| Step | Hyp | Ref
| Expression |
| 1 | | ishaus2 23294 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 2 | | topontop 22856 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 3 | | simp1 1136 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → 𝐽 ∈ Top) |
| 4 | | simp2 1137 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → 𝑚 ∈ 𝐽) |
| 5 | | simp1 1136 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → 𝑥 ∈ 𝑚) |
| 6 | | opnneip 23062 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑥 ∈ 𝑚) → 𝑚 ∈ ((nei‘𝐽)‘{𝑥})) |
| 7 | 3, 4, 5, 6 | syl2an3an 1424 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → 𝑚 ∈ ((nei‘𝐽)‘{𝑥})) |
| 8 | | simp3 1138 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → 𝑛 ∈ 𝐽) |
| 9 | | simp2 1137 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → 𝑦 ∈ 𝑛) |
| 10 | | opnneip 23062 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑛 ∈ 𝐽 ∧ 𝑦 ∈ 𝑛) → 𝑛 ∈ ((nei‘𝐽)‘{𝑦})) |
| 11 | 3, 8, 9, 10 | syl2an3an 1424 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → 𝑛 ∈ ((nei‘𝐽)‘{𝑦})) |
| 12 | | simpr3 1197 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → (𝑚 ∩ 𝑛) = ∅) |
| 13 | | ineq1 4193 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑚 → (𝑢 ∩ 𝑣) = (𝑚 ∩ 𝑣)) |
| 14 | 13 | eqeq1d 2738 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑚 → ((𝑢 ∩ 𝑣) = ∅ ↔ (𝑚 ∩ 𝑣) = ∅)) |
| 15 | | ineq2 4194 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑛 → (𝑚 ∩ 𝑣) = (𝑚 ∩ 𝑛)) |
| 16 | 15 | eqeq1d 2738 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑛 → ((𝑚 ∩ 𝑣) = ∅ ↔ (𝑚 ∩ 𝑛) = ∅)) |
| 17 | 14, 16 | rspc2ev 3619 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ((nei‘𝐽)‘{𝑥}) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝑦}) ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅) |
| 18 | 7, 11, 12, 17 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅) |
| 19 | 18 | ex 412 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅)) |
| 20 | 19 | 3expib 1122 |
. . . . . . 7
⊢ (𝐽 ∈ Top → ((𝑚 ∈ 𝐽 ∧ 𝑛 ∈ 𝐽) → ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) |
| 21 | 20 | rexlimdvv 3201 |
. . . . . 6
⊢ (𝐽 ∈ Top → (∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅)) |
| 22 | | neii2 23051 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ ((nei‘𝐽)‘{𝑥})) → ∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢)) |
| 23 | 22 | ex 412 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → (𝑢 ∈ ((nei‘𝐽)‘{𝑥}) → ∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢))) |
| 24 | | neii2 23051 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑣 ∈ ((nei‘𝐽)‘{𝑦})) → ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) |
| 25 | 24 | ex 412 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → (𝑣 ∈ ((nei‘𝐽)‘{𝑦}) → ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣))) |
| 26 | | vex 3468 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
| 27 | 26 | snss 4766 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑚 ↔ {𝑥} ⊆ 𝑚) |
| 28 | 27 | anbi1i 624 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ↔ ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢)) |
| 29 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑦 ∈ V |
| 30 | 29 | snss 4766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝑛 ↔ {𝑦} ⊆ 𝑛) |
| 31 | 30 | anbi1i 624 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ↔ ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) |
| 32 | | simp1l 1198 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑥 ∈ 𝑚) |
| 33 | | simp2l 1200 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → 𝑦 ∈ 𝑛) |
| 34 | | ss2in 4225 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑚 ⊆ 𝑢 ∧ 𝑛 ⊆ 𝑣) → (𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣)) |
| 35 | | ssn0 4384 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣) ∧ (𝑚 ∩ 𝑛) ≠ ∅) → (𝑢 ∩ 𝑣) ≠ ∅) |
| 36 | 35 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣) → ((𝑚 ∩ 𝑛) ≠ ∅ → (𝑢 ∩ 𝑣) ≠ ∅)) |
| 37 | 36 | necon4d 2957 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑚 ∩ 𝑛) ⊆ (𝑢 ∩ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑚 ∩ 𝑛) = ∅)) |
| 38 | 34, 37 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑚 ⊆ 𝑢 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑚 ∩ 𝑛) = ∅)) |
| 39 | 38 | ad2ant2l 746 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → ((𝑢 ∩ 𝑣) = ∅ → (𝑚 ∩ 𝑛) = ∅)) |
| 40 | 39 | 3impia 1117 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑚 ∩ 𝑛) = ∅) |
| 41 | 32, 33, 40 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ (𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ∧ (𝑢 ∩ 𝑣) = ∅) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
| 42 | 41 | 3exp 1119 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ((𝑦 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 43 | 31, 42 | biimtrrid 243 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 44 | 43 | com3r 87 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 ∩ 𝑣) = ∅ → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 45 | 44 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ∩ 𝑣) = ∅ ∧ (𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢)) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 46 | 45 | 3adant1 1130 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ (𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢)) → (({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 47 | 46 | reximdv 3156 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ (𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢)) → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 48 | 47 | 3exp 1119 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ Top → ((𝑢 ∩ 𝑣) = ∅ → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) |
| 49 | 48 | com34 91 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → ((𝑢 ∩ 𝑣) = ∅ → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) |
| 50 | 49 | 3imp 1110 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → ((𝑥 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 51 | 28, 50 | biimtrrid 243 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → (({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 52 | 51 | reximdv 3156 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ (𝑢 ∩ 𝑣) = ∅ ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → (∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 53 | 52 | 3exp 1119 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Top → ((𝑢 ∩ 𝑣) = ∅ → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → (∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) |
| 54 | 53 | com24 95 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top → (∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) → (∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣) → ((𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))))) |
| 55 | 54 | impd 410 |
. . . . . . . 8
⊢ (𝐽 ∈ Top →
((∃𝑚 ∈ 𝐽 ({𝑥} ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑢) ∧ ∃𝑛 ∈ 𝐽 ({𝑦} ⊆ 𝑛 ∧ 𝑛 ⊆ 𝑣)) → ((𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 56 | 23, 25, 55 | syl2and 608 |
. . . . . . 7
⊢ (𝐽 ∈ Top → ((𝑢 ∈ ((nei‘𝐽)‘{𝑥}) ∧ 𝑣 ∈ ((nei‘𝐽)‘{𝑦})) → ((𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
| 57 | 56 | rexlimdvv 3201 |
. . . . . 6
⊢ (𝐽 ∈ Top → (∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅ → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
| 58 | 21, 57 | impbid 212 |
. . . . 5
⊢ (𝐽 ∈ Top → (∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅)) |
| 59 | 58 | imbi2d 340 |
. . . 4
⊢ (𝐽 ∈ Top → ((𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) |
| 60 | 59 | 2ralbidv 3209 |
. . 3
⊢ (𝐽 ∈ Top →
(∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) |
| 61 | 2, 60 | syl 17 |
. 2
⊢ (𝐽 ∈ (TopOn‘𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ 𝐽 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) |
| 62 | 1, 61 | bitrd 279 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑢 ∈ ((nei‘𝐽)‘{𝑥})∃𝑣 ∈ ((nei‘𝐽)‘{𝑦})(𝑢 ∩ 𝑣) = ∅))) |