Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem2 Structured version   Visualization version   GIF version

Theorem kur14lem2 35175
Description: Lemma for kur14 35184. Write interior in terms of closure and complement: 𝑖𝐴 = 𝑐𝑘𝑐𝐴 where 𝑐 is complement and 𝑘 is closure. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
Assertion
Ref Expression
kur14lem2 (𝐼𝐴) = (𝑋 ∖ (𝐾‘(𝑋𝐴)))

Proof of Theorem kur14lem2
StepHypRef Expression
1 kur14lem.j . . 3 𝐽 ∈ Top
2 kur14lem.a . . 3 𝐴𝑋
3 kur14lem.x . . . 4 𝑋 = 𝐽
43ntrval2 23080 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝐴))))
51, 2, 4mp2an 691 . 2 ((int‘𝐽)‘𝐴) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝐴)))
6 kur14lem.i . . 3 𝐼 = (int‘𝐽)
76fveq1i 6921 . 2 (𝐼𝐴) = ((int‘𝐽)‘𝐴)
8 kur14lem.k . . . 4 𝐾 = (cls‘𝐽)
98fveq1i 6921 . . 3 (𝐾‘(𝑋𝐴)) = ((cls‘𝐽)‘(𝑋𝐴))
109difeq2i 4146 . 2 (𝑋 ∖ (𝐾‘(𝑋𝐴))) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝐴)))
115, 7, 103eqtr4i 2778 1 (𝐼𝐴) = (𝑋 ∖ (𝐾‘(𝑋𝐴)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  cdif 3973  wss 3976   cuni 4931  cfv 6573  Topctop 22920  intcnt 23046  clsccl 23047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-ntr 23049  df-cls 23050
This theorem is referenced by:  kur14lem6  35179  kur14lem7  35180
  Copyright terms: Public domain W3C validator