Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem2 Structured version   Visualization version   GIF version

Theorem kur14lem2 35234
Description: Lemma for kur14 35243. Write interior in terms of closure and complement: 𝑖𝐴 = 𝑐𝑘𝑐𝐴 where 𝑐 is complement and 𝑘 is closure. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
Assertion
Ref Expression
kur14lem2 (𝐼𝐴) = (𝑋 ∖ (𝐾‘(𝑋𝐴)))

Proof of Theorem kur14lem2
StepHypRef Expression
1 kur14lem.j . . 3 𝐽 ∈ Top
2 kur14lem.a . . 3 𝐴𝑋
3 kur14lem.x . . . 4 𝑋 = 𝐽
43ntrval2 22994 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘𝐴) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝐴))))
51, 2, 4mp2an 692 . 2 ((int‘𝐽)‘𝐴) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝐴)))
6 kur14lem.i . . 3 𝐼 = (int‘𝐽)
76fveq1i 6882 . 2 (𝐼𝐴) = ((int‘𝐽)‘𝐴)
8 kur14lem.k . . . 4 𝐾 = (cls‘𝐽)
98fveq1i 6882 . . 3 (𝐾‘(𝑋𝐴)) = ((cls‘𝐽)‘(𝑋𝐴))
109difeq2i 4103 . 2 (𝑋 ∖ (𝐾‘(𝑋𝐴))) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝐴)))
115, 7, 103eqtr4i 2769 1 (𝐼𝐴) = (𝑋 ∖ (𝐾‘(𝑋𝐴)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cdif 3928  wss 3931   cuni 4888  cfv 6536  Topctop 22836  intcnt 22960  clsccl 22961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-top 22837  df-cld 22962  df-ntr 22963  df-cls 22964
This theorem is referenced by:  kur14lem6  35238  kur14lem7  35239
  Copyright terms: Public domain W3C validator