| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ishaus2 23360 | . 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | 
| 2 |  | topontop 22920 | . . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | 
| 3 |  | simp1 1136 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → 𝐽 ∈ Top) | 
| 4 |  | simp2 1137 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → 𝑚 ∈ 𝐽) | 
| 5 |  | simp1 1136 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → 𝑥 ∈ 𝑚) | 
| 6 |  | opnneip 23128 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑥 ∈ 𝑚) → 𝑚 ∈ ((nei‘𝐽)‘{𝑥})) | 
| 7 | 3, 4, 5, 6 | syl2an3an 1423 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → 𝑚 ∈ ((nei‘𝐽)‘{𝑥})) | 
| 8 |  | simp3 1138 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → 𝑛 ∈ 𝐽) | 
| 9 |  | simp2 1137 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → 𝑦 ∈ 𝑛) | 
| 10 |  | opnneip 23128 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑛 ∈ 𝐽 ∧ 𝑦 ∈ 𝑛) → 𝑛 ∈ ((nei‘𝐽)‘{𝑦})) | 
| 11 | 3, 8, 9, 10 | syl2an3an 1423 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → 𝑛 ∈ ((nei‘𝐽)‘{𝑦})) | 
| 12 |  | simpr3 1196 | . . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → (𝑚 ∩ 𝑛) = ∅) | 
| 13 |  | ineq1 4212 | . . . . . . . . . . . 12
⊢ (𝑢 = 𝑚 → (𝑢 ∩ 𝑣) = (𝑚 ∩ 𝑣)) | 
| 14 | 13 | eqeq1d 2738 | . . . . . . . . . . 11
⊢ (𝑢 = 𝑚 → ((𝑢 ∩ 𝑣) = ∅ ↔ (𝑚 ∩ 𝑣) = ∅)) | 
| 15 |  | ineq2 4213 | . . . . . . . . . . . 12
⊢ (𝑣 = 𝑛 → (𝑚 ∩ 𝑣) = (𝑚 ∩ 𝑛)) | 
| 16 | 15 | eqeq1d 2738 | . . . . . . . . . . 11
⊢ (𝑣 = 𝑛 → ((𝑚 ∩ 𝑣) = ∅ ↔ (𝑚 ∩ 𝑛) = ∅)) | 
| 17 | 14, 16 | rspc2ev 3634 | . . . . . . . . . 10
⊢ ((𝑚 ∈ ((nei‘𝐽)‘{𝑥}) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝑦}) ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅) | 
| 18 | 7, 11, 12, 17 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅) | 
| 19 | 18 | ex 412 | . . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅)) | 
| 20 | 19 | 3expib 1122 | . . . . . . 7
⊢ (𝐽 ∈ Top → ((𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) | 
| 21 | 20 | rexlimdvv 3211 | . . . . . 6
⊢ (𝐽 ∈ Top → (∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅)) | 
| 22 |  | neii2 23117 | . . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢)) | 
| 23 | 22 | ex 412 | . . . . . . . 8
⊢ (𝐽 ∈ Top → (𝑢 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢))) | 
| 24 |  | neii2 23117 | . . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘{𝑦})) → ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) | 
| 25 | 24 | ex 412 | . . . . . . . 8
⊢ (𝐽 ∈ Top → (𝑣 ∈ ((nei‘𝐽)‘{𝑦}) → ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣))) | 
| 26 |  | vex 3483 | . . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V | 
| 27 | 26 | snss 4784 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑚 ↔ {𝑥} ⊆ 𝑚) | 
| 28 | 27 | anbi1i 624 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ↔ ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢)) | 
| 29 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑦 ∈ V | 
| 30 | 29 | snss 4784 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝑛 ↔ {𝑦} ⊆ 𝑛) | 
| 31 | 30 | anbi1i 624 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ↔ ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) | 
| 32 |  | simp1l 1197 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑥 ∈ 𝑚) | 
| 33 |  | simp2l 1199 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑦 ∈ 𝑛) | 
| 34 |  | ss2in 4244 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑚 ⊆ 𝑢 ∧ 𝑛 ⊆ 𝑣) → (𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣)) | 
| 35 |  | ssn0 4403 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣) ∧ (𝑚 ∩ 𝑛) ≠ ∅) → (𝑢 ∩ 𝑣) ≠ ∅) | 
| 36 | 35 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣) → ((𝑚 ∩ 𝑛) ≠ ∅ → (𝑢 ∩ 𝑣) ≠ ∅)) | 
| 37 | 36 | necon4d 2963 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑚 ∩ 𝑛) = ∅)) | 
| 38 | 34, 37 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑚 ⊆ 𝑢 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑚 ∩ 𝑛) = ∅)) | 
| 39 | 38 | ad2ant2l 746 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → ((𝑢 ∩ 𝑣) = ∅ → (𝑚 ∩ 𝑛) = ∅)) | 
| 40 | 39 | 3impia 1117 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑚 ∩ 𝑛) = ∅) | 
| 41 | 32, 33, 40 | 3jca 1128 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) | 
| 42 | 41 | 3exp 1119 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ((𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | 
| 43 | 31, 42 | biimtrrid 243 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | 
| 44 | 43 | com3r 87 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∩ 𝑣) = ∅ → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | 
| 45 | 44 | imp 406 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ∩ 𝑣) = ∅ ∧ (𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢)) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 46 | 45 | 3adant1 1130 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ (𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢)) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 47 | 46 | reximdv 3169 | . . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ (𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢)) → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 48 | 47 | 3exp 1119 | . . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top → ((𝑢 ∩ 𝑣) = ∅ → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) | 
| 49 | 48 | com34 91 | . . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → ((𝑢 ∩ 𝑣) = ∅ → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) | 
| 50 | 49 | 3imp 1110 | . . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 51 | 28, 50 | biimtrrid 243 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → (({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 52 | 51 | reximdv 3169 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → (∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 53 | 52 | 3exp 1119 | . . . . . . . . . 10
⊢ (𝐽 ∈ Top → ((𝑢 ∩ 𝑣) = ∅ → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) | 
| 54 | 53 | com24 95 | . . . . . . . . 9
⊢ (𝐽 ∈ Top → (∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) | 
| 55 | 54 | impd 410 | . . . . . . . 8
⊢ (𝐽 ∈ Top →
((∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → ((𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | 
| 56 | 23, 25, 55 | syl2and 608 | . . . . . . 7
⊢ (𝐽 ∈ Top → ((𝑢 ∈ ((nei‘𝐽)‘{𝑥}) ∧ 𝑣 ∈ ((nei‘𝐽)‘{𝑦})) → ((𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) | 
| 57 | 56 | rexlimdvv 3211 | . . . . . 6
⊢ (𝐽 ∈ Top → (∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) | 
| 58 | 21, 57 | impbid 212 | . . . . 5
⊢ (𝐽 ∈ Top → (∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅)) | 
| 59 | 58 | imbi2d 340 | . . . 4
⊢ (𝐽 ∈ Top → ((𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) | 
| 60 | 59 | 2ralbidv 3220 | . . 3
⊢ (𝐽 ∈ Top →
(∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) | 
| 61 | 2, 60 | syl 17 | . 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) | 
| 62 | 1, 61 | bitrd 279 | 1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) |