MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth3 Structured version   Visualization version   GIF version

Theorem bcth3 25258
Description: Baire's Category Theorem, version 3: The intersection of countably many dense open sets is dense. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypothesis
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
bcth3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋) → ((cls‘𝐽)‘ ran 𝑀) = 𝑋)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝑘,𝑀   𝑘,𝑋

Proof of Theorem bcth3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmetmet 25213 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 24249 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
4 bcth.2 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
54mopntop 24355 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
65ad2antrr 726 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → 𝐽 ∈ Top)
7 ffvelcdm 7014 . . . . . . . . . 10 ((𝑀:ℕ⟶𝐽𝑘 ∈ ℕ) → (𝑀𝑘) ∈ 𝐽)
8 elssuni 4887 . . . . . . . . . 10 ((𝑀𝑘) ∈ 𝐽 → (𝑀𝑘) ⊆ 𝐽)
97, 8syl 17 . . . . . . . . 9 ((𝑀:ℕ⟶𝐽𝑘 ∈ ℕ) → (𝑀𝑘) ⊆ 𝐽)
109adantll 714 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ⊆ 𝐽)
11 eqid 2731 . . . . . . . . 9 𝐽 = 𝐽
1211clsval2 22965 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑀𝑘) ⊆ 𝐽) → ((cls‘𝐽)‘(𝑀𝑘)) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))))
136, 10, 12syl2anc 584 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((cls‘𝐽)‘(𝑀𝑘)) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))))
144mopnuni 24356 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1514ad2antrr 726 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → 𝑋 = 𝐽)
1613, 15eqeq12d 2747 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 ↔ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽))
17 difeq2 4067 . . . . . . . 8 (( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽 → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ( 𝐽 𝐽))
18 difid 4323 . . . . . . . 8 ( 𝐽 𝐽) = ∅
1917, 18eqtrdi 2782 . . . . . . 7 (( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽 → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ∅)
20 difss 4083 . . . . . . . . . . . 12 ( 𝐽 ∖ (𝑀𝑘)) ⊆ 𝐽
2111ntropn 22964 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ( 𝐽 ∖ (𝑀𝑘)) ⊆ 𝐽) → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ∈ 𝐽)
226, 20, 21sylancl 586 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ∈ 𝐽)
23 elssuni 4887 . . . . . . . . . . 11 (((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ∈ 𝐽 → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ⊆ 𝐽)
2422, 23syl 17 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ⊆ 𝐽)
25 dfss4 4216 . . . . . . . . . 10 (((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ⊆ 𝐽 ↔ ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))
2624, 25sylib 218 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))
27 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
28 elfvdm 6856 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2928difexd 5267 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀𝑘)) ∈ V)
3029adantr 480 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ∖ (𝑀𝑘)) ∈ V)
31 fveq2 6822 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → (𝑀𝑥) = (𝑀𝑘))
3231difeq2d 4073 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝑋 ∖ (𝑀𝑥)) = (𝑋 ∖ (𝑀𝑘)))
33 eqid 2731 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))
3432, 33fvmptg 6927 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ (𝑋 ∖ (𝑀𝑘)) ∈ V) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = (𝑋 ∖ (𝑀𝑘)))
3527, 30, 34syl2anr 597 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = (𝑋 ∖ (𝑀𝑘)))
3615difeq1d 4072 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑋 ∖ (𝑀𝑘)) = ( 𝐽 ∖ (𝑀𝑘)))
3735, 36eqtrd 2766 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = ( 𝐽 ∖ (𝑀𝑘)))
3837fveq2d 6826 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))
3926, 38eqtr4d 2769 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)))
4039eqeq1d 2733 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ∅ ↔ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
4119, 40imbitrid 244 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽 → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
4216, 41sylbid 240 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
4342ralimdva 3144 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
443, 43sylan 580 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
45 ffvelcdm 7014 . . . . . . . . 9 ((𝑀:ℕ⟶𝐽𝑥 ∈ ℕ) → (𝑀𝑥) ∈ 𝐽)
4614difeq1d 4072 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀𝑥)) = ( 𝐽 ∖ (𝑀𝑥)))
4746adantr 480 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀𝑥) ∈ 𝐽) → (𝑋 ∖ (𝑀𝑥)) = ( 𝐽 ∖ (𝑀𝑥)))
4811opncld 22948 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ (𝑀𝑥) ∈ 𝐽) → ( 𝐽 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
495, 48sylan 580 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀𝑥) ∈ 𝐽) → ( 𝐽 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5047, 49eqeltrd 2831 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀𝑥) ∈ 𝐽) → (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5145, 50sylan2 593 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀:ℕ⟶𝐽𝑥 ∈ ℕ)) → (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5251anassrs 467 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑥 ∈ ℕ) → (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5352ralrimiva 3124 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
543, 53sylan 580 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5533fmpt 7043 . . . . 5 (∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽) ↔ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽))
5654, 55sylib 218 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽))
57 nne 2932 . . . . . . 7 (¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ ↔ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅)
5857ralbii 3078 . . . . . 6 (∀𝑘 ∈ ℕ ¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ ↔ ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅)
59 ralnex 3058 . . . . . 6 (∀𝑘 ∈ ℕ ¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ ↔ ¬ ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅)
6058, 59bitr3i 277 . . . . 5 (∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅ ↔ ¬ ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅)
614bcth 25256 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅)
62613expia 1121 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽)) → (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) ≠ ∅ → ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅))
6362necon1bd 2946 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽)) → (¬ ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅))
6460, 63biimtrid 242 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽)) → (∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅ → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅))
6556, 64syldan 591 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅ → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅))
66 difeq2 4067 . . . . 5 (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅ → ( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ( 𝐽 ∖ ∅))
6728difexd 5267 . . . . . . . . . . . . . . 15 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀𝑥)) ∈ V)
6867ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑥 ∈ ℕ) → (𝑋 ∖ (𝑀𝑥)) ∈ V)
6968ralrimiva 3124 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ V)
7033fnmpt 6621 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ V → (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) Fn ℕ)
71 fniunfv 7181 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) Fn ℕ → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))
7269, 70, 713syl 18 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))
7335iuneq2dv 4964 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = 𝑘 ∈ ℕ (𝑋 ∖ (𝑀𝑘)))
7432cbviunv 4987 . . . . . . . . . . . . 13 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) = 𝑘 ∈ ℕ (𝑋 ∖ (𝑀𝑘))
7573, 74eqtr4di 2784 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)))
7672, 75eqtr3d 2768 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)))
77 iundif2 5020 . . . . . . . . . . 11 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) = (𝑋 𝑥 ∈ ℕ (𝑀𝑥))
7876, 77eqtrdi 2782 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = (𝑋 𝑥 ∈ ℕ (𝑀𝑥)))
79 ffn 6651 . . . . . . . . . . . . 13 (𝑀:ℕ⟶𝐽𝑀 Fn ℕ)
8079adantl 481 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑀 Fn ℕ)
81 fniinfv 6900 . . . . . . . . . . . 12 (𝑀 Fn ℕ → 𝑥 ∈ ℕ (𝑀𝑥) = ran 𝑀)
8280, 81syl 17 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑥 ∈ ℕ (𝑀𝑥) = ran 𝑀)
8382difeq2d 4073 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 𝑥 ∈ ℕ (𝑀𝑥)) = (𝑋 ran 𝑀))
8414adantr 480 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑋 = 𝐽)
8584difeq1d 4072 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ran 𝑀) = ( 𝐽 ran 𝑀))
8678, 83, 853eqtrd 2770 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = ( 𝐽 ran 𝑀))
8786fveq2d 6826 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ((int‘𝐽)‘( 𝐽 ran 𝑀)))
8887difeq2d 4073 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ran 𝑀))))
895adantr 480 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝐽 ∈ Top)
90 1nn 12136 . . . . . . . . 9 1 ∈ ℕ
91 biidd 262 . . . . . . . . . 10 (𝑘 = 1 → (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽) ↔ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽)))
92 fnfvelrn 7013 . . . . . . . . . . . . . 14 ((𝑀 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ ran 𝑀)
9380, 92sylan 580 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ ran 𝑀)
94 intss1 4911 . . . . . . . . . . . . 13 ((𝑀𝑘) ∈ ran 𝑀 ran 𝑀 ⊆ (𝑀𝑘))
9593, 94syl 17 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ran 𝑀 ⊆ (𝑀𝑘))
9695, 10sstrd 3940 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ran 𝑀 𝐽)
9796expcom 413 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽))
9891, 97vtoclga 3528 . . . . . . . . 9 (1 ∈ ℕ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽))
9990, 98ax-mp 5 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽)
10011clsval2 22965 . . . . . . . 8 ((𝐽 ∈ Top ∧ ran 𝑀 𝐽) → ((cls‘𝐽)‘ ran 𝑀) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ran 𝑀))))
10189, 99, 100syl2anc 584 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((cls‘𝐽)‘ ran 𝑀) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ran 𝑀))))
10288, 101eqtr4d 2769 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ((cls‘𝐽)‘ ran 𝑀))
103 dif0 4325 . . . . . . 7 ( 𝐽 ∖ ∅) = 𝐽
104103, 84eqtr4id 2785 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ( 𝐽 ∖ ∅) = 𝑋)
105102, 104eqeq12d 2747 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ( 𝐽 ∖ ∅) ↔ ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
10666, 105imbitrid 244 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅ → ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
1073, 106sylan 580 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅ → ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
10844, 65, 1073syld 60 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
1091083impia 1117 1 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋) → ((cls‘𝐽)‘ ran 𝑀) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  wss 3897  c0 4280   cuni 4856   cint 4895   ciun 4939   ciin 4940  cmpt 5170  dom cdm 5614  ran crn 5615   Fn wfn 6476  wf 6477  cfv 6481  1c1 11007  cn 12125  ∞Metcxmet 21276  Metcmet 21277  MetOpencmopn 21281  Topctop 22808  Clsdccld 22931  intcnt 22932  clsccl 22933  CMetccmet 25181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-dc 10337  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lm 23144  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-cfil 25182  df-cau 25183  df-cmet 25184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator