Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem1 Structured version   Visualization version   GIF version

Theorem kur14lem1 33864
Description: Lemma for kur14 33874. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
kur14lem1.a 𝐴𝑋
kur14lem1.c (𝑋𝐴) ∈ 𝑇
kur14lem1.k (𝐾𝐴) ∈ 𝑇
Assertion
Ref Expression
kur14lem1 (𝑁 = 𝐴 → (𝑁𝑋 ∧ {(𝑋𝑁), (𝐾𝑁)} ⊆ 𝑇))

Proof of Theorem kur14lem1
StepHypRef Expression
1 kur14lem1.a . . 3 𝐴𝑋
2 sseq1 3973 . . 3 (𝑁 = 𝐴 → (𝑁𝑋𝐴𝑋))
31, 2mpbiri 258 . 2 (𝑁 = 𝐴𝑁𝑋)
4 difeq2 4080 . . . 4 (𝑁 = 𝐴 → (𝑋𝑁) = (𝑋𝐴))
5 fveq2 6846 . . . 4 (𝑁 = 𝐴 → (𝐾𝑁) = (𝐾𝐴))
64, 5preq12d 4706 . . 3 (𝑁 = 𝐴 → {(𝑋𝑁), (𝐾𝑁)} = {(𝑋𝐴), (𝐾𝐴)})
7 kur14lem1.c . . . 4 (𝑋𝐴) ∈ 𝑇
8 kur14lem1.k . . . 4 (𝐾𝐴) ∈ 𝑇
9 prssi 4785 . . . 4 (((𝑋𝐴) ∈ 𝑇 ∧ (𝐾𝐴) ∈ 𝑇) → {(𝑋𝐴), (𝐾𝐴)} ⊆ 𝑇)
107, 8, 9mp2an 691 . . 3 {(𝑋𝐴), (𝐾𝐴)} ⊆ 𝑇
116, 10eqsstrdi 4002 . 2 (𝑁 = 𝐴 → {(𝑋𝑁), (𝐾𝑁)} ⊆ 𝑇)
123, 11jca 513 1 (𝑁 = 𝐴 → (𝑁𝑋 ∧ {(𝑋𝑁), (𝐾𝑁)} ⊆ 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cdif 3911  wss 3914  {cpr 4592  cfv 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-iota 6452  df-fv 6508
This theorem is referenced by:  kur14lem7  33870
  Copyright terms: Public domain W3C validator