MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncld Structured version   Visualization version   GIF version

Theorem iuncld 22948
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
iuncld ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iuncld
StepHypRef Expression
1 difin 4225 . . . 4 (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = (𝑋 𝑥𝐴 (𝑋𝐵))
2 iundif2 5026 . . . 4 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = (𝑋 𝑥𝐴 (𝑋𝐵))
31, 2eqtr4i 2755 . . 3 (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = 𝑥𝐴 (𝑋 ∖ (𝑋𝐵))
4 clscld.1 . . . . . . . 8 𝑋 = 𝐽
54cldss 22932 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑋)
6 dfss4 4222 . . . . . . 7 (𝐵𝑋 ↔ (𝑋 ∖ (𝑋𝐵)) = 𝐵)
75, 6sylib 218 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ (𝑋𝐵)) = 𝐵)
87ralimi 3066 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵)
983ad2ant3 1135 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵)
10 iuneq2 4964 . . . 4 (∀𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝐵 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝑥𝐴 𝐵)
119, 10syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 (𝑋 ∖ (𝑋𝐵)) = 𝑥𝐴 𝐵)
123, 11eqtrid 2776 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) = 𝑥𝐴 𝐵)
13 simp1 1136 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
144cldopn 22934 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
1514ralimi 3066 . . . 4 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 (𝑋𝐵) ∈ 𝐽)
164riinopn 22811 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 (𝑋𝐵) ∈ 𝐽) → (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽)
1715, 16syl3an3 1165 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽)
184opncld 22936 . . 3 ((𝐽 ∈ Top ∧ (𝑋 𝑥𝐴 (𝑋𝐵)) ∈ 𝐽) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) ∈ (Clsd‘𝐽))
1913, 17, 18syl2anc 584 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 𝑥𝐴 (𝑋𝐵))) ∈ (Clsd‘𝐽))
2012, 19eqeltrrd 2829 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cdif 3902  cin 3904  wss 3905   cuni 4861   ciun 4944   ciin 4945  cfv 6486  Fincfn 8879  Topctop 22796  Clsdccld 22919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1st 7931  df-2nd 7932  df-1o 8395  df-2o 8396  df-en 8880  df-dom 8881  df-fin 8883  df-top 22797  df-cld 22922
This theorem is referenced by:  unicld  22949  t1ficld  23230  mblfinlem1  37639  mblfinlem2  37640
  Copyright terms: Public domain W3C validator