MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcf1 Structured version   Visualization version   GIF version

Theorem uvcf1 20618
Description: In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
uvcff.u 𝑈 = (𝑅 unitVec 𝐼)
uvcff.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcff.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
uvcf1 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1𝐵)

Proof of Theorem uvcf1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nzrring 19723 . . 3 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 uvcff.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
3 uvcff.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
4 uvcff.b . . . 4 𝐵 = (Base‘𝑌)
52, 3, 4uvcff 20617 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
61, 5sylan 580 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
7 eqid 2795 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
8 eqid 2795 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
97, 8nzrnz 19722 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
109ad3antrrr 726 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → (1r𝑅) ≠ (0g𝑅))
111ad3antrrr 726 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑅 ∈ Ring)
12 simpllr 772 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝐼𝑊)
13 simplrl 773 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑖𝐼)
142, 11, 12, 13, 7uvcvv1 20615 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑖)‘𝑖) = (1r𝑅))
15 simplrr 774 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑗𝐼)
16 simpr 485 . . . . . . . . 9 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑖𝑗)
1716necomd 3039 . . . . . . . 8 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → 𝑗𝑖)
182, 11, 12, 15, 13, 17, 8uvcvv0 20616 . . . . . . 7 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑗)‘𝑖) = (0g𝑅))
1910, 14, 183netr4d 3061 . . . . . 6 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → ((𝑈𝑖)‘𝑖) ≠ ((𝑈𝑗)‘𝑖))
20 fveq1 6537 . . . . . . 7 ((𝑈𝑖) = (𝑈𝑗) → ((𝑈𝑖)‘𝑖) = ((𝑈𝑗)‘𝑖))
2120necon3i 3016 . . . . . 6 (((𝑈𝑖)‘𝑖) ≠ ((𝑈𝑗)‘𝑖) → (𝑈𝑖) ≠ (𝑈𝑗))
2219, 21syl 17 . . . . 5 ((((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) ∧ 𝑖𝑗) → (𝑈𝑖) ≠ (𝑈𝑗))
2322ex 413 . . . 4 (((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) → (𝑖𝑗 → (𝑈𝑖) ≠ (𝑈𝑗)))
2423necon4d 3008 . . 3 (((𝑅 ∈ NzRing ∧ 𝐼𝑊) ∧ (𝑖𝐼𝑗𝐼)) → ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗))
2524ralrimivva 3158 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → ∀𝑖𝐼𝑗𝐼 ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗))
26 dff13 6878 . 2 (𝑈:𝐼1-1𝐵 ↔ (𝑈:𝐼𝐵 ∧ ∀𝑖𝐼𝑗𝐼 ((𝑈𝑖) = (𝑈𝑗) → 𝑖 = 𝑗)))
276, 25, 26sylanbrc 583 1 ((𝑅 ∈ NzRing ∧ 𝐼𝑊) → 𝑈:𝐼1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  wne 2984  wral 3105  wf 6221  1-1wf1 6222  cfv 6225  (class class class)co 7016  Basecbs 16312  0gc0g 16542  1rcur 18941  Ringcrg 18987  NzRingcnzr 19719   freeLMod cfrlm 20572   unitVec cuvc 20608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-sup 8752  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-fz 12743  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-hom 16418  df-cco 16419  df-0g 16544  df-prds 16550  df-pws 16552  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864  df-mgp 18930  df-ur 18942  df-ring 18989  df-sra 19634  df-rgmod 19635  df-nzr 19720  df-dsmm 20558  df-frlm 20573  df-uvc 20609
This theorem is referenced by:  frlmlbs  20623  uvcf1o  20672  frlmdim  30613
  Copyright terms: Public domain W3C validator