| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 01eq0ringOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of 01eq0ring 20439 as of 23-Feb-2025. (Contributed by AV, 16-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
| 0ring.0 | ⊢ 0 = (0g‘𝑅) |
| 0ring01eq.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| 01eq0ringOLD | ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | fvexi 6872 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 3 | hashv01gt1 14310 | . . . . . 6 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵))) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) |
| 5 | hasheq0 14328 | . . . . . . . . 9 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅)) | |
| 6 | 2, 5 | ax-mp 5 | . . . . . . . 8 ⊢ ((♯‘𝐵) = 0 ↔ 𝐵 = ∅) |
| 7 | ne0i 4304 | . . . . . . . . 9 ⊢ ( 0 ∈ 𝐵 → 𝐵 ≠ ∅) | |
| 8 | eqneqall 2936 | . . . . . . . . 9 ⊢ (𝐵 = ∅ → (𝐵 ≠ ∅ → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) | |
| 9 | 7, 8 | syl5com 31 | . . . . . . . 8 ⊢ ( 0 ∈ 𝐵 → (𝐵 = ∅ → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
| 10 | 6, 9 | biimtrid 242 | . . . . . . 7 ⊢ ( 0 ∈ 𝐵 → ((♯‘𝐵) = 0 → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
| 11 | 0ring.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 12 | 1, 11 | ring0cl 20176 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| 13 | 10, 12 | syl11 33 | . . . . . 6 ⊢ ((♯‘𝐵) = 0 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
| 14 | eqneqall 2936 | . . . . . . 7 ⊢ ((♯‘𝐵) = 1 → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 )) | |
| 15 | 14 | a1d 25 | . . . . . 6 ⊢ ((♯‘𝐵) = 1 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
| 16 | 0ring01eq.1 | . . . . . . . . . . 11 ⊢ 1 = (1r‘𝑅) | |
| 17 | 1, 16, 11 | ring1ne0 20208 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 1 ≠ 0 ) |
| 18 | 17 | necomd 2980 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 0 ≠ 1 ) |
| 19 | 18 | ex 412 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 0 ≠ 1 )) |
| 20 | 19 | a1i 11 | . . . . . . 7 ⊢ ((♯‘𝐵) ≠ 1 → (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 0 ≠ 1 ))) |
| 21 | 20 | com13 88 | . . . . . 6 ⊢ (1 < (♯‘𝐵) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
| 22 | 13, 15, 21 | 3jaoi 1430 | . . . . 5 ⊢ (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 ))) |
| 23 | 4, 22 | ax-mp 5 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 0 ≠ 1 )) |
| 24 | 23 | necon4d 2949 | . . 3 ⊢ (𝑅 ∈ Ring → ( 0 = 1 → (♯‘𝐵) = 1)) |
| 25 | 24 | imp 406 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → (♯‘𝐵) = 1) |
| 26 | 1, 11 | 0ring 20435 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) |
| 27 | 25, 26 | syldan 591 | 1 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 {csn 4589 class class class wbr 5107 ‘cfv 6511 0cc0 11068 1c1 11069 < clt 11208 ♯chash 14295 Basecbs 17179 0gc0g 17402 1rcur 20090 Ringcrg 20142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |