MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epfrs Structured version   Visualization version   GIF version

Theorem epfrs 9632
Description: The strong form of the Axiom of Regularity (no sethood requirement on 𝐴), with the axiom itself present as an antecedent. See also zfregs 9633. (Contributed by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
epfrs (( E Fr 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 (𝑥𝐴) = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem epfrs
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4302 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
2 snssi 4761 . . . . . . . . . . . 12 (𝑧𝐴 → {𝑧} ⊆ 𝐴)
32anim2i 617 . . . . . . . . . . 11 (({𝑧} ⊆ 𝑦𝑧𝐴) → ({𝑧} ⊆ 𝑦 ∧ {𝑧} ⊆ 𝐴))
4 ssin 4188 . . . . . . . . . . . 12 (({𝑧} ⊆ 𝑦 ∧ {𝑧} ⊆ 𝐴) ↔ {𝑧} ⊆ (𝑦𝐴))
5 vex 3441 . . . . . . . . . . . . 13 𝑧 ∈ V
65snss 4738 . . . . . . . . . . . 12 (𝑧 ∈ (𝑦𝐴) ↔ {𝑧} ⊆ (𝑦𝐴))
74, 6bitr4i 278 . . . . . . . . . . 11 (({𝑧} ⊆ 𝑦 ∧ {𝑧} ⊆ 𝐴) ↔ 𝑧 ∈ (𝑦𝐴))
83, 7sylib 218 . . . . . . . . . 10 (({𝑧} ⊆ 𝑦𝑧𝐴) → 𝑧 ∈ (𝑦𝐴))
98ne0d 4291 . . . . . . . . 9 (({𝑧} ⊆ 𝑦𝑧𝐴) → (𝑦𝐴) ≠ ∅)
10 inss2 4187 . . . . . . . . . . . 12 (𝑦𝐴) ⊆ 𝐴
11 vex 3441 . . . . . . . . . . . . . 14 𝑦 ∈ V
1211inex1 5259 . . . . . . . . . . . . 13 (𝑦𝐴) ∈ V
1312epfrc 5606 . . . . . . . . . . . 12 (( E Fr 𝐴 ∧ (𝑦𝐴) ⊆ 𝐴 ∧ (𝑦𝐴) ≠ ∅) → ∃𝑥 ∈ (𝑦𝐴)((𝑦𝐴) ∩ 𝑥) = ∅)
1410, 13mp3an2 1451 . . . . . . . . . . 11 (( E Fr 𝐴 ∧ (𝑦𝐴) ≠ ∅) → ∃𝑥 ∈ (𝑦𝐴)((𝑦𝐴) ∩ 𝑥) = ∅)
15 elin 3914 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑦𝐴) ↔ (𝑥𝑦𝑥𝐴))
1615anbi1i 624 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝑦𝐴) ∧ ((𝑦𝐴) ∩ 𝑥) = ∅) ↔ ((𝑥𝑦𝑥𝐴) ∧ ((𝑦𝐴) ∩ 𝑥) = ∅))
17 anass 468 . . . . . . . . . . . . . 14 (((𝑥𝑦𝑥𝐴) ∧ ((𝑦𝐴) ∩ 𝑥) = ∅) ↔ (𝑥𝑦 ∧ (𝑥𝐴 ∧ ((𝑦𝐴) ∩ 𝑥) = ∅)))
1816, 17bitri 275 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑦𝐴) ∧ ((𝑦𝐴) ∩ 𝑥) = ∅) ↔ (𝑥𝑦 ∧ (𝑥𝐴 ∧ ((𝑦𝐴) ∩ 𝑥) = ∅)))
19 n0 4302 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑥𝐴))
20 elinel1 4150 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ (𝑥𝐴) → 𝑤𝑥)
2120ancri 549 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑥𝐴) → (𝑤𝑥𝑤 ∈ (𝑥𝐴)))
22 trel 5210 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Tr 𝑦 → ((𝑤𝑥𝑥𝑦) → 𝑤𝑦))
23 inass 4177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦𝐴) ∩ 𝑥) = (𝑦 ∩ (𝐴𝑥))
24 incom 4158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴𝑥) = (𝑥𝐴)
2524ineq2i 4166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∩ (𝐴𝑥)) = (𝑦 ∩ (𝑥𝐴))
2623, 25eqtri 2756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑦𝐴) ∩ 𝑥) = (𝑦 ∩ (𝑥𝐴))
2726eleq2i 2825 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ ((𝑦𝐴) ∩ 𝑥) ↔ 𝑤 ∈ (𝑦 ∩ (𝑥𝐴)))
28 elin 3914 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ (𝑦 ∩ (𝑥𝐴)) ↔ (𝑤𝑦𝑤 ∈ (𝑥𝐴)))
2927, 28bitr2i 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤𝑦𝑤 ∈ (𝑥𝐴)) ↔ 𝑤 ∈ ((𝑦𝐴) ∩ 𝑥))
30 ne0i 4290 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ((𝑦𝐴) ∩ 𝑥) → ((𝑦𝐴) ∩ 𝑥) ≠ ∅)
3129, 30sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑤𝑦𝑤 ∈ (𝑥𝐴)) → ((𝑦𝐴) ∩ 𝑥) ≠ ∅)
3231ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤𝑦 → (𝑤 ∈ (𝑥𝐴) → ((𝑦𝐴) ∩ 𝑥) ≠ ∅))
3322, 32syl6 35 . . . . . . . . . . . . . . . . . . . . . . . 24 (Tr 𝑦 → ((𝑤𝑥𝑥𝑦) → (𝑤 ∈ (𝑥𝐴) → ((𝑦𝐴) ∩ 𝑥) ≠ ∅)))
3433expd 415 . . . . . . . . . . . . . . . . . . . . . . 23 (Tr 𝑦 → (𝑤𝑥 → (𝑥𝑦 → (𝑤 ∈ (𝑥𝐴) → ((𝑦𝐴) ∩ 𝑥) ≠ ∅))))
3534com34 91 . . . . . . . . . . . . . . . . . . . . . 22 (Tr 𝑦 → (𝑤𝑥 → (𝑤 ∈ (𝑥𝐴) → (𝑥𝑦 → ((𝑦𝐴) ∩ 𝑥) ≠ ∅))))
3635impd 410 . . . . . . . . . . . . . . . . . . . . 21 (Tr 𝑦 → ((𝑤𝑥𝑤 ∈ (𝑥𝐴)) → (𝑥𝑦 → ((𝑦𝐴) ∩ 𝑥) ≠ ∅)))
3721, 36syl5 34 . . . . . . . . . . . . . . . . . . . 20 (Tr 𝑦 → (𝑤 ∈ (𝑥𝐴) → (𝑥𝑦 → ((𝑦𝐴) ∩ 𝑥) ≠ ∅)))
3837exlimdv 1934 . . . . . . . . . . . . . . . . . . 19 (Tr 𝑦 → (∃𝑤 𝑤 ∈ (𝑥𝐴) → (𝑥𝑦 → ((𝑦𝐴) ∩ 𝑥) ≠ ∅)))
3919, 38biimtrid 242 . . . . . . . . . . . . . . . . . 18 (Tr 𝑦 → ((𝑥𝐴) ≠ ∅ → (𝑥𝑦 → ((𝑦𝐴) ∩ 𝑥) ≠ ∅)))
4039com23 86 . . . . . . . . . . . . . . . . 17 (Tr 𝑦 → (𝑥𝑦 → ((𝑥𝐴) ≠ ∅ → ((𝑦𝐴) ∩ 𝑥) ≠ ∅)))
4140imp 406 . . . . . . . . . . . . . . . 16 ((Tr 𝑦𝑥𝑦) → ((𝑥𝐴) ≠ ∅ → ((𝑦𝐴) ∩ 𝑥) ≠ ∅))
4241necon4d 2953 . . . . . . . . . . . . . . 15 ((Tr 𝑦𝑥𝑦) → (((𝑦𝐴) ∩ 𝑥) = ∅ → (𝑥𝐴) = ∅))
4342anim2d 612 . . . . . . . . . . . . . 14 ((Tr 𝑦𝑥𝑦) → ((𝑥𝐴 ∧ ((𝑦𝐴) ∩ 𝑥) = ∅) → (𝑥𝐴 ∧ (𝑥𝐴) = ∅)))
4443expimpd 453 . . . . . . . . . . . . 13 (Tr 𝑦 → ((𝑥𝑦 ∧ (𝑥𝐴 ∧ ((𝑦𝐴) ∩ 𝑥) = ∅)) → (𝑥𝐴 ∧ (𝑥𝐴) = ∅)))
4518, 44biimtrid 242 . . . . . . . . . . . 12 (Tr 𝑦 → ((𝑥 ∈ (𝑦𝐴) ∧ ((𝑦𝐴) ∩ 𝑥) = ∅) → (𝑥𝐴 ∧ (𝑥𝐴) = ∅)))
4645reximdv2 3143 . . . . . . . . . . 11 (Tr 𝑦 → (∃𝑥 ∈ (𝑦𝐴)((𝑦𝐴) ∩ 𝑥) = ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅))
4714, 46syl5 34 . . . . . . . . . 10 (Tr 𝑦 → (( E Fr 𝐴 ∧ (𝑦𝐴) ≠ ∅) → ∃𝑥𝐴 (𝑥𝐴) = ∅))
4847expcomd 416 . . . . . . . . 9 (Tr 𝑦 → ((𝑦𝐴) ≠ ∅ → ( E Fr 𝐴 → ∃𝑥𝐴 (𝑥𝐴) = ∅)))
499, 48syl5 34 . . . . . . . 8 (Tr 𝑦 → (({𝑧} ⊆ 𝑦𝑧𝐴) → ( E Fr 𝐴 → ∃𝑥𝐴 (𝑥𝐴) = ∅)))
5049expd 415 . . . . . . 7 (Tr 𝑦 → ({𝑧} ⊆ 𝑦 → (𝑧𝐴 → ( E Fr 𝐴 → ∃𝑥𝐴 (𝑥𝐴) = ∅))))
5150impcom 407 . . . . . 6 (({𝑧} ⊆ 𝑦 ∧ Tr 𝑦) → (𝑧𝐴 → ( E Fr 𝐴 → ∃𝑥𝐴 (𝑥𝐴) = ∅)))
52513adant3 1132 . . . . 5 (({𝑧} ⊆ 𝑦 ∧ Tr 𝑦 ∧ ∀𝑤(({𝑧} ⊆ 𝑤 ∧ Tr 𝑤) → 𝑦𝑤)) → (𝑧𝐴 → ( E Fr 𝐴 → ∃𝑥𝐴 (𝑥𝐴) = ∅)))
53 vsnex 5376 . . . . . 6 {𝑧} ∈ V
5453tz9.1 9630 . . . . 5 𝑦({𝑧} ⊆ 𝑦 ∧ Tr 𝑦 ∧ ∀𝑤(({𝑧} ⊆ 𝑤 ∧ Tr 𝑤) → 𝑦𝑤))
5552, 54exlimiiv 1932 . . . 4 (𝑧𝐴 → ( E Fr 𝐴 → ∃𝑥𝐴 (𝑥𝐴) = ∅))
5655exlimiv 1931 . . 3 (∃𝑧 𝑧𝐴 → ( E Fr 𝐴 → ∃𝑥𝐴 (𝑥𝐴) = ∅))
571, 56sylbi 217 . 2 (𝐴 ≠ ∅ → ( E Fr 𝐴 → ∃𝑥𝐴 (𝑥𝐴) = ∅))
5857impcom 407 1 (( E Fr 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 (𝑥𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2113  wne 2929  wrex 3057  cin 3897  wss 3898  c0 4282  {csn 4577  Tr wtr 5202   E cep 5520   Fr wfr 5571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677  ax-inf2 9542
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338
This theorem is referenced by:  zfregs  9633
  Copyright terms: Public domain W3C validator