| Step | Hyp | Ref
| Expression |
| 1 | | n0 4353 |
. . 3
⊢ (𝐴 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝐴) |
| 2 | | snssi 4808 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝐴 → {𝑧} ⊆ 𝐴) |
| 3 | 2 | anim2i 617 |
. . . . . . . . . . 11
⊢ (({𝑧} ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴) → ({𝑧} ⊆ 𝑦 ∧ {𝑧} ⊆ 𝐴)) |
| 4 | | ssin 4239 |
. . . . . . . . . . . 12
⊢ (({𝑧} ⊆ 𝑦 ∧ {𝑧} ⊆ 𝐴) ↔ {𝑧} ⊆ (𝑦 ∩ 𝐴)) |
| 5 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
| 6 | 5 | snss 4785 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑦 ∩ 𝐴) ↔ {𝑧} ⊆ (𝑦 ∩ 𝐴)) |
| 7 | 4, 6 | bitr4i 278 |
. . . . . . . . . . 11
⊢ (({𝑧} ⊆ 𝑦 ∧ {𝑧} ⊆ 𝐴) ↔ 𝑧 ∈ (𝑦 ∩ 𝐴)) |
| 8 | 3, 7 | sylib 218 |
. . . . . . . . . 10
⊢ (({𝑧} ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ (𝑦 ∩ 𝐴)) |
| 9 | 8 | ne0d 4342 |
. . . . . . . . 9
⊢ (({𝑧} ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴) → (𝑦 ∩ 𝐴) ≠ ∅) |
| 10 | | inss2 4238 |
. . . . . . . . . . . 12
⊢ (𝑦 ∩ 𝐴) ⊆ 𝐴 |
| 11 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
| 12 | 11 | inex1 5317 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∩ 𝐴) ∈ V |
| 13 | 12 | epfrc 5670 |
. . . . . . . . . . . 12
⊢ (( E Fr
𝐴 ∧ (𝑦 ∩ 𝐴) ⊆ 𝐴 ∧ (𝑦 ∩ 𝐴) ≠ ∅) → ∃𝑥 ∈ (𝑦 ∩ 𝐴)((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅) |
| 14 | 10, 13 | mp3an2 1451 |
. . . . . . . . . . 11
⊢ (( E Fr
𝐴 ∧ (𝑦 ∩ 𝐴) ≠ ∅) → ∃𝑥 ∈ (𝑦 ∩ 𝐴)((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅) |
| 15 | | elin 3967 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑦 ∩ 𝐴) ↔ (𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 16 | 15 | anbi1i 624 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (𝑦 ∩ 𝐴) ∧ ((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅)) |
| 17 | | anass 468 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅) ↔ (𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝐴 ∧ ((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅))) |
| 18 | 16, 17 | bitri 275 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (𝑦 ∩ 𝐴) ∧ ((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅) ↔ (𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝐴 ∧ ((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅))) |
| 19 | | n0 4353 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∩ 𝐴) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑥 ∩ 𝐴)) |
| 20 | | elinel1 4201 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ (𝑥 ∩ 𝐴) → 𝑤 ∈ 𝑥) |
| 21 | 20 | ancri 549 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ (𝑥 ∩ 𝐴) → (𝑤 ∈ 𝑥 ∧ 𝑤 ∈ (𝑥 ∩ 𝐴))) |
| 22 | | trel 5268 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (Tr 𝑦 → ((𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) → 𝑤 ∈ 𝑦)) |
| 23 | | inass 4228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∩ 𝐴) ∩ 𝑥) = (𝑦 ∩ (𝐴 ∩ 𝑥)) |
| 24 | | incom 4209 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐴 ∩ 𝑥) = (𝑥 ∩ 𝐴) |
| 25 | 24 | ineq2i 4217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∩ (𝐴 ∩ 𝑥)) = (𝑦 ∩ (𝑥 ∩ 𝐴)) |
| 26 | 23, 25 | eqtri 2765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∩ 𝐴) ∩ 𝑥) = (𝑦 ∩ (𝑥 ∩ 𝐴)) |
| 27 | 26 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 ∈ ((𝑦 ∩ 𝐴) ∩ 𝑥) ↔ 𝑤 ∈ (𝑦 ∩ (𝑥 ∩ 𝐴))) |
| 28 | | elin 3967 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 ∈ (𝑦 ∩ (𝑥 ∩ 𝐴)) ↔ (𝑤 ∈ 𝑦 ∧ 𝑤 ∈ (𝑥 ∩ 𝐴))) |
| 29 | 27, 28 | bitr2i 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑤 ∈ 𝑦 ∧ 𝑤 ∈ (𝑥 ∩ 𝐴)) ↔ 𝑤 ∈ ((𝑦 ∩ 𝐴) ∩ 𝑥)) |
| 30 | | ne0i 4341 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 ∈ ((𝑦 ∩ 𝐴) ∩ 𝑥) → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅) |
| 31 | 29, 30 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑤 ∈ 𝑦 ∧ 𝑤 ∈ (𝑥 ∩ 𝐴)) → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅) |
| 32 | 31 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ∈ 𝑦 → (𝑤 ∈ (𝑥 ∩ 𝐴) → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅)) |
| 33 | 22, 32 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Tr 𝑦 → ((𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) → (𝑤 ∈ (𝑥 ∩ 𝐴) → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅))) |
| 34 | 33 | expd 415 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (Tr 𝑦 → (𝑤 ∈ 𝑥 → (𝑥 ∈ 𝑦 → (𝑤 ∈ (𝑥 ∩ 𝐴) → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅)))) |
| 35 | 34 | com34 91 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Tr 𝑦 → (𝑤 ∈ 𝑥 → (𝑤 ∈ (𝑥 ∩ 𝐴) → (𝑥 ∈ 𝑦 → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅)))) |
| 36 | 35 | impd 410 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Tr 𝑦 → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ (𝑥 ∩ 𝐴)) → (𝑥 ∈ 𝑦 → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅))) |
| 37 | 21, 36 | syl5 34 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Tr 𝑦 → (𝑤 ∈ (𝑥 ∩ 𝐴) → (𝑥 ∈ 𝑦 → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅))) |
| 38 | 37 | exlimdv 1933 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Tr 𝑦 → (∃𝑤 𝑤 ∈ (𝑥 ∩ 𝐴) → (𝑥 ∈ 𝑦 → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅))) |
| 39 | 19, 38 | biimtrid 242 |
. . . . . . . . . . . . . . . . . 18
⊢ (Tr 𝑦 → ((𝑥 ∩ 𝐴) ≠ ∅ → (𝑥 ∈ 𝑦 → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅))) |
| 40 | 39 | com23 86 |
. . . . . . . . . . . . . . . . 17
⊢ (Tr 𝑦 → (𝑥 ∈ 𝑦 → ((𝑥 ∩ 𝐴) ≠ ∅ → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅))) |
| 41 | 40 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ ((Tr
𝑦 ∧ 𝑥 ∈ 𝑦) → ((𝑥 ∩ 𝐴) ≠ ∅ → ((𝑦 ∩ 𝐴) ∩ 𝑥) ≠ ∅)) |
| 42 | 41 | necon4d 2964 |
. . . . . . . . . . . . . . 15
⊢ ((Tr
𝑦 ∧ 𝑥 ∈ 𝑦) → (((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅ → (𝑥 ∩ 𝐴) = ∅)) |
| 43 | 42 | anim2d 612 |
. . . . . . . . . . . . . 14
⊢ ((Tr
𝑦 ∧ 𝑥 ∈ 𝑦) → ((𝑥 ∈ 𝐴 ∧ ((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅) → (𝑥 ∈ 𝐴 ∧ (𝑥 ∩ 𝐴) = ∅))) |
| 44 | 43 | expimpd 453 |
. . . . . . . . . . . . 13
⊢ (Tr 𝑦 → ((𝑥 ∈ 𝑦 ∧ (𝑥 ∈ 𝐴 ∧ ((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅)) → (𝑥 ∈ 𝐴 ∧ (𝑥 ∩ 𝐴) = ∅))) |
| 45 | 18, 44 | biimtrid 242 |
. . . . . . . . . . . 12
⊢ (Tr 𝑦 → ((𝑥 ∈ (𝑦 ∩ 𝐴) ∧ ((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅) → (𝑥 ∈ 𝐴 ∧ (𝑥 ∩ 𝐴) = ∅))) |
| 46 | 45 | reximdv2 3164 |
. . . . . . . . . . 11
⊢ (Tr 𝑦 → (∃𝑥 ∈ (𝑦 ∩ 𝐴)((𝑦 ∩ 𝐴) ∩ 𝑥) = ∅ → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅)) |
| 47 | 14, 46 | syl5 34 |
. . . . . . . . . 10
⊢ (Tr 𝑦 → (( E Fr 𝐴 ∧ (𝑦 ∩ 𝐴) ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅)) |
| 48 | 47 | expcomd 416 |
. . . . . . . . 9
⊢ (Tr 𝑦 → ((𝑦 ∩ 𝐴) ≠ ∅ → ( E Fr 𝐴 → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅))) |
| 49 | 9, 48 | syl5 34 |
. . . . . . . 8
⊢ (Tr 𝑦 → (({𝑧} ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴) → ( E Fr 𝐴 → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅))) |
| 50 | 49 | expd 415 |
. . . . . . 7
⊢ (Tr 𝑦 → ({𝑧} ⊆ 𝑦 → (𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅)))) |
| 51 | 50 | impcom 407 |
. . . . . 6
⊢ (({𝑧} ⊆ 𝑦 ∧ Tr 𝑦) → (𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅))) |
| 52 | 51 | 3adant3 1133 |
. . . . 5
⊢ (({𝑧} ⊆ 𝑦 ∧ Tr 𝑦 ∧ ∀𝑤(({𝑧} ⊆ 𝑤 ∧ Tr 𝑤) → 𝑦 ⊆ 𝑤)) → (𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅))) |
| 53 | | vsnex 5434 |
. . . . . 6
⊢ {𝑧} ∈ V |
| 54 | 53 | tz9.1 9769 |
. . . . 5
⊢
∃𝑦({𝑧} ⊆ 𝑦 ∧ Tr 𝑦 ∧ ∀𝑤(({𝑧} ⊆ 𝑤 ∧ Tr 𝑤) → 𝑦 ⊆ 𝑤)) |
| 55 | 52, 54 | exlimiiv 1931 |
. . . 4
⊢ (𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅)) |
| 56 | 55 | exlimiv 1930 |
. . 3
⊢
(∃𝑧 𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅)) |
| 57 | 1, 56 | sylbi 217 |
. 2
⊢ (𝐴 ≠ ∅ → ( E Fr
𝐴 → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅)) |
| 58 | 57 | impcom 407 |
1
⊢ (( E Fr
𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |