| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvcf1 | Structured version Visualization version GIF version | ||
| Description: In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| uvcff.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| uvcff.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| uvcff.b | ⊢ 𝐵 = (Base‘𝑌) |
| Ref | Expression |
|---|---|
| uvcf1 | ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nzrring 20419 | . . 3 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 2 | uvcff.u | . . . 4 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 3 | uvcff.y | . . . 4 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 4 | uvcff.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
| 5 | 2, 3, 4 | uvcff 21716 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
| 6 | 1, 5 | sylan 580 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
| 7 | eqid 2729 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 9 | 7, 8 | nzrnz 20418 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 10 | 9 | ad3antrrr 730 | . . . . . . 7 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → (1r‘𝑅) ≠ (0g‘𝑅)) |
| 11 | 1 | ad3antrrr 730 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑅 ∈ Ring) |
| 12 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝐼 ∈ 𝑊) | |
| 13 | simplrl 776 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑖 ∈ 𝐼) | |
| 14 | 2, 11, 12, 13, 7 | uvcvv1 21714 | . . . . . . 7 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → ((𝑈‘𝑖)‘𝑖) = (1r‘𝑅)) |
| 15 | simplrr 777 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑗 ∈ 𝐼) | |
| 16 | simpr 484 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑖 ≠ 𝑗) | |
| 17 | 16 | necomd 2980 | . . . . . . . 8 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → 𝑗 ≠ 𝑖) |
| 18 | 2, 11, 12, 15, 13, 17, 8 | uvcvv0 21715 | . . . . . . 7 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → ((𝑈‘𝑗)‘𝑖) = (0g‘𝑅)) |
| 19 | 10, 14, 18 | 3netr4d 3002 | . . . . . 6 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → ((𝑈‘𝑖)‘𝑖) ≠ ((𝑈‘𝑗)‘𝑖)) |
| 20 | fveq1 6825 | . . . . . . 7 ⊢ ((𝑈‘𝑖) = (𝑈‘𝑗) → ((𝑈‘𝑖)‘𝑖) = ((𝑈‘𝑗)‘𝑖)) | |
| 21 | 20 | necon3i 2957 | . . . . . 6 ⊢ (((𝑈‘𝑖)‘𝑖) ≠ ((𝑈‘𝑗)‘𝑖) → (𝑈‘𝑖) ≠ (𝑈‘𝑗)) |
| 22 | 19, 21 | syl 17 | . . . . 5 ⊢ ((((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) ∧ 𝑖 ≠ 𝑗) → (𝑈‘𝑖) ≠ (𝑈‘𝑗)) |
| 23 | 22 | ex 412 | . . . 4 ⊢ (((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) → (𝑖 ≠ 𝑗 → (𝑈‘𝑖) ≠ (𝑈‘𝑗))) |
| 24 | 23 | necon4d 2949 | . . 3 ⊢ (((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼)) → ((𝑈‘𝑖) = (𝑈‘𝑗) → 𝑖 = 𝑗)) |
| 25 | 24 | ralrimivva 3172 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐼 ((𝑈‘𝑖) = (𝑈‘𝑗) → 𝑖 = 𝑗)) |
| 26 | dff13 7195 | . 2 ⊢ (𝑈:𝐼–1-1→𝐵 ↔ (𝑈:𝐼⟶𝐵 ∧ ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐼 ((𝑈‘𝑖) = (𝑈‘𝑗) → 𝑖 = 𝑗))) | |
| 27 | 6, 25, 26 | sylanbrc 583 | 1 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⟶wf 6482 –1-1→wf1 6483 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 0gc0g 17361 1rcur 20084 Ringcrg 20136 NzRingcnzr 20415 freeLMod cfrlm 21671 unitVec cuvc 21707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-prds 17369 df-pws 17371 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-mgp 20044 df-ur 20085 df-ring 20138 df-nzr 20416 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 df-uvc 21708 |
| This theorem is referenced by: frlmlbs 21722 uvcf1o 21771 frlmdim 33583 |
| Copyright terms: Public domain | W3C validator |