MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvds Structured version   Visualization version   GIF version

Theorem oddvds 19477
Description: The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
oddvds ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))

Proof of Theorem oddvds
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
2 simpl3 1194 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
3 dvdsval3 16226 . . . 4 (((𝑂𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂𝐴)) = 0))
41, 2, 3syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂𝐴)) = 0))
5 simpl2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
6 odcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
7 odid.4 . . . . . . 7 0 = (0g𝐺)
8 odid.3 . . . . . . 7 · = (.g𝐺)
96, 7, 8mulg0 19006 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = 0 )
105, 9syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (0 · 𝐴) = 0 )
11 oveq1 7394 . . . . . 6 ((𝑁 mod (𝑂𝐴)) = 0 → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (0 · 𝐴))
1211eqeq1d 2731 . . . . 5 ((𝑁 mod (𝑂𝐴)) = 0 → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
1310, 12syl5ibrcom 247 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) = 0 → ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ))
142zred 12638 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
151nnrpd 12993 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
16 modlt 13842 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
1714, 15, 16syl2anc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
182, 1zmodcld 13854 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1918nn0red 12504 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℝ)
201nnred 12201 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ)
2119, 20ltnled 11321 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) < (𝑂𝐴) ↔ ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))))
2217, 21mpbid 232 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
23 odcl.2 . . . . . . . . . . . 12 𝑂 = (od‘𝐺)
246, 23, 8, 7odlem2 19469 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...(𝑁 mod (𝑂𝐴))))
25 elfzle2 13489 . . . . . . . . . . 11 ((𝑂𝐴) ∈ (1...(𝑁 mod (𝑂𝐴))) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
2624, 25syl 17 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
27263com23 1126 . . . . . . . . 9 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
28273expia 1121 . . . . . . . 8 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → ((𝑁 mod (𝑂𝐴)) ∈ ℕ → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))))
2928con3d 152 . . . . . . 7 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)) → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
3029impancom 451 . . . . . 6 ((𝐴𝑋 ∧ ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
315, 22, 30syl2anc 584 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
32 elnn0 12444 . . . . . . 7 ((𝑁 mod (𝑂𝐴)) ∈ ℕ0 ↔ ((𝑁 mod (𝑂𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂𝐴)) = 0))
3318, 32sylib 218 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂𝐴)) = 0))
3433ord 864 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ → (𝑁 mod (𝑂𝐴)) = 0))
3531, 34syld 47 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → (𝑁 mod (𝑂𝐴)) = 0))
3613, 35impbid 212 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) = 0 ↔ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ))
376, 23, 8, 7odmod 19476 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
3837eqeq1d 2731 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
394, 36, 383bitrd 305 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
40 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
4140breq1d 5117 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁))
42 simpl3 1194 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → 𝑁 ∈ ℤ)
43 0dvds 16246 . . . 4 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
4442, 43syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (0 ∥ 𝑁𝑁 = 0))
45 simpl2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → 𝐴𝑋)
4645, 9syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (0 · 𝐴) = 0 )
47 oveq1 7394 . . . . . 6 (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴))
4847eqeq1d 2731 . . . . 5 (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
4946, 48syl5ibrcom 247 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 ))
506, 23, 8, 7odnncl 19475 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ)
5150nnne0d 12236 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ≠ 0)
5251expr 456 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝑁 · 𝐴) = 0 → (𝑂𝐴) ≠ 0))
5352impancom 451 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ≠ 0 → (𝑂𝐴) ≠ 0))
5453necon4d 2949 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → 𝑁 = 0))
5554impancom 451 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑁 · 𝐴) = 0𝑁 = 0))
5649, 55impbid 212 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 ))
5741, 44, 563bitrd 305 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
586, 23odcl 19466 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
59583ad2ant2 1134 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℕ0)
60 elnn0 12444 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
6159, 60sylib 218 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
6239, 57, 61mpjaodan 960 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cn 12186  0cn0 12442  cz 12529  +crp 12951  ...cfz 13468   mod cmo 13831  cdvds 16222  Basecbs 17179  0gc0g 17402  Grpcgrp 18865  .gcmg 18999  odcod 19454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-od 19458
This theorem is referenced by:  oddvdsi  19478  odcong  19479  odeq  19480  odmulgid  19484  odbezout  19488  gexdvds2  19515  gexod  19516  gexcl3  19517  odadd1  19778  odadd2  19779  oddvdssubg  19785  pgpfac1lem3a  20008  ablsimpgfindlem2  20040  chrdvds  21436  dchrfi  27166  dchrabs  27171  dchrptlem2  27176  idomodle  43180
  Copyright terms: Public domain W3C validator