MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  01eq0ringOLD Structured version   Visualization version   GIF version

Theorem 01eq0ringOLD 20447
Description: Obsolete version of 01eq0ring 20446 as of 23-Feb-2025. (Contributed by AV, 16-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
0ring.b 𝐵 = (Base‘𝑅)
0ring.0 0 = (0g𝑅)
0ring01eq.1 1 = (1r𝑅)
Assertion
Ref Expression
01eq0ringOLD ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 })

Proof of Theorem 01eq0ringOLD
StepHypRef Expression
1 0ring.b . . . . . . 7 𝐵 = (Base‘𝑅)
21fvexi 6875 . . . . . 6 𝐵 ∈ V
3 hashv01gt1 14317 . . . . . 6 (𝐵 ∈ V → ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)))
42, 3ax-mp 5 . . . . 5 ((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵))
5 hasheq0 14335 . . . . . . . . 9 (𝐵 ∈ V → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
62, 5ax-mp 5 . . . . . . . 8 ((♯‘𝐵) = 0 ↔ 𝐵 = ∅)
7 ne0i 4307 . . . . . . . . 9 ( 0𝐵𝐵 ≠ ∅)
8 eqneqall 2937 . . . . . . . . 9 (𝐵 = ∅ → (𝐵 ≠ ∅ → ((♯‘𝐵) ≠ 1 → 01 )))
97, 8syl5com 31 . . . . . . . 8 ( 0𝐵 → (𝐵 = ∅ → ((♯‘𝐵) ≠ 1 → 01 )))
106, 9biimtrid 242 . . . . . . 7 ( 0𝐵 → ((♯‘𝐵) = 0 → ((♯‘𝐵) ≠ 1 → 01 )))
11 0ring.0 . . . . . . . 8 0 = (0g𝑅)
121, 11ring0cl 20183 . . . . . . 7 (𝑅 ∈ Ring → 0𝐵)
1310, 12syl11 33 . . . . . 6 ((♯‘𝐵) = 0 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
14 eqneqall 2937 . . . . . . 7 ((♯‘𝐵) = 1 → ((♯‘𝐵) ≠ 1 → 01 ))
1514a1d 25 . . . . . 6 ((♯‘𝐵) = 1 → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
16 0ring01eq.1 . . . . . . . . . . 11 1 = (1r𝑅)
171, 16, 11ring1ne0 20215 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 10 )
1817necomd 2981 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 01 )
1918ex 412 . . . . . . . 8 (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 01 ))
2019a1i 11 . . . . . . 7 ((♯‘𝐵) ≠ 1 → (𝑅 ∈ Ring → (1 < (♯‘𝐵) → 01 )))
2120com13 88 . . . . . 6 (1 < (♯‘𝐵) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
2213, 15, 213jaoi 1430 . . . . 5 (((♯‘𝐵) = 0 ∨ (♯‘𝐵) = 1 ∨ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 )))
234, 22ax-mp 5 . . . 4 (𝑅 ∈ Ring → ((♯‘𝐵) ≠ 1 → 01 ))
2423necon4d 2950 . . 3 (𝑅 ∈ Ring → ( 0 = 1 → (♯‘𝐵) = 1))
2524imp 406 . 2 ((𝑅 ∈ Ring ∧ 0 = 1 ) → (♯‘𝐵) = 1)
261, 110ring 20442 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 })
2725, 26syldan 591 1 ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4299  {csn 4592   class class class wbr 5110  cfv 6514  0cc0 11075  1c1 11076   < clt 11215  chash 14302  Basecbs 17186  0gc0g 17409  1rcur 20097  Ringcrg 20149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator