Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapip0 | Structured version Visualization version GIF version |
Description: Zero property that will be used for inner product. (Contributed by NM, 9-Jun-2015.) |
Ref | Expression |
---|---|
hdmapip0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapip0.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapip0.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapip0.o | ⊢ 0 = (0g‘𝑈) |
hdmapip0.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmapip0.z | ⊢ 𝑍 = (0g‘𝑅) |
hdmapip0.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapip0.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapip0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
hdmapip0 | ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑋) = 𝑍 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapip0.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2737 | . . . . . . . 8 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
3 | hdmapip0.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | hdmapip0.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑈) | |
5 | hdmapip0.o | . . . . . . . 8 ⊢ 0 = (0g‘𝑈) | |
6 | hdmapip0.k | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 6 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
8 | hdmapip0.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
9 | 8 | anim1i 615 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) |
10 | eldifsn 4732 | . . . . . . . . 9 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 )) | |
11 | 9, 10 | sylibr 233 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
12 | 1, 2, 3, 4, 5, 7, 11 | dochnel 39612 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → ¬ 𝑋 ∈ (((ocH‘𝐾)‘𝑊)‘{𝑋})) |
13 | hdmapip0.r | . . . . . . . . . . . 12 ⊢ 𝑅 = (Scalar‘𝑈) | |
14 | hdmapip0.z | . . . . . . . . . . . 12 ⊢ 𝑍 = (0g‘𝑅) | |
15 | eqid 2737 | . . . . . . . . . . . 12 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
16 | eqid 2737 | . . . . . . . . . . . 12 ⊢ (LKer‘𝑈) = (LKer‘𝑈) | |
17 | 1, 3, 6 | dvhlmod 39329 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑈 ∈ LMod) |
18 | eqid 2737 | . . . . . . . . . . . . 13 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
19 | eqid 2737 | . . . . . . . . . . . . 13 ⊢ (Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊)) | |
20 | hdmapip0.s | . . . . . . . . . . . . . 14 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
21 | 1, 3, 4, 18, 19, 20, 6, 8 | hdmapcl 40049 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) |
22 | 1, 18, 19, 3, 15, 6, 21 | lcdvbaselfl 39814 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (LFnl‘𝑈)) |
23 | 4, 13, 14, 15, 16, 17, 22, 8 | ellkr2 37309 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑋 ∈ ((LKer‘𝑈)‘(𝑆‘𝑋)) ↔ ((𝑆‘𝑋)‘𝑋) = 𝑍)) |
24 | 23 | biimpar 478 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ((𝑆‘𝑋)‘𝑋) = 𝑍) → 𝑋 ∈ ((LKer‘𝑈)‘(𝑆‘𝑋))) |
25 | 1, 2, 3, 4, 15, 16, 20, 6, 8 | hdmaplkr 40132 | . . . . . . . . . . 11 ⊢ (𝜑 → ((LKer‘𝑈)‘(𝑆‘𝑋)) = (((ocH‘𝐾)‘𝑊)‘{𝑋})) |
26 | 25 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ((𝑆‘𝑋)‘𝑋) = 𝑍) → ((LKer‘𝑈)‘(𝑆‘𝑋)) = (((ocH‘𝐾)‘𝑊)‘{𝑋})) |
27 | 24, 26 | eleqtrd 2840 | . . . . . . . . 9 ⊢ ((𝜑 ∧ ((𝑆‘𝑋)‘𝑋) = 𝑍) → 𝑋 ∈ (((ocH‘𝐾)‘𝑊)‘{𝑋})) |
28 | 27 | ex 413 | . . . . . . . 8 ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑋) = 𝑍 → 𝑋 ∈ (((ocH‘𝐾)‘𝑊)‘{𝑋}))) |
29 | 28 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → (((𝑆‘𝑋)‘𝑋) = 𝑍 → 𝑋 ∈ (((ocH‘𝐾)‘𝑊)‘{𝑋}))) |
30 | 12, 29 | mtod 197 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → ¬ ((𝑆‘𝑋)‘𝑋) = 𝑍) |
31 | 30 | neqned 2948 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 0 ) → ((𝑆‘𝑋)‘𝑋) ≠ 𝑍) |
32 | 31 | ex 413 | . . . 4 ⊢ (𝜑 → (𝑋 ≠ 0 → ((𝑆‘𝑋)‘𝑋) ≠ 𝑍)) |
33 | 32 | necon4d 2965 | . . 3 ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑋) = 𝑍 → 𝑋 = 0 )) |
34 | 33 | imp 407 | . 2 ⊢ ((𝜑 ∧ ((𝑆‘𝑋)‘𝑋) = 𝑍) → 𝑋 = 0 ) |
35 | fveq2 6811 | . . 3 ⊢ (𝑋 = 0 → ((𝑆‘𝑋)‘𝑋) = ((𝑆‘𝑋)‘ 0 )) | |
36 | 13, 14, 5, 15 | lfl0 37283 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ (𝑆‘𝑋) ∈ (LFnl‘𝑈)) → ((𝑆‘𝑋)‘ 0 ) = 𝑍) |
37 | 17, 22, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑆‘𝑋)‘ 0 ) = 𝑍) |
38 | 35, 37 | sylan9eqr 2799 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → ((𝑆‘𝑋)‘𝑋) = 𝑍) |
39 | 34, 38 | impbida 798 | 1 ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑋) = 𝑍 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∖ cdif 3894 {csn 4571 ‘cfv 6465 Basecbs 16982 Scalarcsca 17035 0gc0g 17220 LModclmod 20195 LFnlclfn 37275 LKerclk 37303 HLchlt 37568 LHypclh 38203 DVecHcdvh 39297 ocHcoch 39566 LCDualclcd 39805 HDMapchdma 40011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-riotaBAD 37171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-om 7758 df-1st 7876 df-2nd 7877 df-tpos 8089 df-undef 8136 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-map 8665 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-n0 12307 df-z 12393 df-uz 12656 df-fz 13313 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-sca 17048 df-vsca 17049 df-0g 17222 df-mre 17365 df-mrc 17366 df-acs 17368 df-proset 18083 df-poset 18101 df-plt 18118 df-lub 18134 df-glb 18135 df-join 18136 df-meet 18137 df-p0 18213 df-p1 18214 df-lat 18220 df-clat 18287 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-submnd 18501 df-grp 18649 df-minusg 18650 df-sbg 18651 df-subg 18821 df-cntz 18992 df-oppg 19019 df-lsm 19310 df-cmn 19456 df-abl 19457 df-mgp 19789 df-ur 19806 df-ring 19853 df-oppr 19930 df-dvdsr 19951 df-unit 19952 df-invr 19982 df-dvr 19993 df-drng 20065 df-lmod 20197 df-lss 20266 df-lsp 20306 df-lvec 20437 df-lsatoms 37194 df-lshyp 37195 df-lcv 37237 df-lfl 37276 df-lkr 37304 df-ldual 37342 df-oposet 37394 df-ol 37396 df-oml 37397 df-covers 37484 df-ats 37485 df-atl 37516 df-cvlat 37540 df-hlat 37569 df-llines 37717 df-lplanes 37718 df-lvols 37719 df-lines 37720 df-psubsp 37722 df-pmap 37723 df-padd 38015 df-lhyp 38207 df-laut 38208 df-ldil 38323 df-ltrn 38324 df-trl 38378 df-tgrp 38962 df-tendo 38974 df-edring 38976 df-dveca 39222 df-disoa 39248 df-dvech 39298 df-dib 39358 df-dic 39392 df-dih 39448 df-doch 39567 df-djh 39614 df-lcdual 39806 df-mapd 39844 df-hvmap 39976 df-hdmap1 40012 df-hdmap 40013 |
This theorem is referenced by: hdmapip1 40135 hgmapvvlem3 40144 hlhilphllem 40182 |
Copyright terms: Public domain | W3C validator |