| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > kur14lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for kur14 35199. Write interior in terms of closure and complement: 𝑖𝐴 = 𝑐𝑘𝑐𝐴 where 𝑐 is complement and 𝑘 is closure. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| kur14lem.j | ⊢ 𝐽 ∈ Top |
| kur14lem.x | ⊢ 𝑋 = ∪ 𝐽 |
| kur14lem.k | ⊢ 𝐾 = (cls‘𝐽) |
| kur14lem.i | ⊢ 𝐼 = (int‘𝐽) |
| kur14lem.a | ⊢ 𝐴 ⊆ 𝑋 |
| Ref | Expression |
|---|---|
| kur14lem2 | ⊢ (𝐼‘𝐴) = (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kur14lem.j | . . 3 ⊢ 𝐽 ∈ Top | |
| 2 | kur14lem.a | . . 3 ⊢ 𝐴 ⊆ 𝑋 | |
| 3 | kur14lem.x | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | ntrval2 22936 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘𝐴) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝐴)))) |
| 5 | 1, 2, 4 | mp2an 692 | . 2 ⊢ ((int‘𝐽)‘𝐴) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) |
| 6 | kur14lem.i | . . 3 ⊢ 𝐼 = (int‘𝐽) | |
| 7 | 6 | fveq1i 6823 | . 2 ⊢ (𝐼‘𝐴) = ((int‘𝐽)‘𝐴) |
| 8 | kur14lem.k | . . . 4 ⊢ 𝐾 = (cls‘𝐽) | |
| 9 | 8 | fveq1i 6823 | . . 3 ⊢ (𝐾‘(𝑋 ∖ 𝐴)) = ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) |
| 10 | 9 | difeq2i 4074 | . 2 ⊢ (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) |
| 11 | 5, 7, 10 | 3eqtr4i 2762 | 1 ⊢ (𝐼‘𝐴) = (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ⊆ wss 3903 ∪ cuni 4858 ‘cfv 6482 Topctop 22778 intcnt 22902 clsccl 22903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-top 22779 df-cld 22904 df-ntr 22905 df-cls 22906 |
| This theorem is referenced by: kur14lem6 35194 kur14lem7 35195 |
| Copyright terms: Public domain | W3C validator |