| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erdsze2 | Structured version Visualization version GIF version | ||
| Description: Generalize the statement of the Erdős-Szekeres theorem erdsze 35182 to "sequences" indexed by an arbitrary subset of ℝ, which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| Ref | Expression |
|---|---|
| erdsze2.r | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| erdsze2.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
| erdsze2.f | ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) |
| erdsze2.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| erdsze2.l | ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴)) |
| Ref | Expression |
|---|---|
| erdsze2 | ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erdsze2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 2 | erdsze2.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
| 3 | erdsze2.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) | |
| 4 | erdsze2.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 5 | eqid 2729 | . . 3 ⊢ ((𝑅 − 1) · (𝑆 − 1)) = ((𝑅 − 1) · (𝑆 − 1)) | |
| 6 | erdsze2.l | . . 3 ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴)) | |
| 7 | 1, 2, 3, 4, 5, 6 | erdsze2lem1 35183 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) |
| 8 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑅 ∈ ℕ) |
| 9 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑆 ∈ ℕ) |
| 10 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝐹:𝐴–1-1→ℝ) |
| 11 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝐴 ⊆ ℝ) |
| 12 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴)) |
| 13 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴) | |
| 14 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓)) | |
| 15 | 8, 9, 10, 11, 5, 12, 13, 14 | erdsze2lem2 35184 | . 2 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| 16 | 7, 15 | exlimddv 1935 | 1 ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3911 𝒫 cpw 4559 class class class wbr 5102 ◡ccnv 5630 ran crn 5632 ↾ cres 5633 “ cima 5634 –1-1→wf1 6496 ‘cfv 6499 Isom wiso 6500 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 ≤ cle 11185 − cmin 11381 ℕcn 12162 ...cfz 13444 ♯chash 14271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |