![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erdsze2 | Structured version Visualization version GIF version |
Description: Generalize the statement of the Erdős-Szekeres theorem erdsze 35041 to "sequences" indexed by an arbitrary subset of ℝ, which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
erdsze2.r | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
erdsze2.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
erdsze2.f | ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) |
erdsze2.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
erdsze2.l | ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴)) |
Ref | Expression |
---|---|
erdsze2 | ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erdsze2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
2 | erdsze2.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
3 | erdsze2.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) | |
4 | erdsze2.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
5 | eqid 2726 | . . 3 ⊢ ((𝑅 − 1) · (𝑆 − 1)) = ((𝑅 − 1) · (𝑆 − 1)) | |
6 | erdsze2.l | . . 3 ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴)) | |
7 | 1, 2, 3, 4, 5, 6 | erdsze2lem1 35042 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) |
8 | 1 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑅 ∈ ℕ) |
9 | 2 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑆 ∈ ℕ) |
10 | 3 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝐹:𝐴–1-1→ℝ) |
11 | 4 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝐴 ⊆ ℝ) |
12 | 6 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴)) |
13 | simprl 769 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴) | |
14 | simprr 771 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓)) | |
15 | 8, 9, 10, 11, 5, 12, 13, 14 | erdsze2lem2 35043 | . 2 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
16 | 7, 15 | exlimddv 1931 | 1 ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 ∈ wcel 2099 ∃wrex 3060 ⊆ wss 3947 𝒫 cpw 4598 class class class wbr 5144 ◡ccnv 5672 ran crn 5674 ↾ cres 5675 “ cima 5676 –1-1→wf1 6541 ‘cfv 6544 Isom wiso 6545 (class class class)co 7414 ℝcr 11146 1c1 11148 + caddc 11150 · cmul 11152 < clt 11287 ≤ cle 11288 − cmin 11483 ℕcn 12256 ...cfz 13530 ♯chash 14340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-pre-sup 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-oadd 8490 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9476 df-oi 9544 df-dju 9935 df-card 9973 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-n0 12517 df-xnn0 12589 df-z 12603 df-uz 12867 df-fz 13531 df-hash 14341 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |