![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem1 | Structured version Visualization version GIF version |
Description: Lemma for kur14 31797. (Contributed by Mario Carneiro, 17-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem1.a | ⊢ 𝐴 ⊆ 𝑋 |
kur14lem1.c | ⊢ (𝑋 ∖ 𝐴) ∈ 𝑇 |
kur14lem1.k | ⊢ (𝐾‘𝐴) ∈ 𝑇 |
Ref | Expression |
---|---|
kur14lem1 | ⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem1.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
2 | sseq1 3844 | . . 3 ⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
3 | 1, 2 | mpbiri 250 | . 2 ⊢ (𝑁 = 𝐴 → 𝑁 ⊆ 𝑋) |
4 | difeq2 3944 | . . . 4 ⊢ (𝑁 = 𝐴 → (𝑋 ∖ 𝑁) = (𝑋 ∖ 𝐴)) | |
5 | fveq2 6446 | . . . 4 ⊢ (𝑁 = 𝐴 → (𝐾‘𝑁) = (𝐾‘𝐴)) | |
6 | 4, 5 | preq12d 4507 | . . 3 ⊢ (𝑁 = 𝐴 → {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} = {(𝑋 ∖ 𝐴), (𝐾‘𝐴)}) |
7 | kur14lem1.c | . . . 4 ⊢ (𝑋 ∖ 𝐴) ∈ 𝑇 | |
8 | kur14lem1.k | . . . 4 ⊢ (𝐾‘𝐴) ∈ 𝑇 | |
9 | prssi 4583 | . . . 4 ⊢ (((𝑋 ∖ 𝐴) ∈ 𝑇 ∧ (𝐾‘𝐴) ∈ 𝑇) → {(𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ 𝑇) | |
10 | 7, 8, 9 | mp2an 682 | . . 3 ⊢ {(𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ 𝑇 |
11 | 6, 10 | syl6eqss 3873 | . 2 ⊢ (𝑁 = 𝐴 → {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇) |
12 | 3, 11 | jca 507 | 1 ⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∖ cdif 3788 ⊆ wss 3791 {cpr 4399 ‘cfv 6135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-iota 6099 df-fv 6143 |
This theorem is referenced by: kur14lem7 31793 |
Copyright terms: Public domain | W3C validator |