MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcth3 Structured version   Visualization version   GIF version

Theorem bcth3 25264
Description: Baire's Category Theorem, version 3: The intersection of countably many dense open sets is dense. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypothesis
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
bcth3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋) → ((cls‘𝐽)‘ ran 𝑀) = 𝑋)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝑘,𝑀   𝑘,𝑋

Proof of Theorem bcth3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmetmet 25219 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 24255 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . . . 4 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
4 bcth.2 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
54mopntop 24361 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
65ad2antrr 726 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → 𝐽 ∈ Top)
7 ffvelcdm 7035 . . . . . . . . . 10 ((𝑀:ℕ⟶𝐽𝑘 ∈ ℕ) → (𝑀𝑘) ∈ 𝐽)
8 elssuni 4897 . . . . . . . . . 10 ((𝑀𝑘) ∈ 𝐽 → (𝑀𝑘) ⊆ 𝐽)
97, 8syl 17 . . . . . . . . 9 ((𝑀:ℕ⟶𝐽𝑘 ∈ ℕ) → (𝑀𝑘) ⊆ 𝐽)
109adantll 714 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ⊆ 𝐽)
11 eqid 2729 . . . . . . . . 9 𝐽 = 𝐽
1211clsval2 22970 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑀𝑘) ⊆ 𝐽) → ((cls‘𝐽)‘(𝑀𝑘)) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))))
136, 10, 12syl2anc 584 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((cls‘𝐽)‘(𝑀𝑘)) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))))
144mopnuni 24362 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
1514ad2antrr 726 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → 𝑋 = 𝐽)
1613, 15eqeq12d 2745 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 ↔ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽))
17 difeq2 4079 . . . . . . . 8 (( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽 → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ( 𝐽 𝐽))
18 difid 4335 . . . . . . . 8 ( 𝐽 𝐽) = ∅
1917, 18eqtrdi 2780 . . . . . . 7 (( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽 → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ∅)
20 difss 4095 . . . . . . . . . . . 12 ( 𝐽 ∖ (𝑀𝑘)) ⊆ 𝐽
2111ntropn 22969 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ( 𝐽 ∖ (𝑀𝑘)) ⊆ 𝐽) → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ∈ 𝐽)
226, 20, 21sylancl 586 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ∈ 𝐽)
23 elssuni 4897 . . . . . . . . . . 11 (((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ∈ 𝐽 → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ⊆ 𝐽)
2422, 23syl 17 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ⊆ 𝐽)
25 dfss4 4228 . . . . . . . . . 10 (((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))) ⊆ 𝐽 ↔ ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))
2624, 25sylib 218 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))
27 id 22 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
28 elfvdm 6877 . . . . . . . . . . . . . 14 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2928difexd 5281 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀𝑘)) ∈ V)
3029adantr 480 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ∖ (𝑀𝑘)) ∈ V)
31 fveq2 6840 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → (𝑀𝑥) = (𝑀𝑘))
3231difeq2d 4085 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝑋 ∖ (𝑀𝑥)) = (𝑋 ∖ (𝑀𝑘)))
33 eqid 2729 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))
3432, 33fvmptg 6948 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ (𝑋 ∖ (𝑀𝑘)) ∈ V) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = (𝑋 ∖ (𝑀𝑘)))
3527, 30, 34syl2anr 597 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = (𝑋 ∖ (𝑀𝑘)))
3615difeq1d 4084 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑋 ∖ (𝑀𝑘)) = ( 𝐽 ∖ (𝑀𝑘)))
3735, 36eqtrd 2764 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = ( 𝐽 ∖ (𝑀𝑘)))
3837fveq2d 6844 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))
3926, 38eqtr4d 2767 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)))
4039eqeq1d 2731 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (( 𝐽 ∖ ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘))))) = ∅ ↔ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
