Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuncld | Structured version Visualization version GIF version |
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iuncld | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difin 4205 | . . . 4 ⊢ (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = (𝑋 ∖ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) | |
2 | iundif2 5014 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = (𝑋 ∖ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) | |
3 | 1, 2 | eqtr4i 2768 | . . 3 ⊢ (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) |
4 | clscld.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | cldss 22251 | . . . . . . 7 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐵 ⊆ 𝑋) |
6 | dfss4 4202 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) | |
7 | 5, 6 | sylib 217 | . . . . . 6 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
8 | 7 | ralimi 3083 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
9 | 8 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
10 | iuneq2 4954 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵 → ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = ∪ 𝑥 ∈ 𝐴 𝐵) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | 3, 11 | eqtrid 2789 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = ∪ 𝑥 ∈ 𝐴 𝐵) |
13 | simp1 1135 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) | |
14 | 4 | cldopn 22253 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
15 | 14 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵) ∈ 𝐽) |
16 | 4 | riinopn 22128 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵) ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) |
17 | 15, 16 | syl3an3 1164 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) |
18 | 4 | opncld 22255 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) ∈ (Clsd‘𝐽)) |
19 | 13, 17, 18 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) ∈ (Clsd‘𝐽)) |
20 | 12, 19 | eqeltrrd 2839 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ∖ cdif 3893 ∩ cin 3895 ⊆ wss 3896 ∪ cuni 4848 ∪ ciun 4935 ∩ ciin 4936 ‘cfv 6463 Fincfn 8779 Topctop 22113 Clsdccld 22238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-om 7756 df-1st 7874 df-2nd 7875 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-fin 8783 df-top 22114 df-cld 22241 |
This theorem is referenced by: unicld 22268 t1ficld 22549 mblfinlem1 35874 mblfinlem2 35875 |
Copyright terms: Public domain | W3C validator |