| Step | Hyp | Ref
| Expression |
| 1 | | pnrmtop 23349 |
. . . 4
⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Top) |
| 2 | | eqid 2737 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 3 | 2 | opncld 23041 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (∪ 𝐽 ∖ 𝐴) ∈ (Clsd‘𝐽)) |
| 4 | 1, 3 | sylan 580 |
. . 3
⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽) → (∪ 𝐽 ∖ 𝐴) ∈ (Clsd‘𝐽)) |
| 5 | | pnrmcld 23350 |
. . 3
⊢ ((𝐽 ∈ PNrm ∧ (∪ 𝐽
∖ 𝐴) ∈
(Clsd‘𝐽)) →
∃𝑔 ∈ (𝐽 ↑m
ℕ)(∪ 𝐽 ∖ 𝐴) = ∩ ran 𝑔) |
| 6 | 4, 5 | syldan 591 |
. 2
⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽) → ∃𝑔 ∈ (𝐽 ↑m ℕ)(∪ 𝐽
∖ 𝐴) = ∩ ran 𝑔) |
| 7 | 1 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) ∧ 𝑥 ∈ ℕ) → 𝐽 ∈ Top) |
| 8 | | elmapi 8889 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝐽 ↑m ℕ) → 𝑔:ℕ⟶𝐽) |
| 9 | 8 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) → 𝑔:ℕ⟶𝐽) |
| 10 | 9 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) ∧ 𝑥 ∈ ℕ) → (𝑔‘𝑥) ∈ 𝐽) |
| 11 | 2 | opncld 23041 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (𝑔‘𝑥) ∈ 𝐽) → (∪ 𝐽 ∖ (𝑔‘𝑥)) ∈ (Clsd‘𝐽)) |
| 12 | 7, 10, 11 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) ∧ 𝑥 ∈ ℕ) → (∪ 𝐽
∖ (𝑔‘𝑥)) ∈ (Clsd‘𝐽)) |
| 13 | 12 | fmpttd 7135 |
. . . . . 6
⊢ ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) → (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥))):ℕ⟶(Clsd‘𝐽)) |
| 14 | | fvex 6919 |
. . . . . . 7
⊢
(Clsd‘𝐽)
∈ V |
| 15 | | nnex 12272 |
. . . . . . 7
⊢ ℕ
∈ V |
| 16 | 14, 15 | elmap 8911 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥))) ∈ ((Clsd‘𝐽) ↑m ℕ)
↔ (𝑥 ∈ ℕ
↦ (∪ 𝐽 ∖ (𝑔‘𝑥))):ℕ⟶(Clsd‘𝐽)) |
| 17 | 13, 16 | sylibr 234 |
. . . . 5
⊢ ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) → (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥))) ∈ ((Clsd‘𝐽) ↑m
ℕ)) |
| 18 | | iundif2 5074 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ ℕ (∪
𝐽 ∖ (𝑔‘𝑥)) = (∪ 𝐽 ∖ ∩ 𝑥 ∈ ℕ (𝑔‘𝑥)) |
| 19 | | ffn 6736 |
. . . . . . . . 9
⊢ (𝑔:ℕ⟶𝐽 → 𝑔 Fn ℕ) |
| 20 | | fniinfv 6987 |
. . . . . . . . 9
⊢ (𝑔 Fn ℕ → ∩ 𝑥 ∈ ℕ (𝑔‘𝑥) = ∩ ran 𝑔) |
| 21 | 9, 19, 20 | 3syl 18 |
. . . . . . . 8
⊢ ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) →
∩ 𝑥 ∈ ℕ (𝑔‘𝑥) = ∩ ran 𝑔) |
| 22 | 21 | difeq2d 4126 |
. . . . . . 7
⊢ ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) → (∪ 𝐽
∖ ∩ 𝑥 ∈ ℕ (𝑔‘𝑥)) = (∪ 𝐽 ∖ ∩ ran 𝑔)) |
| 23 | 18, 22 | eqtrid 2789 |
. . . . . 6
⊢ ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) →
∪ 𝑥 ∈ ℕ (∪
𝐽 ∖ (𝑔‘𝑥)) = (∪ 𝐽 ∖ ∩ ran 𝑔)) |
| 24 | | uniexg 7760 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ PNrm → ∪ 𝐽
∈ V) |
| 25 | 24 | difexd 5331 |
. . . . . . . . . 10
⊢ (𝐽 ∈ PNrm → (∪ 𝐽
∖ (𝑔‘𝑥)) ∈ V) |
| 26 | 25 | ralrimivw 3150 |
. . . . . . . . 9
⊢ (𝐽 ∈ PNrm →
∀𝑥 ∈ ℕ
(∪ 𝐽 ∖ (𝑔‘𝑥)) ∈ V) |
| 27 | 26 | adantr 480 |
. . . . . . . 8
⊢ ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) →
∀𝑥 ∈ ℕ
(∪ 𝐽 ∖ (𝑔‘𝑥)) ∈ V) |
| 28 | | dfiun2g 5030 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ℕ (∪ 𝐽 ∖ (𝑔‘𝑥)) ∈ V → ∪ 𝑥 ∈ ℕ (∪
𝐽 ∖ (𝑔‘𝑥)) = ∪ {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = (∪
𝐽 ∖ (𝑔‘𝑥))}) |
| 29 | 27, 28 | syl 17 |
. . . . . . 7
⊢ ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) →
∪ 𝑥 ∈ ℕ (∪
𝐽 ∖ (𝑔‘𝑥)) = ∪ {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = (∪
𝐽 ∖ (𝑔‘𝑥))}) |
| 30 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥))) = (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥))) |
