Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuprd Structured version   Visualization version   GIF version

Theorem mnuprd 41894
Description: Minimal universes are closed under pairing. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnuprd.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnuprd.2 (𝜑𝑈𝑀)
mnuprd.3 (𝜑𝐴𝑈)
mnuprd.4 (𝜑𝐵𝑈)
Assertion
Ref Expression
mnuprd (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnuprd
StepHypRef Expression
1 mnuprd.1 . . 3 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnuprd.2 . . . 4 (𝜑𝑈𝑀)
32adantr 481 . . 3 ((𝜑𝐴 = ∅) → 𝑈𝑀)
4 mnuprd.4 . . . 4 (𝜑𝐵𝑈)
54adantr 481 . . 3 ((𝜑𝐴 = ∅) → 𝐵𝑈)
6 simpr 485 . . . 4 ((𝜑𝐴 = ∅) → 𝐴 = ∅)
7 0ss 4330 . . . 4 ∅ ⊆ 𝐵
86, 7eqsstrdi 3975 . . 3 ((𝜑𝐴 = ∅) → 𝐴𝐵)
9 ssidd 3944 . . 3 ((𝜑𝐴 = ∅) → 𝐵𝐵)
101, 3, 5, 8, 9mnuprssd 41887 . 2 ((𝜑𝐴 = ∅) → {𝐴, 𝐵} ∈ 𝑈)
11 eqid 2738 . . 3 {{∅, {𝐴}}, {{∅}, {𝐵}}} = {{∅, {𝐴}}, {{∅}, {𝐵}}}
122adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑈𝑀)
13 mnuprd.3 . . . 4 (𝜑𝐴𝑈)
1413adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝑈)
154adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐵𝑈)
16 simpr 485 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = ∅)
171, 11, 12, 14, 15, 16mnuprdlem4 41893 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → {𝐴, 𝐵} ∈ 𝑈)
1810, 17pm2.61dan 810 1 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1537   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  {cpr 4563   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562  df-pr 4564  df-uni 4840
This theorem is referenced by:  mnuund  41896  mnurndlem2  41900  mnugrud  41902
  Copyright terms: Public domain W3C validator