Proof of Theorem oddvds
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℕ) |
| 2 | | simpl3 1194 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈ ℤ) |
| 3 | | dvdsval3 16294 |
. . . 4
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂‘𝐴)) = 0)) |
| 4 | 1, 2, 3 | syl2anc 584 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂‘𝐴)) = 0)) |
| 5 | | simpl2 1193 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝐴 ∈ 𝑋) |
| 6 | | odcl.1 |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
| 7 | | odid.4 |
. . . . . . 7
⊢ 0 =
(0g‘𝐺) |
| 8 | | odid.3 |
. . . . . . 7
⊢ · =
(.g‘𝐺) |
| 9 | 6, 7, 8 | mulg0 19092 |
. . . . . 6
⊢ (𝐴 ∈ 𝑋 → (0 · 𝐴) = 0 ) |
| 10 | 5, 9 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (0 · 𝐴) = 0 ) |
| 11 | | oveq1 7438 |
. . . . . 6
⊢ ((𝑁 mod (𝑂‘𝐴)) = 0 → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (0 · 𝐴)) |
| 12 | 11 | eqeq1d 2739 |
. . . . 5
⊢ ((𝑁 mod (𝑂‘𝐴)) = 0 → (((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ↔ (0 · 𝐴) = 0 )) |
| 13 | 10, 12 | syl5ibrcom 247 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) = 0 → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 )) |
| 14 | 2 | zred 12722 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝑁 ∈ ℝ) |
| 15 | 1 | nnrpd 13075 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈
ℝ+) |
| 16 | | modlt 13920 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℝ ∧ (𝑂‘𝐴) ∈ ℝ+) → (𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
| 17 | 14, 15, 16 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴)) |
| 18 | 2, 1 | zmodcld 13932 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) ∈
ℕ0) |
| 19 | 18 | nn0red 12588 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑁 mod (𝑂‘𝐴)) ∈ ℝ) |
| 20 | 1 | nnred 12281 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℝ) |
| 21 | 19, 20 | ltnled 11408 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) < (𝑂‘𝐴) ↔ ¬ (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴)))) |
| 22 | 17, 21 | mpbid 232 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ¬ (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴))) |
| 23 | | odcl.2 |
. . . . . . . . . . . 12
⊢ 𝑂 = (od‘𝐺) |
| 24 | 6, 23, 8, 7 | odlem2 19557 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑋 ∧ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ) → (𝑂‘𝐴) ∈ (1...(𝑁 mod (𝑂‘𝐴)))) |
| 25 | | elfzle2 13568 |
. . . . . . . . . . 11
⊢ ((𝑂‘𝐴) ∈ (1...(𝑁 mod (𝑂‘𝐴))) → (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴))) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ) → (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴))) |
| 27 | 26 | 3com23 1127 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ∧ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ) → (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴))) |
| 28 | 27 | 3expia 1122 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑋 ∧ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ) → ((𝑁 mod (𝑂‘𝐴)) ∈ ℕ → (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴)))) |
| 29 | 28 | con3d 152 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ) → (¬ (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴)) → ¬ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ)) |
| 30 | 29 | impancom 451 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ ¬ (𝑂‘𝐴) ≤ (𝑁 mod (𝑂‘𝐴))) → (((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ)) |
| 31 | 5, 22, 30 | syl2anc 584 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ)) |
| 32 | | elnn0 12528 |
. . . . . . 7
⊢ ((𝑁 mod (𝑂‘𝐴)) ∈ ℕ0 ↔ ((𝑁 mod (𝑂‘𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂‘𝐴)) = 0)) |
| 33 | 18, 32 | sylib 218 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂‘𝐴)) = 0)) |
| 34 | 33 | ord 865 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (¬ (𝑁 mod (𝑂‘𝐴)) ∈ ℕ → (𝑁 mod (𝑂‘𝐴)) = 0)) |
| 35 | 31, 34 | syld 47 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 → (𝑁 mod (𝑂‘𝐴)) = 0)) |
| 36 | 13, 35 | impbid 212 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) = 0 ↔ ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 )) |
| 37 | 6, 23, 8, 7 | odmod 19564 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑁 mod (𝑂‘𝐴)) · 𝐴) = (𝑁 · 𝐴)) |
| 38 | 37 | eqeq1d 2739 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → (((𝑁 mod (𝑂‘𝐴)) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 )) |
| 39 | 4, 36, 38 | 3bitrd 305 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )) |
| 40 | | simpr 484 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → (𝑂‘𝐴) = 0) |
| 41 | 40 | breq1d 5153 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → ((𝑂‘𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
| 42 | | simpl3 1194 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → 𝑁 ∈ ℤ) |
| 43 | | 0dvds 16314 |
. . . 4
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
| 44 | 42, 43 | syl 17 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
| 45 | | simpl2 1193 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → 𝐴 ∈ 𝑋) |
| 46 | 45, 9 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → (0 · 𝐴) = 0 ) |
| 47 | | oveq1 7438 |
. . . . . 6
⊢ (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴)) |
| 48 | 47 | eqeq1d 2739 |
. . . . 5
⊢ (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 )) |
| 49 | 46, 48 | syl5ibrcom 247 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 )) |
| 50 | 6, 23, 8, 7 | odnncl 19563 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂‘𝐴) ∈ ℕ) |
| 51 | 50 | nnne0d 12316 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂‘𝐴) ≠ 0) |
| 52 | 51 | expr 456 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝑁 · 𝐴) = 0 → (𝑂‘𝐴) ≠ 0)) |
| 53 | 52 | impancom 451 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ≠ 0 → (𝑂‘𝐴) ≠ 0)) |
| 54 | 53 | necon4d 2964 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂‘𝐴) = 0 → 𝑁 = 0)) |
| 55 | 54 | impancom 451 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → ((𝑁 · 𝐴) = 0 → 𝑁 = 0)) |
| 56 | 49, 55 | impbid 212 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 )) |
| 57 | 41, 44, 56 | 3bitrd 305 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) ∧ (𝑂‘𝐴) = 0) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )) |
| 58 | 6, 23 | odcl 19554 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈
ℕ0) |
| 59 | 58 | 3ad2ant2 1135 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑂‘𝐴) ∈
ℕ0) |
| 60 | | elnn0 12528 |
. . 3
⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
| 61 | 59, 60 | sylib 218 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
| 62 | 39, 57, 61 | mpjaodan 961 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 )) |