Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnideq Structured version   Visualization version   GIF version

Theorem ltrnideq 39041
Description: Property of the identity lattice translation. (Contributed by NM, 27-May-2012.)
Hypotheses
Ref Expression
ltrnnidn.b 𝐡 = (Baseβ€˜πΎ)
ltrnnidn.l ≀ = (leβ€˜πΎ)
ltrnnidn.a 𝐴 = (Atomsβ€˜πΎ)
ltrnnidn.h 𝐻 = (LHypβ€˜πΎ)
ltrnnidn.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrnideq (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐹 = ( I β†Ύ 𝐡) ↔ (πΉβ€˜π‘ƒ) = 𝑃))

Proof of Theorem ltrnideq
StepHypRef Expression
1 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = ( I β†Ύ 𝐡)) β†’ 𝐹 = ( I β†Ύ 𝐡))
21fveq1d 6893 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = ( I β†Ύ 𝐡)) β†’ (πΉβ€˜π‘ƒ) = (( I β†Ύ 𝐡)β€˜π‘ƒ))
3 simpl3l 1228 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = ( I β†Ύ 𝐡)) β†’ 𝑃 ∈ 𝐴)
4 ltrnnidn.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
5 ltrnnidn.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
64, 5atbase 38154 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
7 fvresi 7170 . . . . 5 (𝑃 ∈ 𝐡 β†’ (( I β†Ύ 𝐡)β€˜π‘ƒ) = 𝑃)
83, 6, 73syl 18 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = ( I β†Ύ 𝐡)) β†’ (( I β†Ύ 𝐡)β€˜π‘ƒ) = 𝑃)
92, 8eqtrd 2772 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 = ( I β†Ύ 𝐡)) β†’ (πΉβ€˜π‘ƒ) = 𝑃)
109ex 413 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐹 = ( I β†Ύ 𝐡) β†’ (πΉβ€˜π‘ƒ) = 𝑃))
11 simpl1 1191 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
12 simpl2 1192 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ 𝐹 ∈ 𝑇)
13 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
14 simpl3 1193 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
15 ltrnnidn.l . . . . . 6 ≀ = (leβ€˜πΎ)
16 ltrnnidn.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
17 ltrnnidn.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
184, 15, 5, 16, 17ltrnnidn 39040 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (πΉβ€˜π‘ƒ) β‰  𝑃)
1911, 12, 13, 14, 18syl121anc 1375 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ 𝐹 β‰  ( I β†Ύ 𝐡)) β†’ (πΉβ€˜π‘ƒ) β‰  𝑃)
2019ex 413 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐹 β‰  ( I β†Ύ 𝐡) β†’ (πΉβ€˜π‘ƒ) β‰  𝑃))
2120necon4d 2964 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ ((πΉβ€˜π‘ƒ) = 𝑃 β†’ 𝐹 = ( I β†Ύ 𝐡)))
2210, 21impbid 211 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝐹 = ( I β†Ύ 𝐡) ↔ (πΉβ€˜π‘ƒ) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5148   I cid 5573   β†Ύ cres 5678  β€˜cfv 6543  Basecbs 17143  lecple 17203  Atomscatm 38128  HLchlt 38215  LHypclh 38850  LTrncltrn 38967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-lhyp 38854  df-laut 38855  df-ldil 38970  df-ltrn 38971  df-trl 39025
This theorem is referenced by:  trlid0  39042  trlnidatb  39043  ltrn2ateq  39046  cdlemd8  39071  ltrniotaidvalN  39449  cdlemkid4  39800  dia2dimlem7  39936
  Copyright terms: Public domain W3C validator