MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncld Structured version   Visualization version   GIF version

Theorem iuncld 22932
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
iuncld ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iuncld
StepHypRef Expression
1 difin 4235 . . . 4 (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = (𝑋 𝑥𝐴 (𝑋𝐵))
2 iundif2 5038 . . . 4 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = (𝑋 𝑥𝐴 (𝑋𝐵))
31, 2eqtr4i 2755 . . 3 (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = 𝑥𝐴 (𝑋 ∖ (𝑋𝐵))
4 clscld.1 . . . . . . . 8 𝑋 = 𝐽
54cldss 22916 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑋)
6 dfss4 4232 . . . . . . 7 (𝐵𝑋 ↔ (𝑋 ∖ (𝑋𝐵)) = 𝐵)
75, 6sylib 218 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ (𝑋𝐵)) = 𝐵)
87ralimi 3066 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵)
983ad2ant3 1135 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵)
10 iuneq2 4975 . . . 4 (∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝑥𝐴 𝐵)
119, 10syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝑥𝐴 𝐵)
123, 11eqtrid 2776 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = 𝑥𝐴 𝐵)
13 simp1 1136 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
144cldopn 22918 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
1514ralimi 3066 . . . 4 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 (𝑋𝐵) ∈ 𝐽)
164riinopn 22795 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝑋𝐵) ∈ 𝐽) → (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽)
1715, 16syl3an3 1165 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽)
184opncld 22920 . . 3 ((𝐽 ∈ Top ∧ (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) ∈ (Clsd‘𝐽))
1913, 17, 18syl2anc 584 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) ∈ (Clsd‘𝐽))
2012, 19eqeltrrd 2829 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cdif 3911  cin 3913  wss 3914   cuni 4871   ciun 4955   ciin 4956  cfv 6511  Fincfn 8918  Topctop 22780  Clsdccld 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-en 8919  df-dom 8920  df-fin 8922  df-top 22781  df-cld 22906
This theorem is referenced by:  unicld  22933  t1ficld  23214  mblfinlem1  37651  mblfinlem2  37652
  Copyright terms: Public domain W3C validator