![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuncld | Structured version Visualization version GIF version |
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iuncld | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difin 4261 | . . . 4 ⊢ (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = (𝑋 ∖ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) | |
2 | iundif2 5077 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = (𝑋 ∖ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) | |
3 | 1, 2 | eqtr4i 2763 | . . 3 ⊢ (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) |
4 | clscld.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | cldss 22753 | . . . . . . 7 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐵 ⊆ 𝑋) |
6 | dfss4 4258 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) | |
7 | 5, 6 | sylib 217 | . . . . . 6 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
8 | 7 | ralimi 3083 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
9 | 8 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵) |
10 | iuneq2 5016 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = 𝐵 → ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = ∪ 𝑥 ∈ 𝐴 𝐵) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 (𝑋 ∖ (𝑋 ∖ 𝐵)) = ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | 3, 11 | eqtrid 2784 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) = ∪ 𝑥 ∈ 𝐴 𝐵) |
13 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) | |
14 | 4 | cldopn 22755 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
15 | 14 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵) ∈ 𝐽) |
16 | 4 | riinopn 22630 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵) ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) |
17 | 15, 16 | syl3an3 1165 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) |
18 | 4 | opncld 22757 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵)) ∈ 𝐽) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) ∈ (Clsd‘𝐽)) |
19 | 13, 17, 18 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 (𝑋 ∖ 𝐵))) ∈ (Clsd‘𝐽)) |
20 | 12, 19 | eqeltrrd 2834 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∖ cdif 3945 ∩ cin 3947 ⊆ wss 3948 ∪ cuni 4908 ∪ ciun 4997 ∩ ciin 4998 ‘cfv 6543 Fincfn 8941 Topctop 22615 Clsdccld 22740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7858 df-1st 7977 df-2nd 7978 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-fin 8945 df-top 22616 df-cld 22743 |
This theorem is referenced by: unicld 22770 t1ficld 23051 mblfinlem1 36828 mblfinlem2 36829 |
Copyright terms: Public domain | W3C validator |