MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcf1 Structured version   Visualization version   GIF version

Theorem uvcf1 20407
Description: In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
uvcff.u 𝑈 = (𝑅 unitVec 𝐼)
uvcff.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcff.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
uvcf1 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1𝐵)

Proof of Theorem uvcf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nzrring 19535 . . 3 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 uvcff.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
3 uvcff.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
4 uvcff.b . . . 4 𝐵 = (Base‘𝑌)
52, 3, 4uvcff 20406 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
61, 5sylan 575 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
7 eqid 2765 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
8 eqid 2765 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
97, 8nzrnz 19534 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
109ad3antrrr 721 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → (1r𝑅) ≠ (0g𝑅))
111ad3antrrr 721 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑅 ∈ Ring)
12 simpllr 793 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝐼𝑊)
13 simplrl 795 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑖𝐼)
142, 11, 12, 13, 7uvcvv1 20404 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑖)‘𝑖) = (1r𝑅))
15 simplrr 796 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑗𝐼)
16 simpr 477 . . . . . . . . 9 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑖𝑗)
1716necomd 2992 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑗𝑖)
182, 11, 12, 15, 13, 17, 8uvcvv0 20405 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑗)‘𝑖) = (0g𝑅))
1910, 14, 183netr4d 3014 . . . . . 6 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑖)‘𝑖) ≠ ((𝑈𝑗)‘𝑖))
20 fveq1 6374 . . . . . . 7 ((𝑈𝑖) = (𝑈𝑗) → ((𝑈𝑖)‘𝑖) = ((𝑈𝑗)‘𝑖))
2120necon3i 2969 . . . . . 6 (((𝑈𝑖)‘𝑖) ≠ ((𝑈𝑗)‘𝑖) → (𝑈𝑖) ≠ (𝑈𝑗))
2219, 21syl 17 . . . . 5 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → (𝑈𝑖) ≠ (𝑈𝑗))
2322ex 401 . . . 4 (((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) → (𝑖𝑗 → (𝑈𝑖) ≠ (𝑈𝑗)))
2423necon4d 2961 . . 3 (((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) → ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗))
2524ralrimivva 3118 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → ∀𝑖𝐼𝑗𝐼 ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗))
26 dff13 6704 . 2 (𝑈:𝐼1-1𝐵 ↔ (𝑈:𝐼𝐵 ∧ ∀𝑖𝐼𝑗𝐼 ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗)))
276, 25, 26sylanbrc 578 1 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wf 6064  1-1wf1 6065  cfv 6068  (class class class)co 6842  Basecbs 16130  0gc0g 16366  1rcur 18768  Ringcrg 18814  NzRingcnzr 19531   freeLMod cfrlm 20366   unitVec cuvc 20397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-fz 12534  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-hom 16238  df-cco 16239  df-0g 16368  df-prds 16374  df-pws 16376  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-grp 17692  df-mgp 18757  df-ur 18769  df-ring 18816  df-sra 19446  df-rgmod 19447  df-nzr 19532  df-dsmm 20352  df-frlm 20367  df-uvc 20398
This theorem is referenced by:  frlmlbs  20412  uvcf1o  20461
  Copyright terms: Public domain W3C validator