Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnuprd | Structured version Visualization version GIF version |
Description: Minimal universes are closed under pairing. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnuprd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnuprd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnuprd.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
mnuprd.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
mnuprd | ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuprd.1 | . . 3 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnuprd.2 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | 2 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝑈 ∈ 𝑀) |
4 | mnuprd.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
5 | 4 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐵 ∈ 𝑈) |
6 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐴 = ∅) | |
7 | 0ss 4295 | . . . 4 ⊢ ∅ ⊆ 𝐵 | |
8 | 6, 7 | eqsstrdi 3948 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐴 ⊆ 𝐵) |
9 | ssidd 3917 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = ∅) → 𝐵 ⊆ 𝐵) | |
10 | 1, 3, 5, 8, 9 | mnuprssd 41378 | . 2 ⊢ ((𝜑 ∧ 𝐴 = ∅) → {𝐴, 𝐵} ∈ 𝑈) |
11 | eqid 2758 | . . 3 ⊢ {{∅, {𝐴}}, {{∅}, {𝐵}}} = {{∅, {𝐴}}, {{∅}, {𝐵}}} | |
12 | 2 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑈 ∈ 𝑀) |
13 | mnuprd.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
14 | 13 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ∈ 𝑈) |
15 | 4 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐵 ∈ 𝑈) |
16 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = ∅) | |
17 | 1, 11, 12, 14, 15, 16 | mnuprdlem4 41384 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → {𝐴, 𝐵} ∈ 𝑈) |
18 | 10, 17 | pm2.61dan 812 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∀wal 1536 = wceq 1538 ∈ wcel 2111 {cab 2735 ∀wral 3070 ∃wrex 3071 ⊆ wss 3860 ∅c0 4227 𝒫 cpw 4497 {csn 4525 {cpr 4527 ∪ cuni 4801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-pw 4499 df-sn 4526 df-pr 4528 df-uni 4802 |
This theorem is referenced by: mnuund 41387 mnurndlem2 41391 mnugrud 41393 |
Copyright terms: Public domain | W3C validator |