![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem2 | Structured version Visualization version GIF version |
Description: Lemma for kur14 35201. Write interior in terms of closure and complement: 𝑖𝐴 = 𝑐𝑘𝑐𝐴 where 𝑐 is complement and 𝑘 is closure. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
kur14lem.j | ⊢ 𝐽 ∈ Top |
kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
Ref | Expression |
---|---|
kur14lem2 | ⊢ (𝐼‘𝐴) = (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kur14lem.j | . . 3 ⊢ 𝐽 ∈ Top | |
2 | kur14lem.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
3 | kur14lem.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | ntrval2 23075 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) |
5 | 1, 2, 4 | mp2an 692 | . 2 ⊢ ((int‘𝐽)‘𝐴) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) |
6 | kur14lem.i | . . 3 ⊢ 𝐼 = (int‘𝐽) | |
7 | 6 | fveq1i 6908 | . 2 ⊢ (𝐼‘𝐴) = ((int‘𝐽)‘𝐴) |
8 | kur14lem.k | . . . 4 ⊢ 𝐾 = (cls‘𝐽) | |
9 | 8 | fveq1i 6908 | . . 3 ⊢ (𝐾‘(𝑋 ∖ 𝐴)) = ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) |
10 | 9 | difeq2i 4133 | . 2 ⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) |
11 | 5, 7, 10 | 3eqtr4i 2773 | 1 ⊢ (𝐼‘𝐴) = (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ⊆ wss 3963 ∪ cuni 4912 ‘cfv 6563 Topctop 22915 intcnt 23041 clsccl 23042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-top 22916 df-cld 23043 df-ntr 23044 df-cls 23045 |
This theorem is referenced by: kur14lem6 35196 kur14lem7 35197 |
Copyright terms: Public domain | W3C validator |