| Step | Hyp | Ref
| Expression |
| 1 | | cmetmet 25238 |
. . . . 5
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| 2 | | metxmet 24273 |
. . . . 5
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 4 | | bcth.2 |
. . . . . . . . . 10
⊢ 𝐽 = (MetOpen‘𝐷) |
| 5 | 4 | mopntop 24379 |
. . . . . . . . 9
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 6 | 5 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → 𝐽 ∈ Top) |
| 7 | | ffvelcdm 7071 |
. . . . . . . . . 10
⊢ ((𝑀:ℕ⟶𝐽 ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ∈ 𝐽) |
| 8 | | elssuni 4913 |
. . . . . . . . . 10
⊢ ((𝑀‘𝑘) ∈ 𝐽 → (𝑀‘𝑘) ⊆ ∪ 𝐽) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ ((𝑀:ℕ⟶𝐽 ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ⊆ ∪ 𝐽) |
| 10 | 9 | adantll 714 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ⊆ ∪ 𝐽) |
| 11 | | eqid 2735 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 12 | 11 | clsval2 22988 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝑀‘𝑘) ⊆ ∪ 𝐽) → ((cls‘𝐽)‘(𝑀‘𝑘)) = (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽
∖ (𝑀‘𝑘))))) |
| 13 | 6, 10, 12 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((cls‘𝐽)‘(𝑀‘𝑘)) = (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽
∖ (𝑀‘𝑘))))) |
| 14 | 4 | mopnuni 24380 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 15 | 14 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → 𝑋 = ∪ 𝐽) |
| 16 | 13, 15 | eqeq12d 2751 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋 ↔ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽
∖ (𝑀‘𝑘)))) = ∪ 𝐽)) |
| 17 | | difeq2 4095 |
. . . . . . . 8
⊢ ((∪ 𝐽
∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) = ∪ 𝐽 → (∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = (∪ 𝐽 ∖ ∪ 𝐽)) |
| 18 | | difid 4351 |
. . . . . . . 8
⊢ (∪ 𝐽
∖ ∪ 𝐽) = ∅ |
| 19 | 17, 18 | eqtrdi 2786 |
. . . . . . 7
⊢ ((∪ 𝐽
∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) = ∪ 𝐽 → (∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = ∅) |
| 20 | | difss 4111 |
. . . . . . . . . . . 12
⊢ (∪ 𝐽
∖ (𝑀‘𝑘)) ⊆ ∪ 𝐽 |
| 21 | 11 | ntropn 22987 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽
∖ (𝑀‘𝑘)) ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))) ∈ 𝐽) |
| 22 | 6, 20, 21 | sylancl 586 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘(∪ 𝐽
∖ (𝑀‘𝑘))) ∈ 𝐽) |
| 23 | | elssuni 4913 |
. . . . . . . . . . 11
⊢
(((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))) ∈ 𝐽 → ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))) ⊆ ∪
𝐽) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘(∪ 𝐽
∖ (𝑀‘𝑘))) ⊆ ∪ 𝐽) |
| 25 | | dfss4 4244 |
. . . . . . . . . 10
⊢
(((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))) ⊆ ∪
𝐽 ↔ (∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) |
| 26 | 24, 25 | sylib 218 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) |
| 27 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ) |
| 28 | | elfvdm 6913 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
| 29 | 28 | difexd 5301 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀‘𝑘)) ∈ V) |
| 30 | 29 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ∖ (𝑀‘𝑘)) ∈ V) |
| 31 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑘 → (𝑀‘𝑥) = (𝑀‘𝑘)) |
| 32 | 31 | difeq2d 4101 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑘 → (𝑋 ∖ (𝑀‘𝑥)) = (𝑋 ∖ (𝑀‘𝑘))) |
| 33 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))) = (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))) |
| 34 | 32, 33 | fvmptg 6984 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ (𝑋 ∖ (𝑀‘𝑘)) ∈ V) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = (𝑋 ∖ (𝑀‘𝑘))) |
| 35 | 27, 30, 34 | syl2anr 597 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = (𝑋 ∖ (𝑀‘𝑘))) |
| 36 | 15 | difeq1d 4100 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑋 ∖ (𝑀‘𝑘)) = (∪ 𝐽 ∖ (𝑀‘𝑘))) |
| 37 | 35, 36 | eqtrd 2770 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = (∪ 𝐽 ∖ (𝑀‘𝑘))) |
| 38 | 37 | fveq2d 6880 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) |
| 39 | 26, 38 | eqtr4d 2773 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘))) |
| 40 | 39 | eqeq1d 2737 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((∪ 𝐽
∖ (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘))))) = ∅ ↔ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅)) |
| 41 | 19, 40 | imbitrid 244 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((∪ 𝐽
