![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprabex3 | Structured version Visualization version GIF version |
Description: Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.) |
Ref | Expression |
---|---|
oprabex3.1 | ⊢ 𝐻 ∈ V |
oprabex3.2 | ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))} |
Ref | Expression |
---|---|
oprabex3 | ⊢ 𝐹 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabex3.1 | . . 3 ⊢ 𝐻 ∈ V | |
2 | 1, 1 | xpex 7736 | . 2 ⊢ (𝐻 × 𝐻) ∈ V |
3 | moeq 3702 | . . . . . 6 ⊢ ∃*𝑧 𝑧 = 𝑅 | |
4 | 3 | mosubop 5510 | . . . . 5 ⊢ ∃*𝑧∃𝑢∃𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅) |
5 | 4 | mosubop 5510 | . . . 4 ⊢ ∃*𝑧∃𝑤∃𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢∃𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅)) |
6 | anass 469 | . . . . . . . 8 ⊢ (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅))) | |
7 | 6 | 2exbii 1851 | . . . . . . 7 ⊢ (∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ ∃𝑢∃𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅))) |
8 | 19.42vv 1961 | . . . . . . 7 ⊢ (∃𝑢∃𝑓(𝑥 = ⟨𝑤, 𝑣⟩ ∧ (𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅)) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢∃𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅))) | |
9 | 7, 8 | bitri 274 | . . . . . 6 ⊢ (∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢∃𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅))) |
10 | 9 | 2exbii 1851 | . . . . 5 ⊢ (∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ ∃𝑤∃𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢∃𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅))) |
11 | 10 | mobii 2542 | . . . 4 ⊢ (∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) ↔ ∃*𝑧∃𝑤∃𝑣(𝑥 = ⟨𝑤, 𝑣⟩ ∧ ∃𝑢∃𝑓(𝑦 = ⟨𝑢, 𝑓⟩ ∧ 𝑧 = 𝑅))) |
12 | 5, 11 | mpbir 230 | . . 3 ⊢ ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅) |
13 | 12 | a1i 11 | . 2 ⊢ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅)) |
14 | oprabex3.2 | . 2 ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))} | |
15 | 2, 2, 13, 14 | oprabex 7959 | 1 ⊢ 𝐹 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃*wmo 2532 Vcvv 3474 ⟨cop 4633 × cxp 5673 {coprab 7406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-oprab 7409 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |