MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausnei2 Structured version   Visualization version   GIF version

Theorem hausnei2 23382
Description: The Hausdorff condition still holds if one considers general neighborhoods instead of open sets. (Contributed by Jeff Hankins, 5-Sep-2009.)
Assertion
Ref Expression
hausnei2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅)))
Distinct variable groups:   𝑥,𝑦   𝑣,𝑢,𝑥,𝑦,𝐽   𝑢,𝑋,𝑣,𝑥,𝑦

Proof of Theorem hausnei2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishaus2 23380 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
2 topontop 22940 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3 simp1 1136 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑚𝐽𝑛𝐽) → 𝐽 ∈ Top)
4 simp2 1137 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑚𝐽𝑛𝐽) → 𝑚𝐽)
5 simp1 1136 . . . . . . . . . . 11 ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) → 𝑥𝑚)
6 opnneip 23148 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑚𝐽𝑥𝑚) → 𝑚 ∈ ((nei‘𝐽)‘{𝑥}))
73, 4, 5, 6syl2an3an 1422 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑚𝐽𝑛𝐽) ∧ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)) → 𝑚 ∈ ((nei‘𝐽)‘{𝑥}))
8 simp3 1138 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑚𝐽𝑛𝐽) → 𝑛𝐽)
9 simp2 1137 . . . . . . . . . . 11 ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) → 𝑦𝑛)
10 opnneip 23148 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑛𝐽𝑦𝑛) → 𝑛 ∈ ((nei‘𝐽)‘{𝑦}))
113, 8, 9, 10syl2an3an 1422 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑚𝐽𝑛𝐽) ∧ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)) → 𝑛 ∈ ((nei‘𝐽)‘{𝑦}))
12 simpr3 1196 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑚𝐽𝑛𝐽) ∧ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)) → (𝑚𝑛) = ∅)
13 ineq1 4234 . . . . . . . . . . . 12 (𝑢 = 𝑚 → (𝑢𝑣) = (𝑚𝑣))
1413eqeq1d 2742 . . . . . . . . . . 11 (𝑢 = 𝑚 → ((𝑢𝑣) = ∅ ↔ (𝑚𝑣) = ∅))
15 ineq2 4235 . . . . . . . . . . . 12 (𝑣 = 𝑛 → (𝑚𝑣) = (𝑚𝑛))
1615eqeq1d 2742 . . . . . . . . . . 11 (𝑣 = 𝑛 → ((𝑚𝑣) = ∅ ↔ (𝑚𝑛) = ∅))
1714, 16rspc2ev 3648 . . . . . . . . . 10 ((𝑚 ∈ ((nei‘𝐽)‘{𝑥}) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝑦}) ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅)
187, 11, 12, 17syl3anc 1371 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑚𝐽𝑛𝐽) ∧ (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅)
1918ex 412 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑚𝐽𝑛𝐽) → ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅))
20193expib 1122 . . . . . . 7 (𝐽 ∈ Top → ((𝑚𝐽𝑛𝐽) → ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅)))
2120rexlimdvv 3218 . . . . . 6 (𝐽 ∈ Top → (∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅))
22 neii2 23137 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑢 ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑚𝐽 ({𝑥} ⊆ 𝑚𝑚𝑢))
2322ex 412 . . . . . . . 8 (𝐽 ∈ Top → (𝑢 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑚𝐽 ({𝑥} ⊆ 𝑚𝑚𝑢)))
24 neii2 23137 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘{𝑦})) → ∃𝑛𝐽 ({𝑦} ⊆ 𝑛𝑛𝑣))
2524ex 412 . . . . . . . 8 (𝐽 ∈ Top → (𝑣 ∈ ((nei‘𝐽)‘{𝑦}) → ∃𝑛𝐽 ({𝑦} ⊆ 𝑛𝑛𝑣)))
26 vex 3492 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2726snss 4810 . . . . . . . . . . . . . 14 (𝑥𝑚 ↔ {𝑥} ⊆ 𝑚)
2827anbi1i 623 . . . . . . . . . . . . 13 ((𝑥𝑚𝑚𝑢) ↔ ({𝑥} ⊆ 𝑚𝑚𝑢))
29 vex 3492 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ V
3029snss 4810 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑛 ↔ {𝑦} ⊆ 𝑛)
3130anbi1i 623 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑛𝑛𝑣) ↔ ({𝑦} ⊆ 𝑛𝑛𝑣))
32 simp1l 1197 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝑚𝑚𝑢) ∧ (𝑦𝑛𝑛𝑣) ∧ (𝑢𝑣) = ∅) → 𝑥𝑚)
33 simp2l 1199 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝑚𝑚𝑢) ∧ (𝑦𝑛𝑛𝑣) ∧ (𝑢𝑣) = ∅) → 𝑦𝑛)
34 ss2in 4266 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑢𝑛𝑣) → (𝑚𝑛) ⊆ (𝑢𝑣))
35 ssn0 4427 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑚𝑛) ⊆ (𝑢𝑣) ∧ (𝑚𝑛) ≠ ∅) → (𝑢𝑣) ≠ ∅)
3635ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚𝑛) ⊆ (𝑢𝑣) → ((𝑚𝑛) ≠ ∅ → (𝑢𝑣) ≠ ∅))
3736necon4d 2970 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑛) ⊆ (𝑢𝑣) → ((𝑢𝑣) = ∅ → (𝑚𝑛) = ∅))
3834, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚𝑢𝑛𝑣) → ((𝑢𝑣) = ∅ → (𝑚𝑛) = ∅))
3938ad2ant2l 745 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥𝑚𝑚𝑢) ∧ (𝑦𝑛𝑛𝑣)) → ((𝑢𝑣) = ∅ → (𝑚𝑛) = ∅))
40393impia 1117 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝑚𝑚𝑢) ∧ (𝑦𝑛𝑛𝑣) ∧ (𝑢𝑣) = ∅) → (𝑚𝑛) = ∅)
4132, 33, 403jca 1128 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝑚𝑚𝑢) ∧ (𝑦𝑛𝑛𝑣) ∧ (𝑢𝑣) = ∅) → (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
42413exp 1119 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝑚𝑚𝑢) → ((𝑦𝑛𝑛𝑣) → ((𝑢𝑣) = ∅ → (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
4331, 42biimtrrid 243 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑚𝑚𝑢) → (({𝑦} ⊆ 𝑛𝑛𝑣) → ((𝑢𝑣) = ∅ → (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
4443com3r 87 . . . . . . . . . . . . . . . . . . 19 ((𝑢𝑣) = ∅ → ((𝑥𝑚𝑚𝑢) → (({𝑦} ⊆ 𝑛𝑛𝑣) → (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
4544imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑣) = ∅ ∧ (𝑥𝑚𝑚𝑢)) → (({𝑦} ⊆ 𝑛𝑛𝑣) → (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
46453adant1 1130 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ (𝑢𝑣) = ∅ ∧ (𝑥𝑚𝑚𝑢)) → (({𝑦} ⊆ 𝑛𝑛𝑣) → (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
4746reximdv 3176 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ (𝑢𝑣) = ∅ ∧ (𝑥𝑚𝑚𝑢)) → (∃𝑛𝐽 ({𝑦} ⊆ 𝑛𝑛𝑣) → ∃𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
48473exp 1119 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → ((𝑢𝑣) = ∅ → ((𝑥𝑚𝑚𝑢) → (∃𝑛𝐽 ({𝑦} ⊆ 𝑛𝑛𝑣) → ∃𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))))
4948com34 91 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → ((𝑢𝑣) = ∅ → (∃𝑛𝐽 ({𝑦} ⊆ 𝑛𝑛𝑣) → ((𝑥𝑚𝑚𝑢) → ∃𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))))
50493imp 1111 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝑢𝑣) = ∅ ∧ ∃𝑛𝐽 ({𝑦} ⊆ 𝑛𝑛𝑣)) → ((𝑥𝑚𝑚𝑢) → ∃𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
5128, 50biimtrrid 243 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑢𝑣) = ∅ ∧ ∃𝑛𝐽 ({𝑦} ⊆ 𝑛𝑛𝑣)) → (({𝑥} ⊆ 𝑚𝑚𝑢) → ∃𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
5251reximdv 3176 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ (𝑢𝑣) = ∅ ∧ ∃𝑛𝐽 ({𝑦} ⊆ 𝑛𝑛𝑣)) → (∃𝑚𝐽 ({𝑥} ⊆ 𝑚𝑚𝑢) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
53523exp 1119 . . . . . . . . . 10 (𝐽 ∈ Top → ((𝑢𝑣) = ∅ → (∃𝑛𝐽 ({𝑦} ⊆ 𝑛𝑛𝑣) → (∃𝑚𝐽 ({𝑥} ⊆ 𝑚𝑚𝑢) → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))))
5453com24 95 . . . . . . . . 9 (𝐽 ∈ Top → (∃𝑚𝐽 ({𝑥} ⊆ 𝑚𝑚𝑢) → (∃𝑛𝐽 ({𝑦} ⊆ 𝑛𝑛𝑣) → ((𝑢𝑣) = ∅ → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))))
5554impd 410 . . . . . . . 8 (𝐽 ∈ Top → ((∃𝑚𝐽 ({𝑥} ⊆ 𝑚𝑚𝑢) ∧ ∃𝑛𝐽 ({𝑦} ⊆ 𝑛𝑛𝑣)) → ((𝑢𝑣) = ∅ → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
5623, 25, 55syl2and 607 . . . . . . 7 (𝐽 ∈ Top → ((𝑢 ∈ ((nei‘𝐽)‘{𝑥}) ∧ 𝑣 ∈ ((nei‘𝐽)‘{𝑦})) → ((𝑢𝑣) = ∅ → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
5756rexlimdvv 3218 . . . . . 6 (𝐽 ∈ Top → (∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅ → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
5821, 57impbid 212 . . . . 5 (𝐽 ∈ Top → (∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅))
5958imbi2d 340 . . . 4 (𝐽 ∈ Top → ((𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)) ↔ (𝑥𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅)))
60592ralbidv 3227 . . 3 (𝐽 ∈ Top → (∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅)))
612, 60syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚𝐽𝑛𝐽 (𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅)))
621, 61bitrd 279 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢𝑣) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352  {csn 4648  cfv 6573  Topctop 22920  TopOnctopon 22937  neicnei 23126  Hauscha 23337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-topon 22938  df-nei 23127  df-haus 23344
This theorem is referenced by:  hausflim  24010
  Copyright terms: Public domain W3C validator