| 31 | 30 | rnmpt 5968 |
. . . . . . . 8
⊢ ran
(𝑥 ∈ ℕ ↦
(∪ 𝐽 ∖ (𝑔‘𝑥))) = {𝑓 ∣ ∃𝑥 ∈ ℕ 𝑓 = (∪ 𝐽 ∖ (𝑔‘𝑥))} |
| 32 | 31 | unieqi 4919 |
. . . . . . 7
⊢ ∪ ran (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥))) = ∪ {𝑓
∣ ∃𝑥 ∈
ℕ 𝑓 = (∪ 𝐽
∖ (𝑔‘𝑥))} |
| 33 | 29, 32 | eqtr4di 2795 |
. . . . . 6
⊢ ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) →
∪ 𝑥 ∈ ℕ (∪
𝐽 ∖ (𝑔‘𝑥)) = ∪ ran (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥)))) |
| 34 | 23, 33 | eqtr3d 2779 |
. . . . 5
⊢ ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) → (∪ 𝐽
∖ ∩ ran 𝑔) = ∪ ran (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥)))) |
| 35 | | rneq 5947 |
. . . . . . 7
⊢ (𝑓 = (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥))) → ran 𝑓 = ran (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥)))) |
| 36 | 35 | unieqd 4920 |
. . . . . 6
⊢ (𝑓 = (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥))) → ∪ ran 𝑓 = ∪ ran (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥)))) |
| 37 | 36 | rspceeqv 3645 |
. . . . 5
⊢ (((𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥))) ∈ ((Clsd‘𝐽) ↑m ℕ)
∧ (∪ 𝐽 ∖ ∩ ran
𝑔) = ∪ ran (𝑥 ∈ ℕ ↦ (∪ 𝐽
∖ (𝑔‘𝑥)))) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m
ℕ)(∪ 𝐽 ∖ ∩ ran
𝑔) = ∪ ran 𝑓) |
| 38 | 17, 34, 37 | syl2anc 584 |
. . . 4
⊢ ((𝐽 ∈ PNrm ∧ 𝑔 ∈ (𝐽 ↑m ℕ)) →
∃𝑓 ∈
((Clsd‘𝐽)
↑m ℕ)(∪ 𝐽 ∖ ∩ ran
𝑔) = ∪ ran 𝑓) |
| 39 | 38 | ad2ant2r 747 |
. . 3
⊢ (((𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽) ∧ (𝑔 ∈ (𝐽 ↑m ℕ) ∧ (∪ 𝐽
∖ 𝐴) = ∩ ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)(∪ 𝐽
∖ ∩ ran 𝑔) = ∪ ran 𝑓) |
| 40 | | difeq2 4120 |
. . . . . . . 8
⊢ ((∪ 𝐽
∖ 𝐴) = ∩ ran 𝑔 → (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝐴)) = (∪ 𝐽
∖ ∩ ran 𝑔)) |
| 41 | 40 | eqcomd 2743 |
. . . . . . 7
⊢ ((∪ 𝐽
∖ 𝐴) = ∩ ran 𝑔 → (∪ 𝐽 ∖ ∩ ran 𝑔) = (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝐴))) |
| 42 | | elssuni 4937 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) |
| 43 | | dfss4 4269 |
. . . . . . . 8
⊢ (𝐴 ⊆ ∪ 𝐽
↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝐴)) = 𝐴) |
| 44 | 42, 43 | sylib 218 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐽 → (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝐴)) = 𝐴) |
| 45 | 41, 44 | sylan9eqr 2799 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐽 ∧ (∪ 𝐽 ∖ 𝐴) = ∩ ran 𝑔) → (∪ 𝐽
∖ ∩ ran 𝑔) = 𝐴) |
| 46 | 45 | ad2ant2l 746 |
. . . . 5
⊢ (((𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽) ∧ (𝑔 ∈ (𝐽 ↑m ℕ) ∧ (∪ 𝐽
∖ 𝐴) = ∩ ran 𝑔)) → (∪ 𝐽 ∖ ∩ ran 𝑔) = 𝐴) |
| 47 | 46 | eqeq1d 2739 |
. . . 4
⊢ (((𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽) ∧ (𝑔 ∈ (𝐽 ↑m ℕ) ∧ (∪ 𝐽
∖ 𝐴) = ∩ ran 𝑔)) → ((∪
𝐽 ∖ ∩ ran 𝑔) = ∪ ran 𝑓 ↔ 𝐴 = ∪ ran 𝑓)) |
| 48 | 47 | rexbidv 3179 |
. . 3
⊢ (((𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽) ∧ (𝑔 ∈ (𝐽 ↑m ℕ) ∧ (∪ 𝐽
∖ 𝐴) = ∩ ran 𝑔)) → (∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)(∪ 𝐽
∖ ∩ ran 𝑔) = ∪ ran 𝑓 ↔ ∃𝑓 ∈ ((Clsd‘𝐽) ↑m
ℕ)𝐴 = ∪ ran 𝑓)) |
| 49 | 39, 48 | mpbid 232 |
. 2
⊢ (((𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽) ∧ (𝑔 ∈ (𝐽 ↑m ℕ) ∧ (∪ 𝐽
∖ 𝐴) = ∩ ran 𝑔)) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ∪
ran 𝑓) |
| 50 | 6, 49 | rexlimddv 3161 |
1
⊢ ((𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽) → ∃𝑓 ∈ ((Clsd‘𝐽) ↑m ℕ)𝐴 = ∪
ran 𝑓) |