Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2 Structured version   Visualization version   GIF version

Theorem erdsze2 35044
Description: Generalize the statement of the Erdős-Szekeres theorem erdsze 35041 to "sequences" indexed by an arbitrary subset of , which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r (𝜑𝑅 ∈ ℕ)
erdsze2.s (𝜑𝑆 ∈ ℕ)
erdsze2.f (𝜑𝐹:𝐴1-1→ℝ)
erdsze2.a (𝜑𝐴 ⊆ ℝ)
erdsze2.l (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴))
Assertion
Ref Expression
erdsze2 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝑅,𝑠   𝑆,𝑠   𝜑,𝑠

Proof of Theorem erdsze2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 erdsze2.r . . 3 (𝜑𝑅 ∈ ℕ)
2 erdsze2.s . . 3 (𝜑𝑆 ∈ ℕ)
3 erdsze2.f . . 3 (𝜑𝐹:𝐴1-1→ℝ)
4 erdsze2.a . . 3 (𝜑𝐴 ⊆ ℝ)
5 eqid 2726 . . 3 ((𝑅 − 1) · (𝑆 − 1)) = ((𝑅 − 1) · (𝑆 − 1))
6 erdsze2.l . . 3 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴))
71, 2, 3, 4, 5, 6erdsze2lem1 35042 . 2 (𝜑 → ∃𝑓(𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓)))
81adantr 479 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑅 ∈ ℕ)
92adantr 479 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑆 ∈ ℕ)
103adantr 479 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝐹:𝐴1-1→ℝ)
114adantr 479 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝐴 ⊆ ℝ)
126adantr 479 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴))
13 simprl 769 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴)
14 simprr 771 . . 3 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → 𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))
158, 9, 10, 11, 5, 12, 13, 14erdsze2lem2 35043 . 2 ((𝜑 ∧ (𝑓:(1...(((𝑅 − 1) · (𝑆 − 1)) + 1))–1-1𝐴𝑓 Isom < , < ((1...(((𝑅 − 1) · (𝑆 − 1)) + 1)), ran 𝑓))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
167, 15exlimddv 1931 1 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  wcel 2099  wrex 3060  wss 3947  𝒫 cpw 4598   class class class wbr 5144  ccnv 5672  ran crn 5674  cres 5675  cima 5676  1-1wf1 6541  cfv 6544   Isom wiso 6545  (class class class)co 7414  cr 11146  1c1 11148   + caddc 11150   · cmul 11152   < clt 11287  cle 11288  cmin 11483  cn 12256  ...cfz 13530  chash 14340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-oadd 8490  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9476  df-oi 9544  df-dju 9935  df-card 9973  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257  df-n0 12517  df-xnn0 12589  df-z 12603  df-uz 12867  df-fz 13531  df-hash 14341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator