| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuncld | Structured version Visualization version GIF version | ||
| Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| iuncld | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difin 4235 | . . . 4 ⊢ (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = (𝑋 ∖ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) | |
| 2 | iundif2 5038 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = (𝑋 ∖ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) | |
| 3 | 1, 2 | eqtr4i 2755 | . . 3 ⊢ (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) |
| 4 | clscld.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
| 5 | 4 | cldss 22916 | . . . . . . 7 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐵 ⊆ 𝑋) |
| 6 | dfss4 4232 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) | |
| 7 | 5, 6 | sylib 218 | . . . . . 6 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
| 8 | 7 | ralimi 3066 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
| 9 | 8 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
| 10 | iuneq2 4975 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵 → ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = ∪ 𝑥 ∈ 𝐴 𝐵) |
| 12 | 3, 11 | eqtrid 2776 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = ∪ 𝑥 ∈ 𝐴 𝐵) |
| 13 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) | |
| 14 | 4 | cldopn 22918 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
| 15 | 14 | ralimi 3066 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵) ∈ 𝐽) |
| 16 | 4 | riinopn 22795 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵) ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) |
| 17 | 15, 16 | syl3an3 1165 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) |
| 18 | 4 | opncld 22920 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) ∈ (Clsd‘𝐽)) |
| 19 | 13, 17, 18 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) ∈ (Clsd‘𝐽)) |
| 20 | 12, 19 | eqeltrrd 2829 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∪ cuni 4871 ∪ ciun 4955 ∩ ciin 4956 ‘cfv 6511 Fincfn 8918 Topctop 22780 Clsdccld 22903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1st 7968 df-2nd 7969 df-1o 8434 df-2o 8435 df-en 8919 df-dom 8920 df-fin 8922 df-top 22781 df-cld 22906 |
| This theorem is referenced by: unicld 22933 t1ficld 23214 mblfinlem1 37651 mblfinlem2 37652 |
| Copyright terms: Public domain | W3C validator |