![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erdsze2 | Structured version Visualization version GIF version |
Description: Generalize the statement of the ErdΕs-Szekeres theorem erdsze 34181 to "sequences" indexed by an arbitrary subset of β, which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
erdsze2.r | β’ (π β π β β) |
erdsze2.s | β’ (π β π β β) |
erdsze2.f | β’ (π β πΉ:π΄β1-1ββ) |
erdsze2.a | β’ (π β π΄ β β) |
erdsze2.l | β’ (π β ((π β 1) Β· (π β 1)) < (β―βπ΄)) |
Ref | Expression |
---|---|
erdsze2 | β’ (π β βπ β π« π΄((π β€ (β―βπ ) β§ (πΉ βΎ π ) Isom < , < (π , (πΉ β π ))) β¨ (π β€ (β―βπ ) β§ (πΉ βΎ π ) Isom < , β‘ < (π , (πΉ β π ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erdsze2.r | . . 3 β’ (π β π β β) | |
2 | erdsze2.s | . . 3 β’ (π β π β β) | |
3 | erdsze2.f | . . 3 β’ (π β πΉ:π΄β1-1ββ) | |
4 | erdsze2.a | . . 3 β’ (π β π΄ β β) | |
5 | eqid 2732 | . . 3 β’ ((π β 1) Β· (π β 1)) = ((π β 1) Β· (π β 1)) | |
6 | erdsze2.l | . . 3 β’ (π β ((π β 1) Β· (π β 1)) < (β―βπ΄)) | |
7 | 1, 2, 3, 4, 5, 6 | erdsze2lem1 34182 | . 2 β’ (π β βπ(π:(1...(((π β 1) Β· (π β 1)) + 1))β1-1βπ΄ β§ π Isom < , < ((1...(((π β 1) Β· (π β 1)) + 1)), ran π))) |
8 | 1 | adantr 481 | . . 3 β’ ((π β§ (π:(1...(((π β 1) Β· (π β 1)) + 1))β1-1βπ΄ β§ π Isom < , < ((1...(((π β 1) Β· (π β 1)) + 1)), ran π))) β π β β) |
9 | 2 | adantr 481 | . . 3 β’ ((π β§ (π:(1...(((π β 1) Β· (π β 1)) + 1))β1-1βπ΄ β§ π Isom < , < ((1...(((π β 1) Β· (π β 1)) + 1)), ran π))) β π β β) |
10 | 3 | adantr 481 | . . 3 β’ ((π β§ (π:(1...(((π β 1) Β· (π β 1)) + 1))β1-1βπ΄ β§ π Isom < , < ((1...(((π β 1) Β· (π β 1)) + 1)), ran π))) β πΉ:π΄β1-1ββ) |
11 | 4 | adantr 481 | . . 3 β’ ((π β§ (π:(1...(((π β 1) Β· (π β 1)) + 1))β1-1βπ΄ β§ π Isom < , < ((1...(((π β 1) Β· (π β 1)) + 1)), ran π))) β π΄ β β) |
12 | 6 | adantr 481 | . . 3 β’ ((π β§ (π:(1...(((π β 1) Β· (π β 1)) + 1))β1-1βπ΄ β§ π Isom < , < ((1...(((π β 1) Β· (π β 1)) + 1)), ran π))) β ((π β 1) Β· (π β 1)) < (β―βπ΄)) |
13 | simprl 769 | . . 3 β’ ((π β§ (π:(1...(((π β 1) Β· (π β 1)) + 1))β1-1βπ΄ β§ π Isom < , < ((1...(((π β 1) Β· (π β 1)) + 1)), ran π))) β π:(1...(((π β 1) Β· (π β 1)) + 1))β1-1βπ΄) | |
14 | simprr 771 | . . 3 β’ ((π β§ (π:(1...(((π β 1) Β· (π β 1)) + 1))β1-1βπ΄ β§ π Isom < , < ((1...(((π β 1) Β· (π β 1)) + 1)), ran π))) β π Isom < , < ((1...(((π β 1) Β· (π β 1)) + 1)), ran π)) | |
15 | 8, 9, 10, 11, 5, 12, 13, 14 | erdsze2lem2 34183 | . 2 β’ ((π β§ (π:(1...(((π β 1) Β· (π β 1)) + 1))β1-1βπ΄ β§ π Isom < , < ((1...(((π β 1) Β· (π β 1)) + 1)), ran π))) β βπ β π« π΄((π β€ (β―βπ ) β§ (πΉ βΎ π ) Isom < , < (π , (πΉ β π ))) β¨ (π β€ (β―βπ ) β§ (πΉ βΎ π ) Isom < , β‘ < (π , (πΉ β π ))))) |
16 | 7, 15 | exlimddv 1938 | 1 β’ (π β βπ β π« π΄((π β€ (β―βπ ) β§ (πΉ βΎ π ) Isom < , < (π , (πΉ β π ))) β¨ (π β€ (β―βπ ) β§ (πΉ βΎ π ) Isom < , β‘ < (π , (πΉ β π ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β¨ wo 845 β wcel 2106 βwrex 3070 β wss 3947 π« cpw 4601 class class class wbr 5147 β‘ccnv 5674 ran crn 5676 βΎ cres 5677 β cima 5678 β1-1βwf1 6537 βcfv 6540 Isom wiso 6541 (class class class)co 7405 βcr 11105 1c1 11107 + caddc 11109 Β· cmul 11111 < clt 11244 β€ cle 11245 β cmin 11440 βcn 12208 ...cfz 13480 β―chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |