![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvcf1 | Structured version Visualization version GIF version |
Description: In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
uvcff.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcff.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
uvcff.b | ⊢ 𝐵 = (Base‘𝑌) |
Ref | Expression |
---|---|
uvcf1 | ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nzrring 20287 | . . 3 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
2 | uvcff.u | . . . 4 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
3 | uvcff.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
4 | uvcff.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
5 | 2, 3, 4 | uvcff 21337 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
6 | 1, 5 | sylan 580 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
7 | eqid 2732 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
8 | eqid 2732 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | 7, 8 | nzrnz 20286 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ (0g‘𝑅)) |
10 | 9 | ad3antrrr 728 | . . . . . . 7 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → (1r‘𝑅) ≠ (0g‘𝑅)) |
11 | 1 | ad3antrrr 728 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑅 ∈ Ring) |
12 | simpllr 774 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝐼 ∈ 𝑊) | |
13 | simplrl 775 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑖 ∈ 𝐼) | |
14 | 2, 11, 12, 13, 7 | uvcvv1 21335 | . . . . . . 7 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → ((𝑈‘𝑖)‘𝑖) = (1r‘𝑅)) |
15 | simplrr 776 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑗 ∈ 𝐼) | |
16 | simpr 485 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑖 ≠ 𝑗) | |
17 | 16 | necomd 2996 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑗 ≠ 𝑖) |
18 | 2, 11, 12, 15, 13, 17, 8 | uvcvv0 21336 | . . . . . . 7 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → ((𝑈‘𝑗)‘𝑖) = (0g‘𝑅)) |
19 | 10, 14, 18 | 3netr4d 3018 | . . . . . 6 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → ((𝑈‘𝑖)‘𝑖) ≠ ((𝑈‘𝑗)‘𝑖)) |
20 | fveq1 6887 | . . . . . . 7 ⊢ ((𝑈‘𝑖) = (𝑈‘𝑗) → ((𝑈‘𝑖)‘𝑖) = ((𝑈‘𝑗)‘𝑖)) | |
21 | 20 | necon3i 2973 | . . . . . 6 ⊢ (((𝑈‘𝑖)‘𝑖) ≠ ((𝑈‘𝑗)‘𝑖) → (𝑈‘𝑖) ≠ (𝑈‘𝑗)) |
22 | 19, 21 | syl 17 | . . . . 5 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → (𝑈‘𝑖) ≠ (𝑈‘𝑗)) |
23 | 22 | ex 413 | . . . 4 ⊢ (((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) → (𝑖 ≠ 𝑗 → (𝑈‘𝑖) ≠ (𝑈‘𝑗))) |
24 | 23 | necon4d 2964 | . . 3 ⊢ (((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) → ((𝑈‘𝑖) = (𝑈‘𝑗) → 𝑖 = 𝑗)) |
25 | 24 | ralrimivva 3200 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐼 ((𝑈‘𝑖) = (𝑈‘𝑗) → 𝑖 = 𝑗)) |
26 | dff13 7250 | . 2 ⊢ (𝑈:𝐼–1-1→𝐵 ↔ (𝑈:𝐼⟶𝐵 ∧ ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐼 ((𝑈‘𝑖) = (𝑈‘𝑗) → 𝑖 = 𝑗))) | |
27 | 6, 25, 26 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ⟶wf 6536 –1-1→wf1 6537 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 0gc0g 17381 1rcur 19998 Ringcrg 20049 NzRingcnzr 20283 freeLMod cfrlm 21292 unitVec cuvc 21328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-prds 17389 df-pws 17391 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-mgp 19982 df-ur 19999 df-ring 20051 df-nzr 20284 df-sra 20777 df-rgmod 20778 df-dsmm 21278 df-frlm 21293 df-uvc 21329 |
This theorem is referenced by: frlmlbs 21343 uvcf1o 21392 frlmdim 32684 |
Copyright terms: Public domain | W3C validator |