MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvds Structured version   Visualization version   GIF version

Theorem oddvds 19589
Description: The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
oddvds ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))

Proof of Theorem oddvds
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
2 simpl3 1193 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
3 dvdsval3 16306 . . . 4 (((𝑂𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂𝐴)) = 0))
41, 2, 3syl2anc 583 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂𝐴)) = 0))
5 simpl2 1192 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
6 odcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
7 odid.4 . . . . . . 7 0 = (0g𝐺)
8 odid.3 . . . . . . 7 · = (.g𝐺)
96, 7, 8mulg0 19114 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = 0 )
105, 9syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (0 · 𝐴) = 0 )
11 oveq1 7455 . . . . . 6 ((𝑁 mod (𝑂𝐴)) = 0 → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (0 · 𝐴))
1211eqeq1d 2742 . . . . 5 ((𝑁 mod (𝑂𝐴)) = 0 → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
1310, 12syl5ibrcom 247 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) = 0 → ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ))
142zred 12747 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
151nnrpd 13097 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
16 modlt 13931 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
1714, 15, 16syl2anc 583 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
182, 1zmodcld 13943 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1918nn0red 12614 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℝ)
201nnred 12308 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ)
2119, 20ltnled 11437 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) < (𝑂𝐴) ↔ ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))))
2217, 21mpbid 232 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
23 odcl.2 . . . . . . . . . . . 12 𝑂 = (od‘𝐺)
246, 23, 8, 7odlem2 19581 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...(𝑁 mod (𝑂𝐴))))
25 elfzle2 13588 . . . . . . . . . . 11 ((𝑂𝐴) ∈ (1...(𝑁 mod (𝑂𝐴))) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
2624, 25syl 17 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
27263com23 1126 . . . . . . . . 9 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
28273expia 1121 . . . . . . . 8 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → ((𝑁 mod (𝑂𝐴)) ∈ ℕ → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))))
2928con3d 152 . . . . . . 7 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)) → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
3029impancom 451 . . . . . 6 ((𝐴𝑋 ∧ ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
315, 22, 30syl2anc 583 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
32 elnn0 12555 . . . . . . 7 ((𝑁 mod (𝑂𝐴)) ∈ ℕ0 ↔ ((𝑁 mod (𝑂𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂𝐴)) = 0))
3318, 32sylib 218 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂𝐴)) = 0))
3433ord 863 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ → (𝑁 mod (𝑂𝐴)) = 0))
3531, 34syld 47 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → (𝑁 mod (𝑂𝐴)) = 0))
3613, 35impbid 212 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) = 0 ↔ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ))
376, 23, 8, 7odmod 19588 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
3837eqeq1d 2742 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
394, 36, 383bitrd 305 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
40 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
4140breq1d 5176 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁))
42 simpl3 1193 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → 𝑁 ∈ ℤ)
43 0dvds 16325 . . . 4 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
4442, 43syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (0 ∥ 𝑁𝑁 = 0))
45 simpl2 1192 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → 𝐴𝑋)
4645, 9syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (0 · 𝐴) = 0 )
47 oveq1 7455 . . . . . 6 (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴))
4847eqeq1d 2742 . . . . 5 (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
4946, 48syl5ibrcom 247 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 ))
506, 23, 8, 7odnncl 19587 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ)
5150nnne0d 12343 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ≠ 0)
5251expr 456 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝑁 · 𝐴) = 0 → (𝑂𝐴) ≠ 0))
5352impancom 451 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ≠ 0 → (𝑂𝐴) ≠ 0))
5453necon4d 2970 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → 𝑁 = 0))
5554impancom 451 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑁 · 𝐴) = 0𝑁 = 0))
5649, 55impbid 212 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 ))
5741, 44, 563bitrd 305 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
586, 23odcl 19578 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
59583ad2ant2 1134 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℕ0)
60 elnn0 12555 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
6159, 60sylib 218 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
6239, 57, 61mpjaodan 959 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   < clt 11324  cle 11325  cn 12293  0cn0 12553  cz 12639  +crp 13057  ...cfz 13567   mod cmo 13920  cdvds 16302  Basecbs 17258  0gc0g 17499  Grpcgrp 18973  .gcmg 19107  odcod 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-od 19570
This theorem is referenced by:  oddvdsi  19590  odcong  19591  odeq  19592  odmulgid  19596  odbezout  19600  gexdvds2  19627  gexod  19628  gexcl3  19629  odadd1  19890  odadd2  19891  oddvdssubg  19897  pgpfac1lem3a  20120  ablsimpgfindlem2  20152  chrdvds  21564  dchrfi  27317  dchrabs  27322  dchrptlem2  27327  idomodle  43152
  Copyright terms: Public domain W3C validator