Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuprd Structured version   Visualization version   GIF version

Theorem mnuprd 43035
Description: Minimal universes are closed under pairing. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnuprd.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnuprd.2 (𝜑𝑈𝑀)
mnuprd.3 (𝜑𝐴𝑈)
mnuprd.4 (𝜑𝐵𝑈)
Assertion
Ref Expression
mnuprd (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnuprd
StepHypRef Expression
1 mnuprd.1 . . 3 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnuprd.2 . . . 4 (𝜑𝑈𝑀)
32adantr 482 . . 3 ((𝜑𝐴 = ∅) → 𝑈𝑀)
4 mnuprd.4 . . . 4 (𝜑𝐵𝑈)
54adantr 482 . . 3 ((𝜑𝐴 = ∅) → 𝐵𝑈)
6 simpr 486 . . . 4 ((𝜑𝐴 = ∅) → 𝐴 = ∅)
7 0ss 4397 . . . 4 ∅ ⊆ 𝐵
86, 7eqsstrdi 4037 . . 3 ((𝜑𝐴 = ∅) → 𝐴𝐵)
9 ssidd 4006 . . 3 ((𝜑𝐴 = ∅) → 𝐵𝐵)
101, 3, 5, 8, 9mnuprssd 43028 . 2 ((𝜑𝐴 = ∅) → {𝐴, 𝐵} ∈ 𝑈)
11 eqid 2733 . . 3 {{∅, {𝐴}}, {{∅}, {𝐵}}} = {{∅, {𝐴}}, {{∅}, {𝐵}}}
122adantr 482 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑈𝑀)
13 mnuprd.3 . . . 4 (𝜑𝐴𝑈)
1413adantr 482 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝑈)
154adantr 482 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐵𝑈)
16 simpr 486 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = ∅)
171, 11, 12, 14, 15, 16mnuprdlem4 43034 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → {𝐴, 𝐵} ∈ 𝑈)
1810, 17pm2.61dan 812 1 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wal 1540   = wceq 1542  wcel 2107  {cab 2710  wral 3062  wrex 3071  wss 3949  c0 4323  𝒫 cpw 4603  {csn 4629  {cpr 4631   cuni 4909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-pw 4605  df-sn 4630  df-pr 4632  df-uni 4910
This theorem is referenced by:  mnuund  43037  mnurndlem2  43041  mnugrud  43043
  Copyright terms: Public domain W3C validator