Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnideq Structured version   Visualization version   GIF version

Theorem ltrnideq 39559
Description: Property of the identity lattice translation. (Contributed by NM, 27-May-2012.)
Hypotheses
Ref Expression
ltrnnidn.b 𝐡 = (Baseβ€˜πΎ)
ltrnnidn.l ≀ = (leβ€˜πΎ)
ltrnnidn.a 𝐴 = (Atomsβ€˜πΎ)
ltrnnidn.h 𝐻 = (LHypβ€˜πΎ)
ltrnnidn.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrnideq (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐹 = ( I β†Ύ 𝐡) ↔ (πΉβ€˜π‘ƒ) = 𝑃))

Proof of Theorem ltrnideq
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = ( I β†Ύ 𝐡)) β†’ 𝐹 = ( I β†Ύ 𝐡))
21fveq1d 6887 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = ( I β†Ύ 𝐡)) β†’ (πΉβ€˜π‘ƒ) = (( I β†Ύ 𝐡)β€˜π‘ƒ))
3 simpl3l 1225 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = ( I β†Ύ 𝐡)) β†’ 𝑃 ∈ 𝐴)
4 ltrnnidn.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
5 ltrnnidn.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
64, 5atbase 38672 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
7 fvresi 7167 . . . . 5 (𝑃 ∈ 𝐡 β†’ (( I β†Ύ 𝐡)β€˜π‘ƒ) = 𝑃)
83, 6, 73syl 18 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = ( I β†Ύ 𝐡)) β†’ (( I β†Ύ 𝐡)β€˜π‘ƒ) = 𝑃)
92, 8eqtrd 2766 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = ( I β†Ύ 𝐡)) β†’ (πΉβ€˜π‘ƒ) = 𝑃)
109ex 412 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐹 = ( I β†Ύ 𝐡) β†’ (πΉβ€˜π‘ƒ) = 𝑃))
11 simpl1 1188 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
12 simpl2 1189 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ 𝐹 ∈ 𝑇)
13 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
14 simpl3 1190 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
15 ltrnnidn.l . . . . . 6 ≀ = (leβ€˜πΎ)
16 ltrnnidn.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
17 ltrnnidn.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
184, 15, 5, 16, 17ltrnnidn 39558 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (πΉβ€˜π‘ƒ) β‰  𝑃)
1911, 12, 13, 14, 18syl121anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ (πΉβ€˜π‘ƒ) β‰  𝑃)
2019ex 412 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐹 β‰  ( I β†Ύ 𝐡) β†’ (πΉβ€˜π‘ƒ) β‰  𝑃))
2120necon4d 2958 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) = 𝑃 β†’ 𝐹 = ( I β†Ύ 𝐡)))
2210, 21impbid 211 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐹 = ( I β†Ύ 𝐡) ↔ (πΉβ€˜π‘ƒ) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141   I cid 5566   β†Ύ cres 5671  β€˜cfv 6537  Basecbs 17153  lecple 17213  Atomscatm 38646  HLchlt 38733  LHypclh 39368  LTrncltrn 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8824  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-lhyp 39372  df-laut 39373  df-ldil 39488  df-ltrn 39489  df-trl 39543
This theorem is referenced by:  trlid0  39560  trlnidatb  39561  ltrn2ateq  39564  cdlemd8  39589  ltrniotaidvalN  39967  cdlemkid4  40318  dia2dimlem7  40454
  Copyright terms: Public domain W3C validator