| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for kur14 35271. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| Ref | Expression |
|---|---|
| kur14lem1.a | ⊢ 𝐴 ⊆ 𝑋 |
| kur14lem1.c | ⊢ (𝑋 ∖ 𝐴) ∈ 𝑇 |
| kur14lem1.k | ⊢ (𝐾‘𝐴) ∈ 𝑇 |
| Ref | Expression |
|---|---|
| kur14lem1 | ⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem1.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
| 2 | sseq1 3957 | . . 3 ⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 3 | 1, 2 | mpbiri 258 | . 2 ⊢ (𝑁 = 𝐴 → 𝑁 ⊆ 𝑋) |
| 4 | difeq2 4071 | . . . 4 ⊢ (𝑁 = 𝐴 → (𝑋 ∖ 𝑁) = (𝑋 ∖ 𝐴)) | |
| 5 | fveq2 6831 | . . . 4 ⊢ (𝑁 = 𝐴 → (𝐾‘𝑁) = (𝐾‘𝐴)) | |
| 6 | 4, 5 | preq12d 4695 | . . 3 ⊢ (𝑁 = 𝐴 → {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} = {(𝑋 ∖ 𝐴), (𝐾‘𝐴)}) |
| 7 | kur14lem1.c | . . . 4 ⊢ (𝑋 ∖ 𝐴) ∈ 𝑇 | |
| 8 | kur14lem1.k | . . . 4 ⊢ (𝐾‘𝐴) ∈ 𝑇 | |
| 9 | prssi 4774 | . . . 4 ⊢ (((𝑋 ∖ 𝐴) ∈ 𝑇 ∧ (𝐾‘𝐴) ∈ 𝑇) → {(𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ 𝑇) | |
| 10 | 7, 8, 9 | mp2an 692 | . . 3 ⊢ {(𝑋 ∖ 𝐴), (𝐾‘𝐴)} ⊆ 𝑇 |
| 11 | 6, 10 | eqsstrdi 3976 | . 2 ⊢ (𝑁 = 𝐴 → {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇) |
| 12 | 3, 11 | jca 511 | 1 ⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3896 ⊆ wss 3899 {cpr 4579 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: kur14lem7 35267 |
| Copyright terms: Public domain | W3C validator |