Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oprabex3 | Structured version Visualization version GIF version |
Description: Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.) |
Ref | Expression |
---|---|
oprabex3.1 | ⊢ 𝐻 ∈ V |
oprabex3.2 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} |
Ref | Expression |
---|---|
oprabex3 | ⊢ 𝐹 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabex3.1 | . . 3 ⊢ 𝐻 ∈ V | |
2 | 1, 1 | xpex 7635 | . 2 ⊢ (𝐻 × 𝐻) ∈ V |
3 | moeq 3647 | . . . . . 6 ⊢ ∃*𝑧 𝑧 = 𝑅 | |
4 | 3 | mosubop 5438 | . . . . 5 ⊢ ∃*𝑧∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅) |
5 | 4 | mosubop 5438 | . . . 4 ⊢ ∃*𝑧∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅)) |
6 | anass 470 | . . . . . . . 8 ⊢ (((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) | |
7 | 6 | 2exbii 1849 | . . . . . . 7 ⊢ (∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃𝑢∃𝑓(𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
8 | 19.42vv 1959 | . . . . . . 7 ⊢ (∃𝑢∃𝑓(𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅)) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) | |
9 | 7, 8 | bitri 275 | . . . . . 6 ⊢ (∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
10 | 9 | 2exbii 1849 | . . . . 5 ⊢ (∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
11 | 10 | mobii 2546 | . . . 4 ⊢ (∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃*𝑧∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
12 | 5, 11 | mpbir 230 | . . 3 ⊢ ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) |
13 | 12 | a1i 11 | . 2 ⊢ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅)) |
14 | oprabex3.2 | . 2 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} | |
15 | 2, 2, 13, 14 | oprabex 7851 | 1 ⊢ 𝐹 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∃*wmo 2536 Vcvv 3437 〈cop 4571 × cxp 5598 {coprab 7308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-oprab 7311 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |