MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcf1 Structured version   Visualization version   GIF version

Theorem uvcf1 20999
Description: In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
uvcff.u 𝑈 = (𝑅 unitVec 𝐼)
uvcff.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcff.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
uvcf1 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1𝐵)

Proof of Theorem uvcf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nzrring 20532 . . 3 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 uvcff.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
3 uvcff.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
4 uvcff.b . . . 4 𝐵 = (Base‘𝑌)
52, 3, 4uvcff 20998 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
61, 5sylan 580 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
7 eqid 2738 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
8 eqid 2738 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
97, 8nzrnz 20531 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
109ad3antrrr 727 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → (1r𝑅) ≠ (0g𝑅))
111ad3antrrr 727 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑅 ∈ Ring)
12 simpllr 773 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝐼𝑊)
13 simplrl 774 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑖𝐼)
142, 11, 12, 13, 7uvcvv1 20996 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑖)‘𝑖) = (1r𝑅))
15 simplrr 775 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑗𝐼)
16 simpr 485 . . . . . . . . 9 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑖𝑗)
1716necomd 2999 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑗𝑖)
182, 11, 12, 15, 13, 17, 8uvcvv0 20997 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑗)‘𝑖) = (0g𝑅))
1910, 14, 183netr4d 3021 . . . . . 6 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑖)‘𝑖) ≠ ((𝑈𝑗)‘𝑖))
20 fveq1 6773 . . . . . . 7 ((𝑈𝑖) = (𝑈𝑗) → ((𝑈𝑖)‘𝑖) = ((𝑈𝑗)‘𝑖))
2120necon3i 2976 . . . . . 6 (((𝑈𝑖)‘𝑖) ≠ ((𝑈𝑗)‘𝑖) → (𝑈𝑖) ≠ (𝑈𝑗))
2219, 21syl 17 . . . . 5 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → (𝑈𝑖) ≠ (𝑈𝑗))
2322ex 413 . . . 4 (((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) → (𝑖𝑗 → (𝑈𝑖) ≠ (𝑈𝑗)))
2423necon4d 2967 . . 3 (((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) → ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗))
2524ralrimivva 3123 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → ∀𝑖𝐼𝑗𝐼 ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗))
26 dff13 7128 . 2 (𝑈:𝐼1-1𝐵 ↔ (𝑈:𝐼𝐵 ∧ ∀𝑖𝐼𝑗𝐼 ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗)))
276, 25, 26sylanbrc 583 1 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  Basecbs 16912  0gc0g 17150  1rcur 19737  Ringcrg 19783  NzRingcnzr 20528   freeLMod cfrlm 20953   unitVec cuvc 20989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-mgp 19721  df-ur 19738  df-ring 19785  df-sra 20434  df-rgmod 20435  df-nzr 20529  df-dsmm 20939  df-frlm 20954  df-uvc 20990
This theorem is referenced by:  frlmlbs  21004  uvcf1o  21053  frlmdim  31694
  Copyright terms: Public domain W3C validator