Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2 Structured version   Visualization version   GIF version

Theorem erdsze2 31790
Description: Generalize the statement of the Erdős-Szekeres theorem erdsze 31787 to "sequences" indexed by an arbitrary subset of , which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r (𝜑𝑅 ∈ ℕ)
erdsze2.s (𝜑𝑆 ∈ ℕ)
erdsze2.f (𝜑𝐹:𝐴1-1→ℝ)
erdsze2.a (𝜑𝐴 ⊆ ℝ)
erdsze2.l (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴))
Assertion
Ref Expression
erdsze2 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝑅,𝑠   𝑆,𝑠   𝜑,𝑠

Proof of Theorem erdsze2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 erdsze2.r . . 3 (𝜑𝑅 ∈ ℕ)
2 erdsze2.s . . 3 (𝜑𝑆 ∈ ℕ)
3 erdsze2.f . . 3 (𝜑𝐹:𝐴1-1→ℝ)
4 erdsze2.a . . 3 (𝜑𝐴 ⊆ ℝ)
5 eqid 2778 . . 3 ((𝑅 − 1) · (𝑆 − 1)) = ((𝑅 − 1) · (𝑆 − 1))
6 erdsze2.l . . 3 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴))
71, 2, 3, 4, 5, 6erdsze2lem1 31788 . 2 (𝜑 → ∃𝑓(𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓)))
81adantr 474 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑅 ∈ ℕ)
92adantr 474 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑆 ∈ ℕ)
103adantr 474 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝐹:𝐴1-1→ℝ)
114adantr 474 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝐴 ⊆ ℝ)
126adantr 474 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴))
13 simprl 761 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴)
14 simprr 763 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))
158, 9, 10, 11, 5, 12, 13, 14erdsze2lem2 31789 . 2 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
167, 15exlimddv 1978 1 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 836  wcel 2107  wrex 3091  wss 3792  𝒫 cpw 4379   class class class wbr 4888  ccnv 5356  ran crn 5358  cres 5359  cima 5360  1-1wf1 6134  cfv 6137   Isom wiso 6138  (class class class)co 6924  cr 10273  1c1 10275   + caddc 10277   · cmul 10279   < clt 10413  cle 10414  cmin 10608  cn 11378  ...cfz 12647  chash 13439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-n0 11647  df-xnn0 11719  df-z 11733  df-uz 11997  df-fz 12648  df-hash 13440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator