Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem1 Structured version   Visualization version   GIF version

Theorem kur14lem1 35233
Description: Lemma for kur14 35243. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
kur14lem1.a 𝐴𝑋
kur14lem1.c (𝑋𝐴) ∈ 𝑇
kur14lem1.k (𝐾𝐴) ∈ 𝑇
Assertion
Ref Expression
kur14lem1 (𝑁 = 𝐴 → (𝑁𝑋 ∧ {(𝑋𝑁), (𝐾𝑁)} ⊆ 𝑇))

Proof of Theorem kur14lem1
StepHypRef Expression
1 kur14lem1.a . . 3 𝐴𝑋
2 sseq1 3989 . . 3 (𝑁 = 𝐴 → (𝑁𝑋𝐴𝑋))
31, 2mpbiri 258 . 2 (𝑁 = 𝐴𝑁𝑋)
4 difeq2 4100 . . . 4 (𝑁 = 𝐴 → (𝑋𝑁) = (𝑋𝐴))
5 fveq2 6881 . . . 4 (𝑁 = 𝐴 → (𝐾𝑁) = (𝐾𝐴))
64, 5preq12d 4722 . . 3 (𝑁 = 𝐴 → {(𝑋𝑁), (𝐾𝑁)} = {(𝑋𝐴), (𝐾𝐴)})
7 kur14lem1.c . . . 4 (𝑋𝐴) ∈ 𝑇
8 kur14lem1.k . . . 4 (𝐾𝐴) ∈ 𝑇
9 prssi 4802 . . . 4 (((𝑋𝐴) ∈ 𝑇 ∧ (𝐾𝐴) ∈ 𝑇) → {(𝑋𝐴), (𝐾𝐴)} ⊆ 𝑇)
107, 8, 9mp2an 692 . . 3 {(𝑋𝐴), (𝐾𝐴)} ⊆ 𝑇
116, 10eqsstrdi 4008 . 2 (𝑁 = 𝐴 → {(𝑋𝑁), (𝐾𝑁)} ⊆ 𝑇)
123, 11jca 511 1 (𝑁 = 𝐴 → (𝑁𝑋 ∧ {(𝑋𝑁), (𝐾𝑁)} ⊆ 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3928  wss 3931  {cpr 4608  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544
This theorem is referenced by:  kur14lem7  35239
  Copyright terms: Public domain W3C validator