MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncld Structured version   Visualization version   GIF version

Theorem iuncld 22104
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
iuncld ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iuncld
StepHypRef Expression
1 difin 4192 . . . 4 (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = (𝑋 𝑥𝐴 (𝑋𝐵))
2 iundif2 4999 . . . 4 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = (𝑋 𝑥𝐴 (𝑋𝐵))
31, 2eqtr4i 2769 . . 3 (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = 𝑥𝐴 (𝑋 ∖ (𝑋𝐵))
4 clscld.1 . . . . . . . 8 𝑋 = 𝐽
54cldss 22088 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑋)
6 dfss4 4189 . . . . . . 7 (𝐵𝑋 ↔ (𝑋 ∖ (𝑋𝐵)) = 𝐵)
75, 6sylib 217 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ (𝑋𝐵)) = 𝐵)
87ralimi 3086 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵)
983ad2ant3 1133 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵)
10 iuneq2 4940 . . . 4 (∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝑥𝐴 𝐵)
119, 10syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝑥𝐴 𝐵)
123, 11eqtrid 2790 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = 𝑥𝐴 𝐵)
13 simp1 1134 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
144cldopn 22090 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
1514ralimi 3086 . . . 4 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 (𝑋𝐵) ∈ 𝐽)
164riinopn 21965 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝑋𝐵) ∈ 𝐽) → (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽)
1715, 16syl3an3 1163 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽)
184opncld 22092 . . 3 ((𝐽 ∈ Top ∧ (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) ∈ (Clsd‘𝐽))
1913, 17, 18syl2anc 583 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) ∈ (Clsd‘𝐽))
2012, 19eqeltrrd 2840 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cdif 3880  cin 3882  wss 3883   cuni 4836   ciun 4921   ciin 4922  cfv 6418  Fincfn 8691  Topctop 21950  Clsdccld 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-fin 8695  df-top 21951  df-cld 22078
This theorem is referenced by:  unicld  22105  t1ficld  22386  mblfinlem1  35741  mblfinlem2  35742
  Copyright terms: Public domain W3C validator