Step | Hyp | Ref
| Expression |
1 | | cmetmet 25339 |
. . . . 5
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
2 | | metxmet 24365 |
. . . . 5
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
4 | | bcth.2 |
. . . . . . . . . 10
⊢ 𝐽 = (MetOpen‘𝐷) |
5 | 4 | mopntop 24471 |
. . . . . . . . 9
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
6 | 5 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → 𝐽 ∈ Top) |
7 | | ffvelcdm 7115 |
. . . . . . . . . 10
⊢ ((𝑀:ℕ⟶𝐽 ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ∈ 𝐽) |
8 | | elssuni 4961 |
. . . . . . . . . 10
⊢ ((𝑀‘𝑘) ∈ 𝐽 → (𝑀‘𝑘) ⊆ ∪ 𝐽) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ ((𝑀:ℕ⟶𝐽 ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ⊆ ∪ 𝐽) |
10 | 9 | adantll 713 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ⊆ ∪ 𝐽) |
11 | | eqid 2740 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
12 | 11 | clsval2 23079 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝑀‘𝑘) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(𝑀‘𝑘)) = (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽
∖ (𝑀‘𝑘))))) |
13 | 6, 10, 12 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((cls‘𝐽)‘(𝑀‘𝑘)) = (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽
∖ (𝑀‘𝑘))))) |
14 | 4 | mopnuni 24472 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
15 | 14 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → 𝑋 = ∪ 𝐽) |
16 | 13, 15 | eqeq12d 2756 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋 ↔ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽
∖ (𝑀‘𝑘)))) = ∪ 𝐽)) |
17 | | difeq2 4143 |
. . . . . . . 8
⊢ ((∪ 𝐽
∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) = ∪ 𝐽 → (∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = (∪ 𝐽 ∖ ∪ 𝐽)) |
18 | | difid 4398 |
. . . . . . . 8
⊢ (∪ 𝐽
∖ ∪ 𝐽) = ∅ |
19 | 17, 18 | eqtrdi 2796 |
. . . . . . 7
⊢ ((∪ 𝐽
∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) = ∪ 𝐽 → (∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = ∅) |
20 | | difss 4159 |
. . . . . . . . . . . 12
⊢ (∪ 𝐽
∖ (𝑀‘𝑘)) ⊆ ∪ 𝐽 |
21 | 11 | ntropn 23078 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽
∖ (𝑀‘𝑘)) ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))) ∈ 𝐽) |
22 | 6, 20, 21 | sylancl 585 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘(∪ 𝐽
∖ (𝑀‘𝑘))) ∈ 𝐽) |
23 | | elssuni 4961 |
. . . . . . . . . . 11
⊢
(((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))) ∈ 𝐽 → ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))) ⊆ ∪
𝐽) |
24 | 22, 23 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘(∪ 𝐽
∖ (𝑀‘𝑘))) ⊆ ∪ 𝐽) |
25 | | dfss4 4288 |
. . . . . . . . . 10
⊢
(((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))) ⊆ ∪
𝐽 ↔ (∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) |
26 | 24, 25 | sylib 218 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) |
27 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ) |
28 | | elfvdm 6957 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
29 | 28 | difexd 5349 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀‘𝑘)) ∈ V) |
30 | 29 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ∖ (𝑀‘𝑘)) ∈ V) |
31 | | fveq2 6920 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑘 → (𝑀‘𝑥) = (𝑀‘𝑘)) |
32 | 31 | difeq2d 4149 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑘 → (𝑋 ∖ (𝑀‘𝑥)) = (𝑋 ∖ (𝑀‘𝑘))) |
33 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))) = (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))) |
34 | 32, 33 | fvmptg 7027 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ (𝑋 ∖ (𝑀‘𝑘)) ∈ V) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = (𝑋 ∖ (𝑀‘𝑘))) |
35 | 27, 30, 34 | syl2anr 596 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = (𝑋 ∖ (𝑀‘𝑘))) |
36 | 15 | difeq1d 4148 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑋 ∖ (𝑀‘𝑘)) = (∪ 𝐽 ∖ (𝑀‘𝑘))) |
37 | 35, 36 | eqtrd 2780 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = (∪ 𝐽 ∖ (𝑀‘𝑘))) |
38 | 37 | fveq2d 6924 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) |
39 | 26, 38 | eqtr4d 2783 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘))) |
40 | 39 | eqeq1d 2742 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = ∅ ↔ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅)) |
41 | 19, 40 | imbitrid 244 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((∪ 𝐽
∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) = ∪ 𝐽 → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅)) |
42 | 16, 41 | sylbid 240 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋 → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅)) |
43 | 42 | ralimdva 3173 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅)) |
44 | 3, 43 | sylan 579 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅)) |
45 | | ffvelcdm 7115 |
. . . . . . . . 9
⊢ ((𝑀:ℕ⟶𝐽 ∧ 𝑥 ∈ ℕ) → (𝑀‘𝑥) ∈ 𝐽) |
46 | 14 | difeq1d 4148 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀‘𝑥)) = (∪ 𝐽 ∖ (𝑀‘𝑥))) |
47 | 46 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀‘𝑥) ∈ 𝐽) → (𝑋 ∖ (𝑀‘𝑥)) = (∪ 𝐽 ∖ (𝑀‘𝑥))) |
48 | 11 | opncld 23062 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ (𝑀‘𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
49 | 5, 48 | sylan 579 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀‘𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
50 | 47, 49 | eqeltrd 2844 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀‘𝑥) ∈ 𝐽) → (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
51 | 45, 50 | sylan2 592 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀:ℕ⟶𝐽 ∧ 𝑥 ∈ ℕ)) → (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
52 | 51 | anassrs 467 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑥 ∈ ℕ) → (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
53 | 52 | ralrimiva 3152 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
54 | 3, 53 | sylan 579 |
. . . . 5
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
55 | 33 | fmpt 7144 |
. . . . 5
⊢
(∀𝑥 ∈
ℕ (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽) ↔ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽)) |
56 | 54, 55 | sylib 218 |
. . . 4
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽)) |
57 | | nne 2950 |
. . . . . . 7
⊢ (¬
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅ ↔ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅) |
58 | 57 | ralbii 3099 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ ¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅ ↔ ∀𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅) |
59 | | ralnex 3078 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ ¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅ ↔ ¬ ∃𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅) |
60 | 58, 59 | bitr3i 277 |
. . . . 5
⊢
(∀𝑘 ∈
ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅ ↔ ¬ ∃𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅) |
61 | 4 | bcth 25382 |
. . . . . . 7
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) ≠ ∅) → ∃𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅) |
62 | 61 | 3expia 1121 |
. . . . . 6
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽)) → (((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) ≠ ∅ → ∃𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅)) |
63 | 62 | necon1bd 2964 |
. . . . 5
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽)) → (¬ ∃𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅ → ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) = ∅)) |
64 | 60, 63 | biimtrid 242 |
. . . 4
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽)) → (∀𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅ → ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) = ∅)) |
65 | 56, 64 | syldan 590 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅ → ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) = ∅)) |
66 | | difeq2 4143 |
. . . . 5
⊢
(((int‘𝐽)‘∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥)))) = ∅ → (∪ 𝐽
∖ ((int‘𝐽)‘∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥))))) = (∪ 𝐽 ∖
∅)) |
67 | 28 | difexd 5349 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀‘𝑥)) ∈ V) |
68 | 67 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑥 ∈ ℕ) → (𝑋 ∖ (𝑀‘𝑥)) ∈ V) |
69 | 68 | ralrimiva 3152 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥)) ∈ V) |
70 | 33 | fnmpt 6720 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
ℕ (𝑋 ∖ (𝑀‘𝑥)) ∈ V → (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))) Fn ℕ) |
71 | | fniunfv 7284 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))) Fn ℕ → ∪ 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = ∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) |
72 | 69, 70, 71 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪
𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = ∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) |
