MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvds Structured version   Visualization version   GIF version

Theorem oddvds 19469
Description: The only multiples of 𝐴 that are equal to the identity are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
oddvds ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))

Proof of Theorem oddvds
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ)
2 simpl3 1194 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
3 dvdsval3 16177 . . . 4 (((𝑂𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂𝐴)) = 0))
41, 2, 3syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 mod (𝑂𝐴)) = 0))
5 simpl2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
6 odcl.1 . . . . . . 7 𝑋 = (Base‘𝐺)
7 odid.4 . . . . . . 7 0 = (0g𝐺)
8 odid.3 . . . . . . 7 · = (.g𝐺)
96, 7, 8mulg0 18997 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = 0 )
105, 9syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (0 · 𝐴) = 0 )
11 oveq1 7362 . . . . . 6 ((𝑁 mod (𝑂𝐴)) = 0 → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (0 · 𝐴))
1211eqeq1d 2735 . . . . 5 ((𝑁 mod (𝑂𝐴)) = 0 → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
1310, 12syl5ibrcom 247 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) = 0 → ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ))
142zred 12587 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℝ)
151nnrpd 12942 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ+)
16 modlt 13794 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
1714, 15, 16syl2anc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) < (𝑂𝐴))
182, 1zmodcld 13806 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℕ0)
1918nn0red 12453 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 mod (𝑂𝐴)) ∈ ℝ)
201nnred 12150 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℝ)
2119, 20ltnled 11270 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) < (𝑂𝐴) ↔ ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))))
2217, 21mpbid 232 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
23 odcl.2 . . . . . . . . . . . 12 𝑂 = (od‘𝐺)
246, 23, 8, 7odlem2 19461 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...(𝑁 mod (𝑂𝐴))))
25 elfzle2 13438 . . . . . . . . . . 11 ((𝑂𝐴) ∈ (1...(𝑁 mod (𝑂𝐴))) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
2624, 25syl 17 . . . . . . . . . 10 ((𝐴𝑋 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
27263com23 1126 . . . . . . . . 9 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ∧ (𝑁 mod (𝑂𝐴)) ∈ ℕ) → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)))
28273expia 1121 . . . . . . . 8 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → ((𝑁 mod (𝑂𝐴)) ∈ ℕ → (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))))
2928con3d 152 . . . . . . 7 ((𝐴𝑋 ∧ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ) → (¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴)) → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
3029impancom 451 . . . . . 6 ((𝐴𝑋 ∧ ¬ (𝑂𝐴) ≤ (𝑁 mod (𝑂𝐴))) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
315, 22, 30syl2anc 584 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → ¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ))
32 elnn0 12393 . . . . . . 7 ((𝑁 mod (𝑂𝐴)) ∈ ℕ0 ↔ ((𝑁 mod (𝑂𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂𝐴)) = 0))
3318, 32sylib 218 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) ∈ ℕ ∨ (𝑁 mod (𝑂𝐴)) = 0))
3433ord 864 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (¬ (𝑁 mod (𝑂𝐴)) ∈ ℕ → (𝑁 mod (𝑂𝐴)) = 0))
3531, 34syld 47 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 → (𝑁 mod (𝑂𝐴)) = 0))
3613, 35impbid 212 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) = 0 ↔ ((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ))
376, 23, 8, 7odmod 19468 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑁 mod (𝑂𝐴)) · 𝐴) = (𝑁 · 𝐴))
3837eqeq1d 2735 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑁 mod (𝑂𝐴)) · 𝐴) = 0 ↔ (𝑁 · 𝐴) = 0 ))
394, 36, 383bitrd 305 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
40 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
4140breq1d 5105 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ 0 ∥ 𝑁))
42 simpl3 1194 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → 𝑁 ∈ ℤ)
43 0dvds 16197 . . . 4 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
4442, 43syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (0 ∥ 𝑁𝑁 = 0))
45 simpl2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → 𝐴𝑋)
4645, 9syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (0 · 𝐴) = 0 )
47 oveq1 7362 . . . . . 6 (𝑁 = 0 → (𝑁 · 𝐴) = (0 · 𝐴))
4847eqeq1d 2735 . . . . 5 (𝑁 = 0 → ((𝑁 · 𝐴) = 0 ↔ (0 · 𝐴) = 0 ))
4946, 48syl5ibrcom 247 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 → (𝑁 · 𝐴) = 0 ))
506, 23, 8, 7odnncl 19467 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ∈ ℕ)
5150nnne0d 12185 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 ≠ 0 ∧ (𝑁 · 𝐴) = 0 )) → (𝑂𝐴) ≠ 0)
5251expr 456 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((𝑁 · 𝐴) = 0 → (𝑂𝐴) ≠ 0))
5352impancom 451 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → (𝑁 ≠ 0 → (𝑂𝐴) ≠ 0))
5453necon4d 2954 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑁 · 𝐴) = 0 ) → ((𝑂𝐴) = 0 → 𝑁 = 0))
5554impancom 451 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑁 · 𝐴) = 0𝑁 = 0))
5649, 55impbid 212 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → (𝑁 = 0 ↔ (𝑁 · 𝐴) = 0 ))
5741, 44, 563bitrd 305 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) = 0) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
586, 23odcl 19458 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
59583ad2ant2 1134 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) ∈ ℕ0)
60 elnn0 12393 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
6159, 60sylib 218 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
6239, 57, 61mpjaodan 960 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → ((𝑂𝐴) ∥ 𝑁 ↔ (𝑁 · 𝐴) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2930   class class class wbr 5095  cfv 6489  (class class class)co 7355  cr 11015  0cc0 11016  1c1 11017   < clt 11156  cle 11157  cn 12135  0cn0 12391  cz 12478  +crp 12900  ...cfz 13417   mod cmo 13783  cdvds 16173  Basecbs 17130  0gc0g 17353  Grpcgrp 18856  .gcmg 18990  odcod 19446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-z 12479  df-uz 12743  df-rp 12901  df-fz 13418  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-dvds 16174  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-od 19450
This theorem is referenced by:  oddvdsi  19470  odcong  19471  odeq  19472  odmulgid  19476  odbezout  19480  gexdvds2  19507  gexod  19508  gexcl3  19509  odadd1  19770  odadd2  19771  oddvdssubg  19777  pgpfac1lem3a  20000  ablsimpgfindlem2  20032  chrdvds  21473  dchrfi  27203  dchrabs  27208  dchrptlem2  27213  idomodle  43298
  Copyright terms: Public domain W3C validator