| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oprabex3 | Structured version Visualization version GIF version | ||
| Description: Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.) |
| Ref | Expression |
|---|---|
| oprabex3.1 | ⊢ 𝐻 ∈ V |
| oprabex3.2 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} |
| Ref | Expression |
|---|---|
| oprabex3 | ⊢ 𝐹 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabex3.1 | . . 3 ⊢ 𝐻 ∈ V | |
| 2 | 1, 1 | xpex 7729 | . 2 ⊢ (𝐻 × 𝐻) ∈ V |
| 3 | moeq 3678 | . . . . . 6 ⊢ ∃*𝑧 𝑧 = 𝑅 | |
| 4 | 3 | mosubop 5471 | . . . . 5 ⊢ ∃*𝑧∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅) |
| 5 | 4 | mosubop 5471 | . . . 4 ⊢ ∃*𝑧∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅)) |
| 6 | anass 468 | . . . . . . . 8 ⊢ (((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) | |
| 7 | 6 | 2exbii 1849 | . . . . . . 7 ⊢ (∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃𝑢∃𝑓(𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
| 8 | 19.42vv 1957 | . . . . . . 7 ⊢ (∃𝑢∃𝑓(𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅)) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) | |
| 9 | 7, 8 | bitri 275 | . . . . . 6 ⊢ (∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
| 10 | 9 | 2exbii 1849 | . . . . 5 ⊢ (∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
| 11 | 10 | mobii 2541 | . . . 4 ⊢ (∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃*𝑧∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
| 12 | 5, 11 | mpbir 231 | . . 3 ⊢ ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) |
| 13 | 12 | a1i 11 | . 2 ⊢ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅)) |
| 14 | oprabex3.2 | . 2 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} | |
| 15 | 2, 2, 13, 14 | oprabex 7955 | 1 ⊢ 𝐹 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2531 Vcvv 3447 〈cop 4595 × cxp 5636 {coprab 7388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-oprab 7391 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |