![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem1 | Structured version Visualization version GIF version |
Description: Lemma for kur14 33874. (Contributed by Mario Carneiro, 17-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem1.a | ⊢ 𝐴 ⊆ 𝑋 |
kur14lem1.c | ⊢ (𝑋 ∖ 𝐴) ∈ 𝑇 |
kur14lem1.k | ⊢ (𝐾‘𝐴) ∈ 𝑇 |
Ref | Expression |
---|---|
kur14lem1 | ⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem1.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
2 | sseq1 3973 | . . 3 ⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
3 | 1, 2 | mpbiri 258 | . 2 ⊢ (𝑁 = 𝐴 → 𝑁 ⊆ 𝑋) |
4 | difeq2 4080 | . . . 4 ⊢ (𝑁 = 𝐴 → (𝑋 ∖ 𝑁) = (𝑋 ∖ 𝐴)) | |
5 | fveq2 6846 | . . . 4 ⊢ (𝑁 = 𝐴 → (𝐾‘𝑁) = (𝐾‘𝐴)) | |
6 | 4, 5 | preq12d 4706 | . . 3 ⊢ (𝑁 = 𝐴 → {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} = {(𝑋 ∖ 𝐴), (𝐾‘𝐴)}) |
7 | kur14lem1.c | . . . 4 ⊢ (𝑋 ∖ 𝐴) ∈ 𝑇 | |
8 | kur14lem1.k | . . . 4 ⊢ (𝐾‘𝐴) ∈ 𝑇 | |
9 | prssi 4785 | . . . 4 ⊢ (((𝑋 ∖ 𝐴) ∈ 𝑇 ∧ (𝐾‘𝐴) ∈ 𝑇) → {(𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ 𝑇) | |
10 | 7, 8, 9 | mp2an 691 | . . 3 ⊢ {(𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ 𝑇 |
11 | 6, 10 | eqsstrdi 4002 | . 2 ⊢ (𝑁 = 𝐴 → {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇) |
12 | 3, 11 | jca 513 | 1 ⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∖ cdif 3911 ⊆ wss 3914 {cpr 4592 ‘cfv 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-iota 6452 df-fv 6508 |
This theorem is referenced by: kur14lem7 33870 |
Copyright terms: Public domain | W3C validator |