Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnideq | Structured version Visualization version GIF version |
Description: Property of the identity lattice translation. (Contributed by NM, 27-May-2012.) |
Ref | Expression |
---|---|
ltrnnidn.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrnnidn.l | ⊢ ≤ = (le‘𝐾) |
ltrnnidn.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnnidn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnnidn.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnideq | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹‘𝑃) = 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵)) | |
2 | 1 | fveq1d 6758 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹‘𝑃) = (( I ↾ 𝐵)‘𝑃)) |
3 | simpl3l 1226 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝑃 ∈ 𝐴) | |
4 | ltrnnidn.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | ltrnnidn.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4, 5 | atbase 37230 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
7 | fvresi 7027 | . . . . 5 ⊢ (𝑃 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑃) = 𝑃) | |
8 | 3, 6, 7 | 3syl 18 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → (( I ↾ 𝐵)‘𝑃) = 𝑃) |
9 | 2, 8 | eqtrd 2778 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹‘𝑃) = 𝑃) |
10 | 9 | ex 412 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹 = ( I ↾ 𝐵) → (𝐹‘𝑃) = 𝑃)) |
11 | simpl1 1189 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
12 | simpl2 1190 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ∈ 𝑇) | |
13 | simpr 484 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵)) | |
14 | simpl3 1191 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
15 | ltrnnidn.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
16 | ltrnnidn.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
17 | ltrnnidn.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
18 | 4, 15, 5, 16, 17 | ltrnnidn 38115 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹‘𝑃) ≠ 𝑃) |
19 | 11, 12, 13, 14, 18 | syl121anc 1373 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐹‘𝑃) ≠ 𝑃) |
20 | 19 | ex 412 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹 ≠ ( I ↾ 𝐵) → (𝐹‘𝑃) ≠ 𝑃)) |
21 | 20 | necon4d 2966 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) = 𝑃 → 𝐹 = ( I ↾ 𝐵))) |
22 | 10, 21 | impbid 211 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹‘𝑃) = 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 I cid 5479 ↾ cres 5582 ‘cfv 6418 Basecbs 16840 lecple 16895 Atomscatm 37204 HLchlt 37291 LHypclh 37925 LTrncltrn 38042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 |
This theorem is referenced by: trlid0 38117 trlnidatb 38118 ltrn2ateq 38121 cdlemd8 38146 ltrniotaidvalN 38524 cdlemkid4 38875 dia2dimlem7 39011 |
Copyright terms: Public domain | W3C validator |