Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnideq Structured version   Visualization version   GIF version

Theorem ltrnideq 40284
Description: Property of the identity lattice translation. (Contributed by NM, 27-May-2012.)
Hypotheses
Ref Expression
ltrnnidn.b 𝐵 = (Base‘𝐾)
ltrnnidn.l = (le‘𝐾)
ltrnnidn.a 𝐴 = (Atoms‘𝐾)
ltrnnidn.h 𝐻 = (LHyp‘𝐾)
ltrnnidn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnideq (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))

Proof of Theorem ltrnideq
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
21fveq1d 6824 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝑃) = (( I ↾ 𝐵)‘𝑃))
3 simpl3l 1229 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝑃𝐴)
4 ltrnnidn.b . . . . . 6 𝐵 = (Base‘𝐾)
5 ltrnnidn.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atbase 39398 . . . . 5 (𝑃𝐴𝑃𝐵)
7 fvresi 7107 . . . . 5 (𝑃𝐵 → (( I ↾ 𝐵)‘𝑃) = 𝑃)
83, 6, 73syl 18 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → (( I ↾ 𝐵)‘𝑃) = 𝑃)
92, 8eqtrd 2766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝑃) = 𝑃)
109ex 412 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) → (𝐹𝑃) = 𝑃))
11 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simpl2 1193 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
13 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
14 simpl3 1194 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
15 ltrnnidn.l . . . . . 6 = (le‘𝐾)
16 ltrnnidn.h . . . . . 6 𝐻 = (LHyp‘𝐾)
17 ltrnnidn.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
184, 15, 5, 16, 17ltrnnidn 40283 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ≠ 𝑃)
1911, 12, 13, 14, 18syl121anc 1377 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 ≠ ( I ↾ 𝐵)) → (𝐹𝑃) ≠ 𝑃)
2019ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 ≠ ( I ↾ 𝐵) → (𝐹𝑃) ≠ 𝑃))
2120necon4d 2952 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) = 𝑃𝐹 = ( I ↾ 𝐵)))
2210, 21impbid 212 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089   I cid 5508  cres 5616  cfv 6481  Basecbs 17120  lecple 17168  Atomscatm 39372  HLchlt 39459  LHypclh 40093  LTrncltrn 40210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268
This theorem is referenced by:  trlid0  40285  trlnidatb  40286  ltrn2ateq  40289  cdlemd8  40314  ltrniotaidvalN  40692  cdlemkid4  41043  dia2dimlem7  41179
  Copyright terms: Public domain W3C validator