73 | 35 | iuneq2dv 5039 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪
𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = ∪ 𝑘 ∈ ℕ (𝑋 ∖ (𝑀‘𝑘))) |
74 | 32 | cbviunv 5063 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥)) = ∪
𝑘 ∈ ℕ (𝑋 ∖ (𝑀‘𝑘)) |
75 | 73, 74 | eqtr4di 2798 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪
𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = ∪ 𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥))) |
76 | 72, 75 | eqtr3d 2782 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥))) = ∪
𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥))) |
77 | | iundif2 5097 |
. . . . . . . . . . 11
⊢ ∪ 𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥)) = (𝑋 ∖ ∩
𝑥 ∈ ℕ (𝑀‘𝑥)) |
78 | 76, 77 | eqtrdi 2796 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥))) = (𝑋 ∖ ∩
𝑥 ∈ ℕ (𝑀‘𝑥))) |
79 | | ffn 6747 |
. . . . . . . . . . . . 13
⊢ (𝑀:ℕ⟶𝐽 → 𝑀 Fn ℕ) |
80 | 79 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑀 Fn ℕ) |
81 | | fniinfv 7000 |
. . . . . . . . . . . 12
⊢ (𝑀 Fn ℕ → ∩ 𝑥 ∈ ℕ (𝑀‘𝑥) = ∩ ran 𝑀) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∩
𝑥 ∈ ℕ (𝑀‘𝑥) = ∩ ran 𝑀) |
83 | 82 | difeq2d 4149 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ∖ ∩
𝑥 ∈ ℕ (𝑀‘𝑥)) = (𝑋 ∖ ∩ ran
𝑀)) |
84 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑋 = ∪ 𝐽) |
85 | 84 | difeq1d 4148 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ∖ ∩ ran
𝑀) = (∪ 𝐽
∖ ∩ ran 𝑀)) |
86 | 78, 83, 85 | 3eqtrd 2784 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥))) = (∪ 𝐽 ∖ ∩ ran 𝑀)) |
87 | 86 | fveq2d 6924 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((int‘𝐽)‘∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥)))) = ((int‘𝐽)‘(∪ 𝐽 ∖ ∩ ran 𝑀))) |
88 | 87 | difeq2d 4149 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∪ 𝐽 ∖ ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))))) = (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽
∖ ∩ ran 𝑀)))) |
89 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝐽 ∈ Top) |
90 | | 1nn 12304 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
91 | | biidd 262 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∩ ran
𝑀 ⊆ ∪ 𝐽)
↔ ((𝐷 ∈
(∞Met‘𝑋) ∧
𝑀:ℕ⟶𝐽) → ∩ ran 𝑀 ⊆ ∪ 𝐽))) |
92 | | fnfvelrn 7114 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ∈ ran 𝑀) |
93 | 80, 92 | sylan 579 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ∈ ran 𝑀) |
94 | | intss1 4987 |
. . . . . . . . . . . . 13
⊢ ((𝑀‘𝑘) ∈ ran 𝑀 → ∩ ran
𝑀 ⊆ (𝑀‘𝑘)) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ∩ ran 𝑀 ⊆ (𝑀‘𝑘)) |
96 | 95, 10 | sstrd 4019 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ∩ ran 𝑀 ⊆ ∪ 𝐽) |
97 | 96 | expcom 413 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∩ ran
𝑀 ⊆ ∪ 𝐽)) |
98 | 91, 97 | vtoclga 3589 |
. . . . . . . . 9
⊢ (1 ∈
ℕ → ((𝐷 ∈
(∞Met‘𝑋) ∧
𝑀:ℕ⟶𝐽) → ∩ ran 𝑀 ⊆ ∪ 𝐽)) |
99 | 90, 98 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∩ ran
𝑀 ⊆ ∪ 𝐽) |
100 | 11 | clsval2 23079 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ ∩ ran 𝑀 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘∩ ran 𝑀) = (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽
∖ ∩ ran 𝑀)))) |
101 | 89, 99, 100 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((cls‘𝐽)‘∩ ran
𝑀) = (∪ 𝐽
∖ ((int‘𝐽)‘(∪ 𝐽 ∖ ∩ ran 𝑀)))) |
102 | 88, 101 | eqtr4d 2783 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∪ 𝐽 ∖ ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))))) = ((cls‘𝐽)‘∩ ran
𝑀)) |
103 | | dif0 4400 |
. . . . . . 7
⊢ (∪ 𝐽
∖ ∅) = ∪ 𝐽 |
104 | 103, 84 | eqtr4id 2799 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∪ 𝐽 ∖ ∅) = 𝑋) |
105 | 102, 104 | eqeq12d 2756 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((∪
𝐽 ∖ ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))))) = (∪ 𝐽 ∖ ∅) ↔
((cls‘𝐽)‘∩ ran 𝑀) = 𝑋)) |
106 | 66, 105 | imbitrid 244 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (((int‘𝐽)‘∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥)))) = ∅ → ((cls‘𝐽)‘∩ ran 𝑀) = 𝑋)) |
107 | 3, 106 | sylan 579 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (((int‘𝐽)‘∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥)))) = ∅ → ((cls‘𝐽)‘∩ ran 𝑀) = 𝑋)) |
108 | 44, 65, 107 | 3syld 60 |
. 2
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋 → ((cls‘𝐽)‘∩ ran
𝑀) = 𝑋)) |
109 | 108 | 3impia 1117 |
1
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋) → ((cls‘𝐽)‘∩ ran
𝑀) = 𝑋) |