Step | Hyp | Ref
| Expression |
1 | | ishaus2 22410 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
2 | | topontop 21970 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
3 | | simp1 1134 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → 𝐽 ∈ Top) |
4 | | simp2 1135 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → 𝑚 ∈ 𝐽) |
5 | | simp1 1134 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → 𝑥 ∈ 𝑚) |
6 | | opnneip 22178 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑥 ∈ 𝑚) → 𝑚 ∈ ((nei‘𝐽)‘{𝑥})) |
7 | 3, 4, 5, 6 | syl2an3an 1420 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → 𝑚 ∈ ((nei‘𝐽)‘{𝑥})) |
8 | | simp3 1136 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → 𝑛 ∈ 𝐽) |
9 | | simp2 1135 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → 𝑦 ∈ 𝑛) |
10 | | opnneip 22178 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑛 ∈ 𝐽 ∧ 𝑦 ∈ 𝑛) → 𝑛 ∈ ((nei‘𝐽)‘{𝑦})) |
11 | 3, 8, 9, 10 | syl2an3an 1420 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → 𝑛 ∈ ((nei‘𝐽)‘{𝑦})) |
12 | | simpr3 1194 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → (𝑚 ∩ 𝑛) = ∅) |
13 | | ineq1 4136 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑚 → (𝑢 ∩ 𝑣) = (𝑚 ∩ 𝑣)) |
14 | 13 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑚 → ((𝑢 ∩ 𝑣) = ∅ ↔ (𝑚 ∩ 𝑣) = ∅)) |
15 | | ineq2 4137 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑛 → (𝑚 ∩ 𝑣) = (𝑚 ∩ 𝑛)) |
16 | 15 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑛 → ((𝑚 ∩ 𝑣) = ∅ ↔ (𝑚 ∩ 𝑛) = ∅)) |
17 | 14, 16 | rspc2ev 3564 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ((nei‘𝐽)‘{𝑥}) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝑦}) ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅) |
18 | 7, 11, 12, 17 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅) |
19 | 18 | ex 412 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅)) |
20 | 19 | 3expib 1120 |
. . . . . . 7
⊢ (𝐽 ∈ Top → ((𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) |
21 | 20 | rexlimdvv 3221 |
. . . . . 6
⊢ (𝐽 ∈ Top → (∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅)) |
22 | | neii2 22167 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢)) |
23 | 22 | ex 412 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → (𝑢 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢))) |
24 | | neii2 22167 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘{𝑦})) → ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) |
25 | 24 | ex 412 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → (𝑣 ∈ ((nei‘𝐽)‘{𝑦}) → ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣))) |
26 | | vex 3426 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
27 | 26 | snss 4716 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑚 ↔ {𝑥} ⊆ 𝑚) |
28 | 27 | anbi1i 623 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ↔ ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢)) |
29 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑦 ∈ V |
30 | 29 | snss 4716 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝑛 ↔ {𝑦} ⊆ 𝑛) |
31 | 30 | anbi1i 623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ↔ ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) |
32 | | simp1l 1195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑥 ∈ 𝑚) |
33 | | simp2l 1197 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑦 ∈ 𝑛) |
34 | | ss2in 4167 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑚 ⊆ 𝑢 ∧ 𝑛 ⊆ 𝑣) → (𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣)) |
35 | | ssn0 4331 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣) ∧ (𝑚 ∩ 𝑛) ≠ ∅) → (𝑢 ∩ 𝑣) ≠ ∅) |
36 | 35 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣) → ((𝑚 ∩ 𝑛) ≠ ∅ → (𝑢 ∩ 𝑣) ≠ ∅)) |
37 | 36 | necon4d 2966 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑚 ∩ 𝑛) = ∅)) |
38 | 34, 37 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑚 ⊆ 𝑢 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑚 ∩ 𝑛) = ∅)) |
39 | 38 | ad2ant2l 742 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → ((𝑢 ∩ 𝑣) = ∅ → (𝑚 ∩ 𝑛) = ∅)) |
40 | 39 | 3impia 1115 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑚 ∩ 𝑛) = ∅) |
41 | 32, 33, 40 | 3jca 1126 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
42 | 41 | 3exp 1117 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ((𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
43 | 31, 42 | syl5bir 242 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
44 | 43 | com3r 87 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∩ 𝑣) = ∅ → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
45 | 44 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ∩ 𝑣) = ∅ ∧ (𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢)) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
46 | 45 | 3adant1 1128 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ (𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢)) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
47 | 46 | reximdv 3201 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ (𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢)) → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
48 | 47 | 3exp 1117 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top → ((𝑢 ∩ 𝑣) = ∅ → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) |
49 | 48 | com34 91 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → ((𝑢 ∩ 𝑣) = ∅ → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) |
50 | 49 | 3imp 1109 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
51 | 28, 50 | syl5bir 242 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → (({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
52 | 51 | reximdv 3201 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → (∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
53 | 52 | 3exp 1117 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Top → ((𝑢 ∩ 𝑣) = ∅ → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) |
54 | 53 | com24 95 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top → (∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) |
55 | 54 | impd 410 |
. . . . . . . 8
⊢ (𝐽 ∈ Top →
((∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → ((𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
56 | 23, 25, 55 | syl2and 607 |
. . . . . . 7
⊢ (𝐽 ∈ Top → ((𝑢 ∈ ((nei‘𝐽)‘{𝑥}) ∧ 𝑣 ∈ ((nei‘𝐽)‘{𝑦})) → ((𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
57 | 56 | rexlimdvv 3221 |
. . . . . 6
⊢ (𝐽 ∈ Top → (∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
58 | 21, 57 | impbid 211 |
. . . . 5
⊢ (𝐽 ∈ Top → (∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅)) |
59 | 58 | imbi2d 340 |
. . . 4
⊢ (𝐽 ∈ Top → ((𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) |
60 | 59 | 2ralbidv 3122 |
. . 3
⊢ (𝐽 ∈ Top →
(∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) |
61 | 2, 60 | syl 17 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) |
62 | 1, 61 | bitrd 278 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) |