![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuncld | Structured version Visualization version GIF version |
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iuncld | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difin 4088 | . . . 4 ⊢ (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = (𝑋 ∖ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) | |
2 | iundif2 4820 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = (𝑋 ∖ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) | |
3 | 1, 2 | eqtr4i 2805 | . . 3 ⊢ (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) |
4 | clscld.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | cldss 21241 | . . . . . . 7 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐵 ⊆ 𝑋) |
6 | dfss4 4085 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) | |
7 | 5, 6 | sylib 210 | . . . . . 6 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
8 | 7 | ralimi 3134 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
9 | 8 | 3ad2ant3 1126 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
10 | iuneq2 4770 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵 → ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = ∪ 𝑥 ∈ 𝐴 𝐵) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | 3, 11 | syl5eq 2826 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = ∪ 𝑥 ∈ 𝐴 𝐵) |
13 | simp1 1127 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) | |
14 | 4 | cldopn 21243 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
15 | 14 | ralimi 3134 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵) ∈ 𝐽) |
16 | 4 | riinopn 21120 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵) ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) |
17 | 15, 16 | syl3an3 1166 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) |
18 | 4 | opncld 21245 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) ∈ (Clsd‘𝐽)) |
19 | 13, 17, 18 | syl2anc 579 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) ∈ (Clsd‘𝐽)) |
20 | 12, 19 | eqeltrrd 2860 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∖ cdif 3789 ∩ cin 3791 ⊆ wss 3792 ∪ cuni 4671 ∪ ciun 4753 ∩ ciin 4754 ‘cfv 6135 Fincfn 8241 Topctop 21105 Clsdccld 21228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-fin 8245 df-top 21106 df-cld 21231 |
This theorem is referenced by: unicld 21258 t1ficld 21539 mblfinlem1 34074 mblfinlem2 34075 |
Copyright terms: Public domain | W3C validator |