4119, 40imbitrid 244 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ∖ (𝑀𝑘)))) = 𝐽 → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
4216, 41sylbid 240 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
4342ralimdva 3145 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
443, 43sylan 580 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅))
45 ffvelcdm 7035 . . . . . . . . 9 ((𝑀:ℕ⟶𝐽𝑥 ∈ ℕ) → (𝑀𝑥) ∈ 𝐽)
4614difeq1d 4084 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀𝑥)) = ( 𝐽 ∖ (𝑀𝑥)))
4746adantr 480 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀𝑥) ∈ 𝐽) → (𝑋 ∖ (𝑀𝑥)) = ( 𝐽 ∖ (𝑀𝑥)))
4811opncld 22953 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ (𝑀𝑥) ∈ 𝐽) → ( 𝐽 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
495, 48sylan 580 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀𝑥) ∈ 𝐽) → ( 𝐽 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5047, 49eqeltrd 2828 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀𝑥) ∈ 𝐽) → (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5145, 50sylan2 593 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑀:ℕ⟶𝐽𝑥 ∈ ℕ)) → (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5251anassrs 467 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑥 ∈ ℕ) → (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5352ralrimiva 3125 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
543, 53sylan 580 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽))
5533fmpt 7064 . . . . 5 (∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ (Clsd‘𝐽) ↔ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽))
5654, 55sylib 218 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽))
57 nne 2929 . . . . . . 7 (¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ ↔ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅)
5857ralbii 3075 . . . . . 6 (∀𝑘 ∈ ℕ ¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ ↔ ∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅)
59 ralnex 3055 . . . . . 6 (∀𝑘 ∈ ℕ ¬ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ ↔ ¬ ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅)
6058, 59bitr3i 277 . . . . 5 (∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅ ↔ ¬ ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅)
614bcth 25262 . . . . . . 7 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽) ∧ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) ≠ ∅) → ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅)
62613expia 1121 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽)) → (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) ≠ ∅ → ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅))
6362necon1bd 2943 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽)) → (¬ ∃𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) ≠ ∅ → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅))
6460, 63biimtrid 242 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))):ℕ⟶(Clsd‘𝐽)) → (∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅ → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅))
6556, 64syldan 591 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((int‘𝐽)‘((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘)) = ∅ → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅))
66 difeq2 4079 . . . . 5 (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅ → ( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ( 𝐽 ∖ ∅))
6728difexd 5281 . . . . . . . . . . . . . . 15 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∖ (𝑀𝑥)) ∈ V)
6867ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑥 ∈ ℕ) → (𝑋 ∖ (𝑀𝑥)) ∈ V)
6968ralrimiva 3125 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ V)
7033fnmpt 6640 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) ∈ V → (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) Fn ℕ)
71 fniunfv 7203 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) Fn ℕ → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))
7269, 70, 713syl 18 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))
7335iuneq2dv 4976 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = 𝑘 ∈ ℕ (𝑋 ∖ (𝑀𝑘)))
7432cbviunv 4999 . . . . . . . . . . . . 13 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) = 𝑘 ∈ ℕ (𝑋 ∖ (𝑀𝑘))
7573, 74eqtr4di 2782 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑘 ∈ ℕ ((𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))‘𝑘) = 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)))
7672, 75eqtr3d 2766 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)))
77 iundif2 5033 . . . . . . . . . . 11 𝑥 ∈ ℕ (𝑋 ∖ (𝑀𝑥)) = (𝑋 𝑥 ∈ ℕ (𝑀𝑥))
7876, 77eqtrdi 2780 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = (𝑋 𝑥 ∈ ℕ (𝑀𝑥)))
79 ffn 6670 . . . . . . . . . . . . 13 (𝑀:ℕ⟶𝐽𝑀 Fn ℕ)
8079adantl 481 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑀 Fn ℕ)
81 fniinfv 6921 . . . . . . . . . . . 12 (𝑀 Fn ℕ → 𝑥 ∈ ℕ (𝑀𝑥) = ran 𝑀)
8280, 81syl 17 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑥 ∈ ℕ (𝑀𝑥) = ran 𝑀)
8382difeq2d 4085 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 𝑥 ∈ ℕ (𝑀𝑥)) = (𝑋 ran 𝑀))
8414adantr 480 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝑋 = 𝐽)
8584difeq1d 4084 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (𝑋 ran 𝑀) = ( 𝐽 ran 𝑀))
8678, 83, 853eqtrd 2768 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))) = ( 𝐽 ran 𝑀))
8786fveq2d 6844 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ((int‘𝐽)‘( 𝐽 ran 𝑀)))
8887difeq2d 4085 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ran 𝑀))))
895adantr 480 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → 𝐽 ∈ Top)
90 1nn 12173 . . . . . . . . 9 1 ∈ ℕ
91 biidd 262 . . . . . . . . . 10 (𝑘 = 1 → (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽) ↔ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽)))
92 fnfvelrn 7034 . . . . . . . . . . . . . 14 ((𝑀 Fn ℕ ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ ran 𝑀)
9380, 92sylan 580 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ ran 𝑀)
94 intss1 4923 . . . . . . . . . . . . 13 ((𝑀𝑘) ∈ ran 𝑀 ran 𝑀 ⊆ (𝑀𝑘))
9593, 94syl 17 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ran 𝑀 ⊆ (𝑀𝑘))
9695, 10sstrd 3954 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) ∧ 𝑘 ∈ ℕ) → ran 𝑀 𝐽)
9796expcom 413 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽))
9891, 97vtoclga 3540 . . . . . . . . 9 (1 ∈ ℕ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽))
9990, 98ax-mp 5 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ran 𝑀 𝐽)
10011clsval2 22970 . . . . . . . 8 ((𝐽 ∈ Top ∧ ran 𝑀 𝐽) → ((cls‘𝐽)‘ ran 𝑀) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ran 𝑀))))
10189, 99, 100syl2anc 584 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ((cls‘𝐽)‘ ran 𝑀) = ( 𝐽 ∖ ((int‘𝐽)‘( 𝐽 ran 𝑀))))
10288, 101eqtr4d 2767 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ((cls‘𝐽)‘ ran 𝑀))
103 dif0 4337 . . . . . . 7 ( 𝐽 ∖ ∅) = 𝐽
104103, 84eqtr4id 2783 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → ( 𝐽 ∖ ∅) = 𝑋)
105102, 104eqeq12d 2745 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (( 𝐽 ∖ ((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥))))) = ( 𝐽 ∖ ∅) ↔ ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
10666, 105imbitrid 244 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅ → ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
1073, 106sylan 580 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (((int‘𝐽)‘ ran (𝑥 ∈ ℕ ↦ (𝑋 ∖ (𝑀𝑥)))) = ∅ → ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
10844, 65, 1073syld 60 . 2 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽) → (∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋 → ((cls‘𝐽)‘ ran 𝑀) = 𝑋))
1091083impia 1117 1 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑀:ℕ⟶𝐽 ∧ ∀𝑘 ∈ ℕ ((cls‘𝐽)‘(𝑀𝑘)) = 𝑋) → ((cls‘𝐽)‘ ran 𝑀) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  wss 3911  c0 4292   cuni 4867   cint 4906   ciun 4951   ciin 4952  cmpt 5183  dom cdm 5631  ran crn 5632   Fn wfn 6494  wf 6495  cfv 6499  1c1 11045  cn 12162  ∞Metcxmet 21281  Metcmet 21282  MetOpencmopn 21286  Topctop 22813  Clsdccld 22936  intcnt 22937  clsccl 22938  CMetccmet 25187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-dc 10375  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-rest 17361  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-top 22814  df-topon 22831  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lm 23149  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-cfil 25188  df-cau 25189  df-cmet 25190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator