MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncld Structured version   Visualization version   GIF version

Theorem iuncld 22939
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
iuncld ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iuncld
StepHypRef Expression
1 difin 4238 . . . 4 (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = (𝑋 𝑥𝐴 (𝑋𝐵))
2 iundif2 5041 . . . 4 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = (𝑋 𝑥𝐴 (𝑋𝐵))
31, 2eqtr4i 2756 . . 3 (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = 𝑥𝐴 (𝑋 ∖ (𝑋𝐵))
4 clscld.1 . . . . . . . 8 𝑋 = 𝐽
54cldss 22923 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑋)
6 dfss4 4235 . . . . . . 7 (𝐵𝑋 ↔ (𝑋 ∖ (𝑋𝐵)) = 𝐵)
75, 6sylib 218 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ (𝑋𝐵)) = 𝐵)
87ralimi 3067 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵)
983ad2ant3 1135 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵)
10 iuneq2 4978 . . . 4 (∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝑥𝐴 𝐵)
119, 10syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝑥𝐴 𝐵)
123, 11eqtrid 2777 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = 𝑥𝐴 𝐵)
13 simp1 1136 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
144cldopn 22925 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
1514ralimi 3067 . . . 4 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 (𝑋𝐵) ∈ 𝐽)
164riinopn 22802 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝑋𝐵) ∈ 𝐽) → (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽)
1715, 16syl3an3 1165 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽)
184opncld 22927 . . 3 ((𝐽 ∈ Top ∧ (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) ∈ (Clsd‘𝐽))
1913, 17, 18syl2anc 584 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) ∈ (Clsd‘𝐽))
2012, 19eqeltrrd 2830 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cdif 3914  cin 3916  wss 3917   cuni 4874   ciun 4958   ciin 4959  cfv 6514  Fincfn 8921  Topctop 22787  Clsdccld 22910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-en 8922  df-dom 8923  df-fin 8925  df-top 22788  df-cld 22913
This theorem is referenced by:  unicld  22940  t1ficld  23221  mblfinlem1  37658  mblfinlem2  37659
  Copyright terms: Public domain W3C validator