MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcf1 Structured version   Visualization version   GIF version

Theorem uvcf1 20708
Description: In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
uvcff.u 𝑈 = (𝑅 unitVec 𝐼)
uvcff.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcff.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
uvcf1 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1𝐵)

Proof of Theorem uvcf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nzrring 20253 . . 3 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 uvcff.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
3 uvcff.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
4 uvcff.b . . . 4 𝐵 = (Base‘𝑌)
52, 3, 4uvcff 20707 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
61, 5sylan 583 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
7 eqid 2736 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
8 eqid 2736 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
97, 8nzrnz 20252 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
109ad3antrrr 730 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → (1r𝑅) ≠ (0g𝑅))
111ad3antrrr 730 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑅 ∈ Ring)
12 simpllr 776 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝐼𝑊)
13 simplrl 777 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑖𝐼)
142, 11, 12, 13, 7uvcvv1 20705 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑖)‘𝑖) = (1r𝑅))
15 simplrr 778 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑗𝐼)
16 simpr 488 . . . . . . . . 9 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑖𝑗)
1716necomd 2987 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑗𝑖)
182, 11, 12, 15, 13, 17, 8uvcvv0 20706 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑗)‘𝑖) = (0g𝑅))
1910, 14, 183netr4d 3009 . . . . . 6 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑖)‘𝑖) ≠ ((𝑈𝑗)‘𝑖))
20 fveq1 6694 . . . . . . 7 ((𝑈𝑖) = (𝑈𝑗) → ((𝑈𝑖)‘𝑖) = ((𝑈𝑗)‘𝑖))
2120necon3i 2964 . . . . . 6 (((𝑈𝑖)‘𝑖) ≠ ((𝑈𝑗)‘𝑖) → (𝑈𝑖) ≠ (𝑈𝑗))
2219, 21syl 17 . . . . 5 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → (𝑈𝑖) ≠ (𝑈𝑗))
2322ex 416 . . . 4 (((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) → (𝑖𝑗 → (𝑈𝑖) ≠ (𝑈𝑗)))
2423necon4d 2956 . . 3 (((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) → ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗))
2524ralrimivva 3102 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → ∀𝑖𝐼𝑗𝐼 ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗))
26 dff13 7045 . 2 (𝑈:𝐼1-1𝐵 ↔ (𝑈:𝐼𝐵 ∧ ∀𝑖𝐼𝑗𝐼 ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗)))
276, 25, 26sylanbrc 586 1 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2932  wral 3051  wf 6354  1-1wf1 6355  cfv 6358  (class class class)co 7191  Basecbs 16666  0gc0g 16898  1rcur 19470  Ringcrg 19516  NzRingcnzr 20249   freeLMod cfrlm 20662   unitVec cuvc 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-hom 16773  df-cco 16774  df-0g 16900  df-prds 16906  df-pws 16908  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-mgp 19459  df-ur 19471  df-ring 19518  df-sra 20163  df-rgmod 20164  df-nzr 20250  df-dsmm 20648  df-frlm 20663  df-uvc 20699
This theorem is referenced by:  frlmlbs  20713  uvcf1o  20762  frlmdim  31362
  Copyright terms: Public domain W3C validator