∖ ((int‘𝐽)‘(∪ 𝐽 ∖ (𝑀‘𝑘)))) = ∪ 𝐽 → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅)) |
| 42 | 16, 41 | sylbid 240 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋 → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅)) |
| 43 | 42 | ralimdva 3152 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅)) |
| 44 | 3, 43 | sylan 580 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅)) |
| 45 | | ffvelcdm 7071 |
. . . . . . . . 9
⊢ ((𝑀:ℕ⟶𝐽 ∧ 𝑥 ∈ ℕ) → (𝑀‘𝑥) ∈ 𝐽) |
| 46 | 14 | difeq1d 4100 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀‘𝑥)) = (∪ 𝐽 ∖ (𝑀‘𝑥))) |
| 47 | 46 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀‘𝑥) ∈ 𝐽) → (𝑋 ∖ (𝑀‘𝑥)) = (∪ 𝐽 ∖ (𝑀‘𝑥))) |
| 48 | 11 | opncld 22971 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ (𝑀‘𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
| 49 | 5, 48 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀‘𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
| 50 | 47, 49 | eqeltrd 2834 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀‘𝑥) ∈ 𝐽) → (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
| 51 | 45, 50 | sylan2 593 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀:ℕ⟶𝐽 ∧ 𝑥 ∈ ℕ)) → (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
| 52 | 51 | anassrs 467 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑥 ∈ ℕ) → (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
| 53 | 52 | ralrimiva 3132 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
| 54 | 3, 53 | sylan 580 |
. . . . 5
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽)) |
| 55 | 33 | fmpt 7100 |
. . . . 5
⊢
(∀𝑥 ∈
ℕ (𝑋 ∖ (𝑀‘𝑥)) ∈ (Clsd‘𝐽) ↔ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽)) |
| 56 | 54, 55 | sylib 218 |
. . . 4
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽)) |
| 57 | | nne 2936 |
. . . . . . 7
⊢ (¬
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅ ↔ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅) |
| 58 | 57 | ralbii 3082 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ ¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅ ↔ ∀𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅) |
| 59 | | ralnex 3062 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ ¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅ ↔ ¬ ∃𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅) |
| 60 | 58, 59 | bitr3i 277 |
. . . . 5
⊢
(∀𝑘 ∈
ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅ ↔ ¬ ∃𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅) |
| 61 | 4 | bcth 25281 |
. . . . . . 7
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) ≠ ∅) → ∃𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅) |
| 62 | 61 | 3expia 1121 |
. . . . . 6
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽)) → (((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) ≠ ∅ → ∃𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅)) |
| 63 | 62 | necon1bd 2950 |
. . . . 5
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽)) → (¬ ∃𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) ≠ ∅ → ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) = ∅)) |
| 64 | 60, 63 | biimtrid 242 |
. . . 4
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))):ℕ⟶(Clsd‘𝐽)) → (∀𝑘 ∈ ℕ
((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅ → ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) = ∅)) |
| 65 | 56, 64 | syldan 591 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘)) = ∅ → ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) = ∅)) |
| 66 | | difeq2 4095 |
. . . . 5
⊢
(((int‘𝐽)‘∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥)))) = ∅ → (∪ 𝐽
∖ ((int‘𝐽)‘∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥))))) = (∪ 𝐽 ∖
∅)) |
| 67 | 28 | difexd 5301 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀‘𝑥)) ∈ V) |
| 68 | 67 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑥 ∈ ℕ) → (𝑋 ∖ (𝑀‘𝑥)) ∈ V) |
| 69 | 68 | ralrimiva 3132 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥)) ∈ V) |
| 70 | 33 | fnmpt 6678 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
ℕ (𝑋 ∖ (𝑀‘𝑥)) ∈ V → (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))) Fn ℕ) |
| 71 | | fniunfv 7239 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))) Fn ℕ → ∪ 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = ∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) |
| 72 | 69, 70, 71 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪
𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = ∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))) |
| 73 | 35 | iuneq2dv 4992 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪
𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = ∪ 𝑘 ∈ ℕ (𝑋 ∖ (𝑀‘𝑘))) |
| 74 | 32 | cbviunv 5016 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥)) = ∪
𝑘 ∈ ℕ (𝑋 ∖ (𝑀‘𝑘)) |
| 75 | 73, 74 | eqtr4di 2788 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪
𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥)))‘𝑘) = ∪ 𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥))) |
| 76 | 72, 75 | eqtr3d 2772 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥))) = ∪
𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥))) |
| 77 | | iundif2 5050 |
. . . . . . . . . . 11
⊢ ∪ 𝑥 ∈ ℕ (𝑋 ∖ (𝑀‘𝑥)) = (𝑋 ∖ ∩
𝑥 ∈ ℕ (𝑀‘𝑥)) |
| 78 | 76, 77 | eqtrdi 2786 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥))) = (𝑋 ∖ ∩
𝑥 ∈ ℕ (𝑀‘𝑥))) |
| 79 | | ffn 6706 |
. . . . . . . . . . . . 13
⊢ (𝑀:ℕ⟶𝐽 → 𝑀 Fn ℕ) |
| 80 | 79 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑀 Fn ℕ) |
| 81 | | fniinfv 6957 |
. . . . . . . . . . . 12
⊢ (𝑀 Fn ℕ → ∩ 𝑥 ∈ ℕ (𝑀‘𝑥) = ∩ ran 𝑀) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∩
𝑥 ∈ ℕ (𝑀‘𝑥) = ∩ ran 𝑀) |
| 83 | 82 | difeq2d 4101 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ∖ ∩
𝑥 ∈ ℕ (𝑀‘𝑥)) = (𝑋 ∖ ∩ ran
𝑀)) |
| 84 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑋 = ∪ 𝐽) |
| 85 | 84 | difeq1d 4100 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ∖ ∩ ran
𝑀) = (∪ 𝐽
∖ ∩ ran 𝑀)) |
| 86 | 78, 83, 85 | 3eqtrd 2774 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥))) = (∪ 𝐽 ∖ ∩ ran 𝑀)) |
| 87 | 86 | fveq2d 6880 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((int‘𝐽)‘∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥)))) = ((int‘𝐽)‘(∪ 𝐽 ∖ ∩ ran 𝑀))) |
| 88 | 87 | difeq2d 4101 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∪ 𝐽 ∖ ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))))) = (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽
∖ ∩ ran 𝑀)))) |
| 89 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝐽 ∈ Top) |
| 90 | | 1nn 12251 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
| 91 | | biidd 262 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∩ ran
𝑀 ⊆ ∪ 𝐽)
↔ ((𝐷 ∈
(∞Met‘𝑋) ∧
𝑀:ℕ⟶𝐽) → ∩ ran 𝑀 ⊆ ∪ 𝐽))) |
| 92 | | fnfvelrn 7070 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ∈ ran 𝑀) |
| 93 | 80, 92 | sylan 580 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ∈ ran 𝑀) |
| 94 | | intss1 4939 |
. . . . . . . . . . . . 13
⊢ ((𝑀‘𝑘) ∈ ran 𝑀 → ∩ ran
𝑀 ⊆ (𝑀‘𝑘)) |
| 95 | 93, 94 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ∩ ran 𝑀 ⊆ (𝑀‘𝑘)) |
| 96 | 95, 10 | sstrd 3969 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ∩ ran 𝑀 ⊆ ∪ 𝐽) |
| 97 | 96 | expcom 413 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∩ ran
𝑀 ⊆ ∪ 𝐽)) |
| 98 | 91, 97 | vtoclga 3556 |
. . . . . . . . 9
⊢ (1 ∈
ℕ → ((𝐷 ∈
(∞Met‘𝑋) ∧
𝑀:ℕ⟶𝐽) → ∩ ran 𝑀 ⊆ ∪ 𝐽)) |
| 99 | 90, 98 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∩ ran
𝑀 ⊆ ∪ 𝐽) |
| 100 | 11 | clsval2 22988 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ ∩ ran 𝑀 ⊆ ∪ 𝐽) → ((cls‘𝐽)‘∩ ran 𝑀) = (∪ 𝐽 ∖ ((int‘𝐽)‘(∪ 𝐽
∖ ∩ ran 𝑀)))) |
| 101 | 89, 99, 100 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((cls‘𝐽)‘∩ ran
𝑀) = (∪ 𝐽
∖ ((int‘𝐽)‘(∪ 𝐽 ∖ ∩ ran 𝑀)))) |
| 102 | 88, 101 | eqtr4d 2773 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∪ 𝐽 ∖ ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))))) = ((cls‘𝐽)‘∩ ran
𝑀)) |
| 103 | | dif0 4353 |
. . . . . . 7
⊢ (∪ 𝐽
∖ ∅) = ∪ 𝐽 |
| 104 | 103, 84 | eqtr4id 2789 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∪ 𝐽 ∖ ∅) = 𝑋) |
| 105 | 102, 104 | eqeq12d 2751 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((∪
𝐽 ∖ ((int‘𝐽)‘∪ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀‘𝑥))))) = (∪ 𝐽 ∖ ∅) ↔
((cls‘𝐽)‘∩ ran 𝑀) = 𝑋)) |
| 106 | 66, 105 | imbitrid 244 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (((int‘𝐽)‘∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥)))) = ∅ → ((cls‘𝐽)‘∩ ran 𝑀) = 𝑋)) |
| 107 | 3, 106 | sylan 580 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (((int‘𝐽)‘∪ ran
(𝑥 ∈ ℕ ↦
(𝑋 ∖ (𝑀‘𝑥)))) = ∅ → ((cls‘𝐽)‘∩ ran 𝑀) = 𝑋)) |
| 108 | 44, 65, 107 | 3syld 60 |
. 2
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋 → ((cls‘𝐽)‘∩ ran
𝑀) = 𝑋)) |
| 109 | 108 | 3impia 1117 |
1
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀‘𝑘)) = 𝑋) → ((cls‘𝐽)‘∩ ran
𝑀) = 𝑋) |