![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapip0 | Structured version Visualization version GIF version |
Description: Zero property that will be used for inner product. (Contributed by NM, 9-Jun-2015.) |
Ref | Expression |
---|---|
hdmapip0.h | β’ π» = (LHypβπΎ) |
hdmapip0.u | β’ π = ((DVecHβπΎ)βπ) |
hdmapip0.v | β’ π = (Baseβπ) |
hdmapip0.o | β’ 0 = (0gβπ) |
hdmapip0.r | β’ π = (Scalarβπ) |
hdmapip0.z | β’ π = (0gβπ ) |
hdmapip0.s | β’ π = ((HDMapβπΎ)βπ) |
hdmapip0.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmapip0.x | β’ (π β π β π) |
Ref | Expression |
---|---|
hdmapip0 | β’ (π β (((πβπ)βπ) = π β π = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapip0.h | . . . . . . . 8 β’ π» = (LHypβπΎ) | |
2 | eqid 2728 | . . . . . . . 8 β’ ((ocHβπΎ)βπ) = ((ocHβπΎ)βπ) | |
3 | hdmapip0.u | . . . . . . . 8 β’ π = ((DVecHβπΎ)βπ) | |
4 | hdmapip0.v | . . . . . . . 8 β’ π = (Baseβπ) | |
5 | hdmapip0.o | . . . . . . . 8 β’ 0 = (0gβπ) | |
6 | hdmapip0.k | . . . . . . . . 9 β’ (π β (πΎ β HL β§ π β π»)) | |
7 | 6 | adantr 479 | . . . . . . . 8 β’ ((π β§ π β 0 ) β (πΎ β HL β§ π β π»)) |
8 | hdmapip0.x | . . . . . . . . . 10 β’ (π β π β π) | |
9 | 8 | anim1i 613 | . . . . . . . . 9 β’ ((π β§ π β 0 ) β (π β π β§ π β 0 )) |
10 | eldifsn 4795 | . . . . . . . . 9 β’ (π β (π β { 0 }) β (π β π β§ π β 0 )) | |
11 | 9, 10 | sylibr 233 | . . . . . . . 8 β’ ((π β§ π β 0 ) β π β (π β { 0 })) |
12 | 1, 2, 3, 4, 5, 7, 11 | dochnel 40906 | . . . . . . 7 β’ ((π β§ π β 0 ) β Β¬ π β (((ocHβπΎ)βπ)β{π})) |
13 | hdmapip0.r | . . . . . . . . . . . 12 β’ π = (Scalarβπ) | |
14 | hdmapip0.z | . . . . . . . . . . . 12 β’ π = (0gβπ ) | |
15 | eqid 2728 | . . . . . . . . . . . 12 β’ (LFnlβπ) = (LFnlβπ) | |
16 | eqid 2728 | . . . . . . . . . . . 12 β’ (LKerβπ) = (LKerβπ) | |
17 | 1, 3, 6 | dvhlmod 40623 | . . . . . . . . . . . 12 β’ (π β π β LMod) |
18 | eqid 2728 | . . . . . . . . . . . . 13 β’ ((LCDualβπΎ)βπ) = ((LCDualβπΎ)βπ) | |
19 | eqid 2728 | . . . . . . . . . . . . 13 β’ (Baseβ((LCDualβπΎ)βπ)) = (Baseβ((LCDualβπΎ)βπ)) | |
20 | hdmapip0.s | . . . . . . . . . . . . . 14 β’ π = ((HDMapβπΎ)βπ) | |
21 | 1, 3, 4, 18, 19, 20, 6, 8 | hdmapcl 41343 | . . . . . . . . . . . . 13 β’ (π β (πβπ) β (Baseβ((LCDualβπΎ)βπ))) |
22 | 1, 18, 19, 3, 15, 6, 21 | lcdvbaselfl 41108 | . . . . . . . . . . . 12 β’ (π β (πβπ) β (LFnlβπ)) |
23 | 4, 13, 14, 15, 16, 17, 22, 8 | ellkr2 38603 | . . . . . . . . . . 11 β’ (π β (π β ((LKerβπ)β(πβπ)) β ((πβπ)βπ) = π)) |
24 | 23 | biimpar 476 | . . . . . . . . . 10 β’ ((π β§ ((πβπ)βπ) = π) β π β ((LKerβπ)β(πβπ))) |
25 | 1, 2, 3, 4, 15, 16, 20, 6, 8 | hdmaplkr 41426 | . . . . . . . . . . 11 β’ (π β ((LKerβπ)β(πβπ)) = (((ocHβπΎ)βπ)β{π})) |
26 | 25 | adantr 479 | . . . . . . . . . 10 β’ ((π β§ ((πβπ)βπ) = π) β ((LKerβπ)β(πβπ)) = (((ocHβπΎ)βπ)β{π})) |
27 | 24, 26 | eleqtrd 2831 | . . . . . . . . 9 β’ ((π β§ ((πβπ)βπ) = π) β π β (((ocHβπΎ)βπ)β{π})) |
