MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmopn Structured version   Visualization version   GIF version

Theorem pnrmopn 21948
Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmopn ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽

Proof of Theorem pnrmopn
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pnrmtop 21946 . . . 4 (𝐽 ∈ PNrm → 𝐽 ∈ Top)
2 eqid 2798 . . . . 5 𝐽 = 𝐽
32opncld 21638 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ( 𝐽𝐴) ∈ (Clsd‘𝐽))
41, 3sylan 583 . . 3 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ( 𝐽𝐴) ∈ (Clsd‘𝐽))
5 pnrmcld 21947 . . 3 ((𝐽 ∈ PNrm ∧ ( 𝐽𝐴) ∈ (Clsd‘𝐽)) → ∃𝑔 ∈ (𝐽m ℕ)( 𝐽𝐴) = ran 𝑔)
64, 5syldan 594 . 2 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑔 ∈ (𝐽m ℕ)( 𝐽𝐴) = ran 𝑔)
71ad2antrr 725 . . . . . . . 8 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) ∧ 𝑥 ∈ ℕ) → 𝐽 ∈ Top)
8 elmapi 8411 . . . . . . . . . 10 (𝑔 ∈ (𝐽m ℕ) → 𝑔:ℕ⟶𝐽)
98adantl 485 . . . . . . . . 9 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑔:ℕ⟶𝐽)
109ffvelrnda 6828 . . . . . . . 8 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ 𝐽)
112opncld 21638 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑔𝑥) ∈ 𝐽) → ( 𝐽 ∖ (𝑔𝑥)) ∈ (Clsd‘𝐽))
127, 10, 11syl2anc 587 . . . . . . 7 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) ∧ 𝑥 ∈ ℕ) → ( 𝐽 ∖ (𝑔𝑥)) ∈ (Clsd‘𝐽))
1312fmpttd 6856 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))):ℕ⟶(Clsd‘𝐽))
14 fvex 6658 . . . . . . 7 (Clsd‘𝐽) ∈ V
15 nnex 11631 . . . . . . 7 ℕ ∈ V
1614, 15elmap 8418 . . . . . 6 ((𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑m ℕ) ↔ (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))):ℕ⟶(Clsd‘𝐽))
1713, 16sylibr 237 . . . . 5 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑m ℕ))
18 iundif2 4959 . . . . . . 7 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ( 𝐽 𝑥 ∈ ℕ (𝑔𝑥))
19 ffn 6487 . . . . . . . . 9 (𝑔:ℕ⟶𝐽𝑔 Fn ℕ)
20 fniinfv 6717 . . . . . . . . 9 (𝑔 Fn ℕ → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
219, 19, 203syl 18 . . . . . . . 8 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
2221difeq2d 4050 . . . . . . 7 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ( 𝐽 𝑥 ∈ ℕ (𝑔𝑥)) = ( 𝐽 ran 𝑔))
2318, 22syl5eq 2845 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ( 𝐽 ran 𝑔))
24 uniexg 7446 . . . . . . . . . . 11 (𝐽 ∈ PNrm → 𝐽 ∈ V)
25 difexg 5195 . . . . . . . . . . 11 ( 𝐽 ∈ V → ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2624, 25syl 17 . . . . . . . . . 10 (𝐽 ∈ PNrm → ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2726ralrimivw 3150 . . . . . . . . 9 (𝐽 ∈ PNrm → ∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2827adantr 484 . . . . . . . 8 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
29 dfiun2g 4917 . . . . . . . 8 (∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))})
3028, 29syl 17 . . . . . . 7 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))})
31 eqid 2798 . . . . . . . . 9 (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))
3231rnmpt 5791 . . . . . . . 8 ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))}
3332unieqi 4813 . . . . . . 7 ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))}
3430, 33eqtr4di 2851 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3523, 34eqtr3d 2835 . . . . 5 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
36 rneq 5770 . . . . . . 7 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → ran 𝑓 = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3736unieqd 4814 . . . . . 6 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → ran 𝑓 = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3837rspceeqv 3586 . . . . 5 (((𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑m ℕ) ∧ ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
3917, 35, 38syl2anc 587 . . . 4 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
4039ad2ant2r 746 . . 3 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
41 difeq2 4044 . . . . . . . 8 (( 𝐽𝐴) = ran 𝑔 → ( 𝐽 ∖ ( 𝐽𝐴)) = ( 𝐽 ran 𝑔))
4241eqcomd 2804 . . . . . . 7 (( 𝐽𝐴) = ran 𝑔 → ( 𝐽 ran 𝑔) = ( 𝐽 ∖ ( 𝐽𝐴)))
43 elssuni 4830 . . . . . . . 8 (𝐴𝐽𝐴 𝐽)
44 dfss4 4185 . . . . . . . 8 (𝐴 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝐴)) = 𝐴)
4543, 44sylib 221 . . . . . . 7 (𝐴𝐽 → ( 𝐽 ∖ ( 𝐽𝐴)) = 𝐴)
4642, 45sylan9eqr 2855 . . . . . 6 ((𝐴𝐽 ∧ ( 𝐽𝐴) = ran 𝑔) → ( 𝐽 ran 𝑔) = 𝐴)
4746ad2ant2l 745 . . . . 5 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ( 𝐽 ran 𝑔) = 𝐴)
4847eqeq1d 2800 . . . 4 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → (( 𝐽 ran 𝑔) = ran 𝑓𝐴 = ran 𝑓))
4948rexbidv 3256 . . 3 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → (∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓 ↔ ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓))
5040, 49mpbid 235 . 2 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓)
516, 50rexlimddv 3250 1 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  wss 3881   cuni 4800   cint 4838   ciun 4881   ciin 4882  cmpt 5110  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  cn 11625  Topctop 21498  Clsdccld 21621  PNrmcpnrm 21917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-1cn 10584  ax-addcl 10586
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-map 8391  df-nn 11626  df-top 21499  df-cld 21624  df-nrm 21922  df-pnrm 21924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator