| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erdsze2 | Structured version Visualization version GIF version | ||
| Description: Generalize the statement of the Erdős-Szekeres theorem erdsze 35246 to "sequences" indexed by an arbitrary subset of ℝ, which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| Ref | Expression |
|---|---|
| erdsze2.r | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| erdsze2.s | ⊢ (𝜑 → 𝑆 ∈ ℕ) |
| erdsze2.f | ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) |
| erdsze2.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| erdsze2.l | ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴)) |
| Ref | Expression |
|---|---|
| erdsze2 | ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erdsze2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 2 | erdsze2.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ) | |
| 3 | erdsze2.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) | |
| 4 | erdsze2.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 5 | eqid 2731 | . . 3 ⊢ ((𝑅 − 1) · (𝑆 − 1)) = ((𝑅 − 1) · (𝑆 − 1)) | |
| 6 | erdsze2.l | . . 3 ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴)) | |
| 7 | 1, 2, 3, 4, 5, 6 | erdsze2lem1 35247 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) |
| 8 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑅 ∈ ℕ) |
| 9 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑆 ∈ ℕ) |
| 10 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝐹:𝐴–1-1→ℝ) |
| 11 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝐴 ⊆ ℝ) |
| 12 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴)) |
| 13 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴) | |
| 14 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓)) | |
| 15 | 8, 9, 10, 11, 5, 12, 13, 14 | erdsze2lem2 35248 | . 2 ⊢ ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| 16 | 7, 15 | exlimddv 1936 | 1 ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 𝒫 cpw 4547 class class class wbr 5089 ◡ccnv 5613 ran crn 5615 ↾ cres 5616 “ cima 5617 –1-1→wf1 6478 ‘cfv 6481 Isom wiso 6482 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 · cmul 11011 < clt 11146 ≤ cle 11147 − cmin 11344 ℕcn 12125 ...cfz 13407 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |