MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvds Structured version   Visualization version   GIF version

Theorem oddvds 19565
Description: The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
oddvds ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))

Proof of Theorem oddvds
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
2 simpl3 1194 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
3 dvdsval3 16294 . . . 4 (((𝑂𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂𝐴)) = 0))
41, 2, 3syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂𝐴)) = 0))
5 simpl2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
6 odcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
7 odid.4 . . . . . . 7 0 = (0g𝐺)
8 odid.3 . . . . . . 7 · = (.g𝐺)
96, 7, 8mulg0 19092 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = 0 )
105, 9syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (0 · 𝐴) = 0 )
11 oveq1 7438 . . . . . 6 ((𝑁 mod (𝑂𝐴)) = 0 → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (0 · 𝐴))
1211eqeq1d 2739 . . . . 5 ((𝑁 mod (𝑂𝐴)) = 0 → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
1310, 12syl5ibrcom 247 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) = 0 → ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ))
142zred 12722 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
151nnrpd 13075 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
16 modlt 13920 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
1714, 15, 16syl2anc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
182, 1zmodcld 13932 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1918nn0red 12588 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℝ)
201nnred 12281 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ)
2119, 20ltnled 11408 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) < (𝑂𝐴) ↔ ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))))
2217, 21mpbid 232 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
23 odcl.2 . . . . . . . . . . . 12 𝑂 = (od‘𝐺)
246, 23, 8, 7odlem2 19557 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...(𝑁 mod (𝑂𝐴))))
25 elfzle2 13568 . . . . . . . . . . 11 ((𝑂𝐴) ∈ (1...(𝑁 mod (𝑂𝐴))) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
2624, 25syl 17 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
27263com23 1127 . . . . . . . . 9 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
28273expia 1122 . . . . . . . 8 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → ((𝑁 mod (𝑂𝐴)) ∈ ℕ → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))))
2928con3d 152 . . . . . . 7 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)) → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
3029impancom 451 . . . . . 6 ((𝐴𝑋 ∧ ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
315, 22, 30syl2anc 584 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
32 elnn0 12528 . . . . . . 7 ((𝑁 mod (𝑂𝐴)) ∈ ℕ0 ↔ ((𝑁 mod (𝑂𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂𝐴)) = 0))
3318, 32sylib 218 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂𝐴)) = 0))
3433ord 865 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ → (𝑁 mod (𝑂𝐴)) = 0))
3531, 34syld 47 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → (𝑁 mod (𝑂𝐴)) = 0))
3613, 35impbid 212 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) = 0 ↔ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ))
376, 23, 8, 7odmod 19564 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
3837eqeq1d 2739 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
394, 36, 383bitrd 305 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
40 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
4140breq1d 5153 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁))
42 simpl3 1194 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → 𝑁 ∈ ℤ)
43 0dvds 16314 . . . 4 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
4442, 43syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (0 ∥ 𝑁𝑁 = 0))
45 simpl2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → 𝐴𝑋)
4645, 9syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (0 · 𝐴) = 0 )
47 oveq1 7438 . . . . . 6 (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴))
4847eqeq1d 2739 . . . . 5 (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
4946, 48syl5ibrcom 247 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 ))
506, 23, 8, 7odnncl 19563 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ)
5150nnne0d 12316 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ≠ 0)
5251expr 456 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝑁 · 𝐴) = 0 → (𝑂𝐴) ≠ 0))
5352impancom 451 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ≠ 0 → (𝑂𝐴) ≠ 0))
5453necon4d 2964 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → 𝑁 = 0))
5554impancom 451 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑁 · 𝐴) = 0𝑁 = 0))
5649, 55impbid 212 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 ))
5741, 44, 563bitrd 305 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
586, 23odcl 19554 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
59583ad2ant2 1135 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℕ0)
60 elnn0 12528 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
6159, 60sylib 218 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
6239, 57, 61mpjaodan 961 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   < clt 11295  cle 11296  cn 12266  0cn0 12526  cz 12613  +crp 13034  ...cfz 13547   mod cmo 13909  cdvds 16290  Basecbs 17247  0gc0g 17484  Grpcgrp 18951  .gcmg 19085  odcod 19542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-od 19546
This theorem is referenced by:  oddvdsi  19566  odcong  19567  odeq  19568  odmulgid  19572  odbezout  19576  gexdvds2  19603  gexod  19604  gexcl3  19605  odadd1  19866  odadd2  19867  oddvdssubg  19873  pgpfac1lem3a  20096  ablsimpgfindlem2  20128  chrdvds  21541  dchrfi  27299  dchrabs  27304  dchrptlem2  27309  idomodle  43203
  Copyright terms: Public domain W3C validator