MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmopn Structured version   Visualization version   GIF version

Theorem pnrmopn 23372
Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmopn ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽

Proof of Theorem pnrmopn
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pnrmtop 23370 . . . 4 (𝐽 ∈ PNrm → 𝐽 ∈ Top)
2 eqid 2740 . . . . 5 𝐽 = 𝐽
32opncld 23062 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ( 𝐽𝐴) ∈ (Clsd‘𝐽))
41, 3sylan 579 . . 3 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ( 𝐽𝐴) ∈ (Clsd‘𝐽))
5 pnrmcld 23371 . . 3 ((𝐽 ∈ PNrm ∧ ( 𝐽𝐴) ∈ (Clsd‘𝐽)) → ∃𝑔 ∈ (𝐽m ℕ)( 𝐽𝐴) = ran 𝑔)
64, 5syldan 590 . 2 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑔 ∈ (𝐽m ℕ)( 𝐽𝐴) = ran 𝑔)
71ad2antrr 725 . . . . . . . 8 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) ∧ 𝑥 ∈ ℕ) → 𝐽 ∈ Top)
8 elmapi 8907 . . . . . . . . . 10 (𝑔 ∈ (𝐽m ℕ) → 𝑔:ℕ⟶𝐽)
98adantl 481 . . . . . . . . 9 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑔:ℕ⟶𝐽)
109ffvelcdmda 7118 . . . . . . . 8 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ 𝐽)
112opncld 23062 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑔𝑥) ∈ 𝐽) → ( 𝐽 ∖ (𝑔𝑥)) ∈ (Clsd‘𝐽))
127, 10, 11syl2anc 583 . . . . . . 7 (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) ∧ 𝑥 ∈ ℕ) → ( 𝐽 ∖ (𝑔𝑥)) ∈ (Clsd‘𝐽))
1312fmpttd 7149 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))):ℕ⟶(Clsd‘𝐽))
14 fvex 6933 . . . . . . 7 (Clsd‘𝐽) ∈ V
15 nnex 12299 . . . . . . 7 ℕ ∈ V
1614, 15elmap 8929 . . . . . 6 ((𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑m ℕ) ↔ (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))):ℕ⟶(Clsd‘𝐽))
1713, 16sylibr 234 . . . . 5 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑m ℕ))
18 iundif2 5097 . . . . . . 7 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ( 𝐽 𝑥 ∈ ℕ (𝑔𝑥))
19 ffn 6747 . . . . . . . . 9 (𝑔:ℕ⟶𝐽𝑔 Fn ℕ)
20 fniinfv 7000 . . . . . . . . 9 (𝑔 Fn ℕ → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
219, 19, 203syl 18 . . . . . . . 8 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
2221difeq2d 4149 . . . . . . 7 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ( 𝐽 𝑥 ∈ ℕ (𝑔𝑥)) = ( 𝐽 ran 𝑔))
2318, 22eqtrid 2792 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ( 𝐽 ran 𝑔))
24 uniexg 7775 . . . . . . . . . . 11 (𝐽 ∈ PNrm → 𝐽 ∈ V)
2524difexd 5349 . . . . . . . . . 10 (𝐽 ∈ PNrm → ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2625ralrimivw 3156 . . . . . . . . 9 (𝐽 ∈ PNrm → ∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
2726adantr 480 . . . . . . . 8 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V)
28 dfiun2g 5053 . . . . . . . 8 (∀𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) ∈ V → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))})
2927, 28syl 17 . . . . . . 7 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))})
30 eqid 2740 . . . . . . . . 9 (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))
3130rnmpt 5980 . . . . . . . 8 ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))}
3231unieqi 4943 . . . . . . 7 ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = ( 𝐽 ∖ (𝑔𝑥))}
3329, 32eqtr4di 2798 . . . . . 6 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → 𝑥 ∈ ℕ ( 𝐽 ∖ (𝑔𝑥)) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3423, 33eqtr3d 2782 . . . . 5 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
35 rneq 5961 . . . . . . 7 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → ran 𝑓 = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3635unieqd 4944 . . . . . 6 (𝑓 = (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) → ran 𝑓 = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))))
3736rspceeqv 3658 . . . . 5 (((𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥))) ∈ ((Clsd‘𝐽) ↑m ℕ) ∧ ( 𝐽 ran 𝑔) = ran (𝑥 ∈ ℕ ↦ ( 𝐽 ∖ (𝑔𝑥)))) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
3817, 34, 37syl2anc 583 . . . 4 ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽m ℕ)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
3938ad2ant2r 746 . . 3 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓)
40 difeq2 4143 . . . . . . . 8 (( 𝐽𝐴) = ran 𝑔 → ( 𝐽 ∖ ( 𝐽𝐴)) = ( 𝐽 ran 𝑔))
4140eqcomd 2746 . . . . . . 7 (( 𝐽𝐴) = ran 𝑔 → ( 𝐽 ran 𝑔) = ( 𝐽 ∖ ( 𝐽𝐴)))
42 elssuni 4961 . . . . . . . 8 (𝐴𝐽𝐴 𝐽)
43 dfss4 4288 . . . . . . . 8 (𝐴 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝐴)) = 𝐴)
4442, 43sylib 218 . . . . . . 7 (𝐴𝐽 → ( 𝐽 ∖ ( 𝐽𝐴)) = 𝐴)
4541, 44sylan9eqr 2802 . . . . . 6 ((𝐴𝐽 ∧ ( 𝐽𝐴) = ran 𝑔) → ( 𝐽 ran 𝑔) = 𝐴)
4645ad2ant2l 745 . . . . 5 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ( 𝐽 ran 𝑔) = 𝐴)
4746eqeq1d 2742 . . . 4 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → (( 𝐽 ran 𝑔) = ran 𝑓𝐴 = ran 𝑓))
4847rexbidv 3185 . . 3 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → (∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)( 𝐽 ran 𝑔) = ran 𝑓 ↔ ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓))
4939, 48mpbid 232 . 2 (((𝐽 ∈ PNrm ∧ 𝐴𝐽) ∧ (𝑔 ∈ (𝐽m ℕ) ∧ ( 𝐽𝐴) = ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓)
506, 49rexlimddv 3167 1 ((𝐽 ∈ PNrm ∧ 𝐴𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ran 𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  wss 3976   cuni 4931   cint 4970   ciun 5015   ciin 5016  cmpt 5249  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cn 12293  Topctop 22920  Clsdccld 23045  PNrmcpnrm 23341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-map 8886  df-nn 12294  df-top 22921  df-cld 23048  df-nrm 23346  df-pnrm 23348
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator