MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmopn Structured version   Visualization version   GIF version

Theorem pnrmopn 22847
Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmopn ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽

Proof of Theorem pnrmopn
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pnrmtop 22845 . . . 4 (𝐽 ∈ PNrm → 𝐽 ∈ Top)
2 eqid 2733 . . . . 5 𝐽 = 𝐽
32opncld 22537 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ( 𝐽𝐴) ∈ (Clsd‘𝐽))
41, 3sylan 581 . . 3 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ( 𝐽𝐴) ∈ (Clsd‘𝐽))
5 pnrmcld 22846 . . 3 ((𝐽 ∈ PNrm ∧ ( 𝐽𝐴) ∈ (Clsd‘𝐽)) → ∃𝑔 ∈ (𝐽m ℕ)( 𝐽𝐴) = ran 𝑔)
64, 5syldan 592 . 2 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑔 ∈ (𝐽m ℕ)( 𝐽𝐴) = ran 𝑔)
71ad2antrr 725 . . . . . . . 8 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) ∧ 𝑥 ∈ ℕ) → 𝐽 ∈ Top)
8 elmapi 8843 . . . . . . . . . 10 (𝑔 ∈ (𝐽m ℕ) → 𝑔:ℕ⟶𝐽)
98adantl 483 . . . . . . . . 9 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑔:ℕ⟶𝐽)
109ffvelcdmda 7087 . . . . . . . 8 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ 𝐽)
112opncld 22537 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑔𝑥) ∈ 𝐽) → ( 𝐽 ∖ (𝑔𝑥)) ∈ (Clsd‘𝐽))
127, 10, 11syl2anc 585 . . . . . . 7 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) ∧ 𝑥 ∈ ℕ) → ( 𝐽 ∖ (𝑔𝑥)) ∈ (Clsd‘𝐽))
1312fmpttd 7115 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))):ℕ⟶(Clsd‘𝐽))
14 fvex 6905 . . . . . . 7 (Clsd‘𝐽) ∈ V
15 nnex 12218 . . . . . . 7 ℕ ∈ V
1614, 15elmap 8865 . . . . . 6 ((𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑m ℕ) ↔ (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))):ℕ⟶(Clsd‘𝐽))
1713, 16sylibr 233 . . . . 5 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑m ℕ))
18 iundif2 5078 . . . . . . 7 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ( 𝐽 𝑥 ∈ ℕ (𝑔𝑥))
19 ffn 6718 . . . . . . . . 9 (𝑔:ℕ⟶𝐽𝑔 Fn ℕ)
20 fniinfv 6970 . . . . . . . . 9 (𝑔 Fn ℕ → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
219, 19, 203syl 18 . . . . . . . 8 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
2221difeq2d 4123 . . . . . . 7 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ( 𝐽 𝑥 ∈ ℕ (𝑔𝑥)) = ( 𝐽 ran 𝑔))
2318, 22eqtrid 2785 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ( 𝐽 ran 𝑔))
24 uniexg 7730 . . . . . . . . . . 11 (𝐽 ∈ PNrm → 𝐽 ∈ V)
2524difexd 5330 . . . . . . . . . 10 (𝐽 ∈ PNrm → ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2625ralrimivw 3151 . . . . . . . . 9 (𝐽 ∈ PNrm → ∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2726adantr 482 . . . . . . . 8 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
28 dfiun2g 5034 . . . . . . . 8 (∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))})
2927, 28syl 17 . . . . . . 7 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))})
30 eqid 2733 . . . . . . . . 9 (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))
3130rnmpt 5955 . . . . . . . 8 ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))}
3231unieqi 4922 . . . . . . 7 ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))}
3329, 32eqtr4di 2791 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3423, 33eqtr3d 2775 . . . . 5 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
35 rneq 5936 . . . . . . 7 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → ran 𝑓 = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3635unieqd 4923 . . . . . 6 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → ran 𝑓 = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3736rspceeqv 3634 . . . . 5 (((𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑m ℕ) ∧ ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
3817, 34, 37syl2anc 585 . . . 4 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
3938ad2ant2r 746 . . 3 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
40 difeq2 4117 . . . . . . . 8 (( 𝐽𝐴) = ran 𝑔 → ( 𝐽 ∖ ( 𝐽𝐴)) = ( 𝐽 ran 𝑔))
4140eqcomd 2739 . . . . . . 7 (( 𝐽𝐴) = ran 𝑔 → ( 𝐽 ran 𝑔) = ( 𝐽 ∖ ( 𝐽𝐴)))
42 elssuni 4942 . . . . . . . 8 (𝐴𝐽𝐴 𝐽)
43 dfss4 4259 . . . . . . . 8 (𝐴 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝐴)) = 𝐴)
4442, 43sylib 217 . . . . . . 7 (𝐴𝐽 → ( 𝐽 ∖ ( 𝐽𝐴)) = 𝐴)
4541, 44sylan9eqr 2795 . . . . . 6 ((𝐴𝐽 ∧ ( 𝐽𝐴) = ran 𝑔) → ( 𝐽 ran 𝑔) = 𝐴)
4645ad2ant2l 745 . . . . 5 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ( 𝐽 ran 𝑔) = 𝐴)
4746eqeq1d 2735 . . . 4 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → (( 𝐽 ran 𝑔) = ran 𝑓𝐴 = ran 𝑓))
4847rexbidv 3179 . . 3 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → (∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓 ↔ ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓))
4939, 48mpbid 231 . 2 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓)
506, 49rexlimddv 3162 1 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  wral 3062  wrex 3071  Vcvv 3475  cdif 3946  wss 3949   cuni 4909   cint 4951   ciun 4998   ciin 4999  cmpt 5232  ran crn 5678   Fn wfn 6539  wf 6540  cfv 6544  (class class class)co 7409  m cmap 8820  cn 12212  Topctop 22395  Clsdccld 22520  PNrmcpnrm 22816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-1cn 11168  ax-addcl 11170
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-map 8822  df-nn 12213  df-top 22396  df-cld 22523  df-nrm 22821  df-pnrm 22823
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator