MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcf1 Structured version   Visualization version   GIF version

Theorem uvcf1 20938
Description: In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
uvcff.u 𝑈 = (𝑅 unitVec 𝐼)
uvcff.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcff.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
uvcf1 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1𝐵)

Proof of Theorem uvcf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nzrring 20036 . . 3 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 uvcff.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
3 uvcff.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
4 uvcff.b . . . 4 𝐵 = (Base‘𝑌)
52, 3, 4uvcff 20937 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
61, 5sylan 582 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
7 eqid 2823 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
8 eqid 2823 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
97, 8nzrnz 20035 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
109ad3antrrr 728 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → (1r𝑅) ≠ (0g𝑅))
111ad3antrrr 728 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑅 ∈ Ring)
12 simpllr 774 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝐼𝑊)
13 simplrl 775 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑖𝐼)
142, 11, 12, 13, 7uvcvv1 20935 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑖)‘𝑖) = (1r𝑅))
15 simplrr 776 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑗𝐼)
16 simpr 487 . . . . . . . . 9 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑖𝑗)
1716necomd 3073 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑗𝑖)
182, 11, 12, 15, 13, 17, 8uvcvv0 20936 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑗)‘𝑖) = (0g𝑅))
1910, 14, 183netr4d 3095 . . . . . 6 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑖)‘𝑖) ≠ ((𝑈𝑗)‘𝑖))
20 fveq1 6671 . . . . . . 7 ((𝑈𝑖) = (𝑈𝑗) → ((𝑈𝑖)‘𝑖) = ((𝑈𝑗)‘𝑖))
2120necon3i 3050 . . . . . 6 (((𝑈𝑖)‘𝑖) ≠ ((𝑈𝑗)‘𝑖) → (𝑈𝑖) ≠ (𝑈𝑗))
2219, 21syl 17 . . . . 5 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → (𝑈𝑖) ≠ (𝑈𝑗))
2322ex 415 . . . 4 (((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) → (𝑖𝑗 → (𝑈𝑖) ≠ (𝑈𝑗)))
2423necon4d 3042 . . 3 (((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) → ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗))
2524ralrimivva 3193 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → ∀𝑖𝐼𝑗𝐼 ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗))
26 dff13 7015 . 2 (𝑈:𝐼1-1𝐵 ↔ (𝑈:𝐼𝐵 ∧ ∀𝑖𝐼𝑗𝐼 ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗)))
276, 25, 26sylanbrc 585 1 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wf 6353  1-1wf1 6354  cfv 6357  (class class class)co 7158  Basecbs 16485  0gc0g 16715  1rcur 19253  Ringcrg 19299  NzRingcnzr 20032   freeLMod cfrlm 20892   unitVec cuvc 20928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-0g 16717  df-prds 16723  df-pws 16725  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-mgp 19242  df-ur 19254  df-ring 19301  df-sra 19946  df-rgmod 19947  df-nzr 20033  df-dsmm 20878  df-frlm 20893  df-uvc 20929
This theorem is referenced by:  frlmlbs  20943  uvcf1o  20992  frlmdim  31011
  Copyright terms: Public domain W3C validator