Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uvcf1 | Structured version Visualization version GIF version |
Description: In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
uvcff.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcff.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
uvcff.b | ⊢ 𝐵 = (Base‘𝑌) |
Ref | Expression |
---|---|
uvcf1 | ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nzrring 20532 | . . 3 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
2 | uvcff.u | . . . 4 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
3 | uvcff.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
4 | uvcff.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
5 | 2, 3, 4 | uvcff 20998 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
6 | 1, 5 | sylan 580 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
7 | eqid 2738 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
8 | eqid 2738 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | 7, 8 | nzrnz 20531 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ (0g‘𝑅)) |
10 | 9 | ad3antrrr 727 | . . . . . . 7 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → (1r‘𝑅) ≠ (0g‘𝑅)) |
11 | 1 | ad3antrrr 727 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑅 ∈ Ring) |
12 | simpllr 773 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝐼 ∈ 𝑊) | |
13 | simplrl 774 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑖 ∈ 𝐼) | |
14 | 2, 11, 12, 13, 7 | uvcvv1 20996 | . . . . . . 7 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → ((𝑈‘𝑖)‘𝑖) = (1r‘𝑅)) |
15 | simplrr 775 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑗 ∈ 𝐼) | |
16 | simpr 485 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑖 ≠ 𝑗) | |
17 | 16 | necomd 2999 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑗 ≠ 𝑖) |
18 | 2, 11, 12, 15, 13, 17, 8 | uvcvv0 20997 | . . . . . . 7 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → ((𝑈‘𝑗)‘𝑖) = (0g‘𝑅)) |
19 | 10, 14, 18 | 3netr4d 3021 | . . . . . 6 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → ((𝑈‘𝑖)‘𝑖) ≠ ((𝑈‘𝑗)‘𝑖)) |
20 | fveq1 6773 | . . . . . . 7 ⊢ ((𝑈‘𝑖) = (𝑈‘𝑗) → ((𝑈‘𝑖)‘𝑖) = ((𝑈‘𝑗)‘𝑖)) | |
21 | 20 | necon3i 2976 | . . . . . 6 ⊢ (((𝑈‘𝑖)‘𝑖) ≠ ((𝑈‘𝑗)‘𝑖) → (𝑈‘𝑖) ≠ (𝑈‘𝑗)) |
22 | 19, 21 | syl 17 | . . . . 5 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → (𝑈‘𝑖) ≠ (𝑈‘𝑗)) |
23 | 22 | ex 413 | . . . 4 ⊢ (((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) → (𝑖 ≠ 𝑗 → (𝑈‘𝑖) ≠ (𝑈‘𝑗))) |
24 | 23 | necon4d 2967 | . . 3 ⊢ (((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) → ((𝑈‘𝑖) = (𝑈‘𝑗) → 𝑖 = 𝑗)) |
25 | 24 | ralrimivva 3123 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐼 ((𝑈‘𝑖) = (𝑈‘𝑗) → 𝑖 = 𝑗)) |
26 | dff13 7128 | . 2 ⊢ (𝑈:𝐼–1-1→𝐵 ↔ (𝑈:𝐼⟶𝐵 ∧ ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐼 ((𝑈‘𝑖) = (𝑈‘𝑗) → 𝑖 = 𝑗))) | |
27 | 6, 25, 26 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ⟶wf 6429 –1-1→wf1 6430 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 0gc0g 17150 1rcur 19737 Ringcrg 19783 NzRingcnzr 20528 freeLMod cfrlm 20953 unitVec cuvc 20989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-prds 17158 df-pws 17160 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-mgp 19721 df-ur 19738 df-ring 19785 df-sra 20434 df-rgmod 20435 df-nzr 20529 df-dsmm 20939 df-frlm 20954 df-uvc 20990 |
This theorem is referenced by: frlmlbs 21004 uvcf1o 21053 frlmdim 31694 |
Copyright terms: Public domain | W3C validator |