 22534 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ( 𝐽 ∖ (𝑀𝑘)) ⊆ 𝐽) → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ∈ 𝐽)
226, 20, 21sylancl 587 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ∈ 𝐽)
23 elssuni 4939 . . . . . . . . . . 11 (((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ∈ 𝐽 → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ⊆ 𝐽)
2422, 23syl 17 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ⊆ 𝐽)
25 dfss4 4256 . . . . . . . . . 10 (((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ⊆ 𝐽 ↔ ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))
2624, 25sylib 217 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))
27 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
28 elfvdm 6924 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2928difexd 5327 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀𝑘)) ∈ V)
3029adantr 482 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ∖ (𝑀𝑘)) ∈ V)
31 fveq2 6887 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → (𝑀𝑥) = (𝑀𝑘))
3231difeq2d 4120 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝑋 ∖ (𝑀𝑥)) = (𝑋 ∖ (𝑀𝑘)))
33 eqid 2733 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))
3432, 33fvmptg 6991 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ (𝑋 ∖ (𝑀𝑘)) ∈ V) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = (𝑋 ∖ (𝑀𝑘)))
3527, 30, 34syl2anr 598 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = (𝑋 ∖ (𝑀𝑘)))
3615difeq1d 4119 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑋 ∖ (𝑀𝑘)) = ( 𝐽 ∖ (𝑀𝑘)))
3735, 36eqtrd 2773 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = ( 𝐽 ∖ (𝑀𝑘)))
3837fveq2d 6891 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))
3926, 38eqtr4d 2776 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)))
4039eqeq1d 2735 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ∅ ↔ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
4119, 40imbitrid 243 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽 → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
4216, 41sylbid 239 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
4342ralimdva 3168 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
443, 43sylan 581 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
45 ffvelcdm 7078 . . . . . . . . 9 ((𝑀:ℕ⟶𝐽𝑥 ∈ ℕ) → (𝑀𝑥) ∈ 𝐽)
4614difeq1d 4119 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀𝑥)) = ( 𝐽 ∖ (𝑀𝑥)))
4746adantr 482 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀𝑥) ∈ 𝐽) → (𝑋 ∖ (𝑀𝑥)) = ( 𝐽 ∖ (𝑀𝑥)))
4811opncld 22518 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ (𝑀𝑥) ∈ 𝐽) → ( 𝐽 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
495, 48sylan 581 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀𝑥) ∈ 𝐽) → ( 𝐽 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5047, 49eqeltrd 2834 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀𝑥) ∈ 𝐽) → (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5145, 50sylan2 594 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀:ℕ⟶𝐽𝑥 ∈ ℕ)) → (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5251anassrs 469 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑥 ∈ ℕ) → (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5352ralrimiva 3147 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
543, 53sylan 581 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5533fmpt 7104 . . . . 5 (∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽) ↔ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽))
5654, 55sylib 217 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽))
57 nne 2945 . . . . . . 7 (¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ ↔ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅)
5857ralbii 3094 . . . . . 6 (∀𝑘 ∈ ℕ ¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ ↔ ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅)
59 ralnex 3073 . . . . . 6 (∀𝑘 ∈ ℕ ¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ ↔ ¬ ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅)
6058, 59bitr3i 277 . . . . 5 (∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅ ↔ ¬ ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅)
614bcth 24827 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅)
62613expia 1122 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽)) → (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) ≠ ∅ → ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅))
6362necon1bd 2959 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽)) → (¬ ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅))
6460, 63biimtrid 241 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽)) → (∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅ → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅))
6556, 64syldan 592 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅ → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅))
66 difeq2 4114 . . . . 5 (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅ → ( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ( 𝐽 ∖ ∅))
6728difexd 5327 . . . . . . . . . . . . . . 15 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀𝑥)) ∈ V)
6867ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑥 ∈ ℕ) → (𝑋 ∖ (𝑀𝑥)) ∈ V)
6968ralrimiva 3147 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ V)
7033fnmpt 6686 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ V → (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) Fn ℕ)
71 fniunfv 7240 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) Fn ℕ → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))
7269, 70, 713syl 18 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))
7335iuneq2dv 5019 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = 𝑘 ∈ ℕ (𝑋 ∖ (𝑀𝑘)))
7432cbviunv 5041 . . . . . . . . . . . . 13 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) = 𝑘 ∈ ℕ (𝑋 ∖ (𝑀𝑘))
7573, 74eqtr4di 2791 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)))
7672, 75eqtr3d 2775 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)))
77 iundif2 5075 . . . . . . . . . . 11 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) = (𝑋 𝑥 ∈ ℕ (𝑀𝑥))
7876, 77eqtrdi 2789 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = (𝑋 𝑥 ∈ ℕ (𝑀𝑥)))
79 ffn 6713 . . . . . . . . . . . . 13 (𝑀:ℕ⟶𝐽𝑀 Fn ℕ)
8079adantl 483 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑀 Fn ℕ)
81 fniinfv 6964 . . . . . . . . . . . 12 (𝑀 Fn ℕ → 𝑥 ∈ ℕ (𝑀𝑥) = ran 𝑀)
8280, 81syl 17 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑥 ∈ ℕ (𝑀𝑥) = ran 𝑀)
8382difeq2d 4120 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 𝑥 ∈ ℕ (𝑀𝑥)) = (𝑋 ran 𝑀))
8414adantr 482 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑋 = 𝐽)
8584difeq1d 4119 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ran 𝑀) = ( 𝐽 ran 𝑀))
8678, 83, 853eqtrd 2777 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = ( 𝐽 ran 𝑀))
8786fveq2d 6891 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ((int‘𝐽)‘( 𝐽 ran 𝑀)))
8887difeq2d 4120 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ran 𝑀))))
895adantr 482 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝐽 ∈ Top)
90 1nn 12218 . . . . . . . . 9 1 ∈ ℕ
91 biidd 262 . . . . . . . . . 10 (𝑘 = 1 → (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽) ↔ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽)))
92 fnfvelrn 7077 . . . . . . . . . . . . . 14 ((𝑀 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ ran 𝑀)
9380, 92sylan 581 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ ran 𝑀)
94 intss1 4965 . . . . . . . . . . . . 13 ((𝑀𝑘) ∈ ran 𝑀 ran 𝑀 ⊆ (𝑀𝑘))
9593, 94syl 17 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ran 𝑀 ⊆ (𝑀𝑘))
9695, 10sstrd 3990 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ran 𝑀 𝐽)
9796expcom 415 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽))
9891, 97vtoclga 3564 . . . . . . . . 9 (1 ∈ ℕ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽))
9990, 98ax-mp 5 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽)
10011clsval2 22535 . . . . . . . 8 ((𝐽 ∈ Top ∧ ran 𝑀 𝐽) → ((cls‘𝐽)‘ ran 𝑀) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ran 𝑀))))
10189, 99, 100syl2anc 585 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((cls‘𝐽)‘ ran 𝑀) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ran 𝑀))))
10288, 101eqtr4d 2776 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ((cls‘𝐽)‘ ran 𝑀))
103 dif0 4370 . . . . . . 7 ( 𝐽 ∖ ∅) = 𝐽
104103, 84eqtr4id 2792 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ( 𝐽 ∖ ∅) = 𝑋)
105102, 104eqeq12d 2749 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ( 𝐽 ∖ ∅) ↔ ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
10666, 105imbitrid 243 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅ → ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
1073, 106sylan 581 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅ → ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
10844, 65, 1073syld 60 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
1091083impia 1118 1 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋) → ((cls‘𝐽)‘ ran 𝑀) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  Vcvv 3475  cdif 3943  wss 3946  c0 4320   cuni 4906   cint 4948   ciun 4995   ciin 4996  cmpt 5229  dom cdm 5674  ran crn 5675   Fn wfn 6534  wf 6535  cfv 6539  1c1 11106  cn 12207  ∞Metcxmet 20913  Metcmet 20914  MetOpencmopn 20918  Topctop 22376  Clsdccld 22501  intcnt 22502  clsccl 22503  CMetccmet 24752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-inf2 9631  ax-dc 10436  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-iin 4998  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-er 8698  df-map 8817  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-sup 9432  df-inf 9433  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-n0 12468  df-z 12554  df-uz 12818  df-q 12928  df-rp 12970  df-xneg 13087  df-xadd 13088  df-xmul 13089  df-ico 13325  df-rest 17363  df-topgen 17384  df-psmet 20920  df-xmet 20921  df-met 20922  df-bl 20923  df-mopn 20924  df-fbas 20925  df-fg 20926  df-top 22377  df-topon 22394  df-bases 22430  df-cld 22504  df-ntr 22505  df-cls 22506  df-nei 22583  df-lm 22714  df-fil 23331  df-fm 23423  df-flim 23424  df-flf 23425  df-cfil 24753  df-cau 24754  df-cmet 24755
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator