Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem2 Structured version   Visualization version   GIF version

Theorem kur14lem2 35192
Description: Lemma for kur14 35201. Write interior in terms of closure and complement: 𝑖𝐴 = 𝑐𝑘𝑐𝐴 where 𝑐 is complement and 𝑘 is closure. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
Assertion
Ref Expression
kur14lem2 (𝐼𝐴) = (𝑋 ∖ (𝐾‘(𝑋𝐴)))

Proof of Theorem kur14lem2
StepHypRef Expression
1 kur14lem.j . . 3 𝐽 ∈ Top
2 kur14lem.a . . 3 𝐴𝑋
3 kur14lem.x . . . 4 𝑋 = 𝐽
43ntrval2 23075 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝐴))))
51, 2, 4mp2an 692 . 2 ((int‘𝐽)‘𝐴) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝐴)))
6 kur14lem.i . . 3 𝐼 = (int‘𝐽)
76fveq1i 6908 . 2 (𝐼𝐴) = ((int‘𝐽)‘𝐴)
8 kur14lem.k . . . 4 𝐾 = (cls‘𝐽)
98fveq1i 6908 . . 3 (𝐾‘(𝑋𝐴)) = ((cls‘𝐽)‘(𝑋𝐴))
109difeq2i 4133 . 2 (𝑋 ∖ (𝐾‘(𝑋𝐴))) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝐴)))
115, 7, 103eqtr4i 2773 1 (𝐼𝐴) = (𝑋 ∖ (𝐾‘(𝑋𝐴)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  cdif 3960  wss 3963   cuni 4912  cfv 6563  Topctop 22915  intcnt 23041  clsccl 23042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-top 22916  df-cld 23043  df-ntr 23044  df-cls 23045
This theorem is referenced by:  kur14lem6  35196  kur14lem7  35197
  Copyright terms: Public domain W3C validator