28 | 27 | ex 411 | . . . . . . . 8 β’ (π β (((πβπ)βπ) = π β π β (((ocHβπΎ)βπ)β{π}))) |
29 | 28 | adantr 479 | . . . . . . 7 β’ ((π β§ π β 0 ) β (((πβπ)βπ) = π β π β (((ocHβπΎ)βπ)β{π}))) |
30 | 12, 29 | mtod 197 | . . . . . 6 β’ ((π β§ π β 0 ) β Β¬ ((πβπ)βπ) = π) |
31 | 30 | neqned 2944 | . . . . 5 β’ ((π β§ π β 0 ) β ((πβπ)βπ) β π) |
32 | 31 | ex 411 | . . . 4 β’ (π β (π β 0 β ((πβπ)βπ) β π)) |
33 | 32 | necon4d 2961 | . . 3 β’ (π β (((πβπ)βπ) = π β π = 0 )) |
34 | 33 | imp 405 | . 2 β’ ((π β§ ((πβπ)βπ) = π) β π = 0 ) |
35 | fveq2 6902 | . . 3 β’ (π = 0 β ((πβπ)βπ) = ((πβπ)β 0 )) | |
36 | 13, 14, 5, 15 | lfl0 38577 | . . . 4 β’ ((π β LMod β§ (πβπ) β (LFnlβπ)) β ((πβπ)β 0 ) = π) |
37 | 17, 22, 36 | syl2anc 582 | . . 3 β’ (π β ((πβπ)β 0 ) = π) |
38 | 35, 37 | sylan9eqr 2790 | . 2 β’ ((π β§ π = 0 ) β ((πβπ)βπ) = π) |
39 | 34, 38 | impbida 799 | 1 β’ (π β (((πβπ)βπ) = π β π = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2937 β cdif 3946 {csn 4632 βcfv 6553 Basecbs 17189 Scalarcsca 17245 0gc0g 17430 LModclmod 20757 LFnlclfn 38569 LKerclk 38597 HLchlt 38862 LHypclh 39497 DVecHcdvh 40591 ocHcoch 40860 LCDualclcd 41099 HDMapchdma 41305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-riotaBAD 38465 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7879 df-1st 8001 df-2nd 8002 df-tpos 8240 df-undef 8287 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8855 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-n0 12513 df-z 12599 df-uz 12863 df-fz 13527 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-mulr 17256 df-sca 17258 df-vsca 17259 df-0g 17432 df-mre 17575 df-mrc 17576 df-acs 17578 df-proset 18296 df-poset 18314 df-plt 18331 df-lub 18347 df-glb 18348 df-join 18349 df-meet 18350 df-p0 18426 df-p1 18427 df-lat 18433 df-clat 18500 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-submnd 18750 df-grp 18907 df-minusg 18908 df-sbg 18909 df-subg 19092 df-cntz 19282 df-oppg 19311 df-lsm 19605 df-cmn 19751 df-abl 19752 df-mgp 20089 df-rng 20107 df-ur 20136 df-ring 20189 df-oppr 20287 df-dvdsr 20310 df-unit 20311 df-invr 20341 df-dvr 20354 df-drng 20640 df-lmod 20759 df-lss 20830 df-lsp 20870 df-lvec 21002 df-lsatoms 38488 df-lshyp 38489 df-lcv 38531 df-lfl 38570 df-lkr 38598 df-ldual 38636 df-oposet 38688 df-ol 38690 df-oml 38691 df-covers 38778 df-ats 38779 df-atl 38810 df-cvlat 38834 df-hlat 38863 df-llines 39011 df-lplanes 39012 df-lvols 39013 df-lines 39014 df-psubsp 39016 df-pmap 39017 df-padd 39309 df-lhyp 39501 df-laut 39502 df-ldil 39617 df-ltrn 39618 df-trl 39672 df-tgrp 40256 df-tendo 40268 df-edring 40270 df-dveca 40516 df-disoa 40542 df-dvech 40592 df-dib 40652 df-dic 40686 df-dih 40742 df-doch 40861 df-djh 40908 df-lcdual 41100 df-mapd 41138 df-hvmap 41270 df-hdmap1 41306 df-hdmap 41307 |
This theorem is referenced by: hdmapip1 41429 hgmapvvlem3 41438 hlhilphllem 41476 |
Copyright terms: Public domain | W3C validator |