Proof of Theorem oddvds
Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℕ) |
2 | | simpl3 1195 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈ ℤ) |
3 | | dvdsval3 15819 |
. . . 4
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂‘𝐴)) = 0)) |
4 | 1, 2, 3 | syl2anc 587 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂‘𝐴)) = 0)) |
5 | | simpl2 1194 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝐴 ∈ 𝑋) |
6 | | odcl.1 |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
7 | | odid.4 |
. . . . . . 7
⊢ 0 =
(0g‘𝐺) |
8 | | odid.3 |
. . . . . . 7
⊢ · =
(.g‘𝐺) |
9 | 6, 7, 8 | mulg0 18495 |
. . . . . 6
⊢ (𝐴 ∈ 𝑋 → (0 · 𝐴) = 0 ) |
10 | 5, 9 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (0 · 𝐴) = 0 ) |
11 | | oveq1 7220 |
. . . . . 6
⊢ ((𝑁 mod (𝑂‘𝐴)) = 0 → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (0 · 𝐴)) |
12 | 11 | eqeq1d 2739 |
. . . . 5
⊢ ((𝑁 mod (𝑂‘𝐴)) = 0 → (((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ↔ (0 · 𝐴) = 0 )) |
13 | 10, 12 | syl5ibrcom 250 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) = 0 → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 )) |
14 | 2 | zred 12282 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈ ℝ) |
15 | 1 | nnrpd 12626 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈
ℝ+) |
16 | | modlt 13453 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℝ ∧ (𝑂‘𝐴) ∈ ℝ+) → (𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
17 | 14, 15, 16 | syl2anc 587 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
18 | 2, 1 | zmodcld 13465 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) ∈
ℕ0) |
19 | 18 | nn0red 12151 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) ∈ ℝ) |
20 | 1 | nnred 11845 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℝ) |
21 | 19, 20 | ltnled 10979 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴) ↔ ¬ (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴)))) |
22 | 17, 21 | mpbid 235 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ¬ (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴))) |
23 | | odcl.2 |
. . . . . . . . . . . 12
⊢ 𝑂 = (od‘𝐺) |
24 | 6, 23, 8, 7 | odlem2 18931 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑋 ∧ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ) → (𝑂‘𝐴) ∈ (1...(𝑁 mod (𝑂‘𝐴)))) |
25 | | elfzle2 13116 |
. . . . . . . . . . 11
⊢ ((𝑂‘𝐴) ∈ (1...(𝑁 mod (𝑂‘𝐴))) → (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴))) |
26 | 24, 25 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ) → (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴))) |
27 | 26 | 3com23 1128 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ∧ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ) → (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴))) |
28 | 27 | 3expia 1123 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑋 ∧ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ) → ((𝑁 mod (𝑂‘𝐴)) ∈ ℕ → (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴)))) |
29 | 28 | con3d 155 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ) → (¬ (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴)) → ¬ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ)) |
30 | 29 | impancom 455 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ ¬ (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴))) → (((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ)) |
31 | 5, 22, 30 | syl2anc 587 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ)) |
32 | | elnn0 12092 |
. . . . . . 7
⊢ ((𝑁 mod (𝑂‘𝐴)) ∈ ℕ0 ↔ ((𝑁 mod (𝑂‘𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂‘𝐴)) = 0)) |
33 | 18, 32 | sylib 221 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂‘𝐴)) = 0)) |
34 | 33 | ord 864 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (¬ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ → (𝑁 mod (𝑂‘𝐴)) = 0)) |
35 | 31, 34 | syld 47 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 → (𝑁 mod (𝑂‘𝐴)) = 0)) |
36 | 13, 35 | impbid 215 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) = 0 ↔ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 )) |
37 | 6, 23, 8, 7 | odmod 18938 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) |
38 | 37 | eqeq1d 2739 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 )) |
39 | 4, 36, 38 | 3bitrd 308 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )) |
40 | | simpr 488 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → (𝑂‘𝐴) = 0) |
41 | 40 | breq1d 5063 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → ((𝑂‘𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
42 | | simpl3 1195 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → 𝑁 ∈ ℤ) |
43 | | 0dvds 15838 |
. . . 4
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
44 | 42, 43 | syl 17 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
45 | | simpl2 1194 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → 𝐴 ∈ 𝑋) |
46 | 45, 9 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → (0 · 𝐴) = 0 ) |
47 | | oveq1 7220 |
. . . . . 6
⊢ (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴)) |
48 | 47 | eqeq1d 2739 |
. . . . 5
⊢ (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 )) |
49 | 46, 48 | syl5ibrcom 250 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 )) |
50 | 6, 23, 8, 7 | odnncl 18937 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂‘𝐴) ∈ ℕ) |
51 | 50 | nnne0d 11880 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂‘𝐴) ≠ 0) |
52 | 51 | expr 460 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝑁 · 𝐴) = 0 → (𝑂‘𝐴) ≠ 0)) |
53 | 52 | impancom 455 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ≠ 0 → (𝑂‘𝐴) ≠ 0)) |
54 | 53 | necon4d 2964 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂‘𝐴) = 0 → 𝑁 = 0)) |
55 | 54 | impancom 455 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → ((𝑁 · 𝐴) = 0 → 𝑁 = 0)) |
56 | 49, 55 | impbid 215 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 )) |
57 | 41, 44, 56 | 3bitrd 308 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )) |
58 | 6, 23 | odcl 18928 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈
ℕ0) |
59 | 58 | 3ad2ant2 1136 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑂‘𝐴) ∈
ℕ0) |
60 | | elnn0 12092 |
. . 3
⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
61 | 59, 60 | sylib 221 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
62 | 39, 57, 61 | mpjaodan 959 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )) |