Step | Hyp | Ref
| Expression |
1 | | simp3 1135 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹 LIndF 𝑊) |
2 | | simp1 1133 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝑊 ∈ LMod) |
3 | | lindff1.b |
. . . 4
⊢ 𝐵 = (Base‘𝑊) |
4 | 3 | lindff 20585 |
. . 3
⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶𝐵) |
5 | 1, 2, 4 | syl2anc 587 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶𝐵) |
6 | | simpl1 1188 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑊 ∈ LMod) |
7 | | imassrn 5916 |
. . . . . . . . . 10
⊢ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹 |
8 | 5 | frnd 6509 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ⊆ 𝐵) |
9 | 7, 8 | sstrid 3905 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) |
10 | 9 | adantr 484 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) |
11 | | eqid 2758 |
. . . . . . . . 9
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
12 | 3, 11 | lspssid 19830 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
13 | 6, 10, 12 | syl2anc 587 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
14 | 5 | ffund 6506 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → Fun 𝐹) |
15 | 14 | adantr 484 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → Fun 𝐹) |
16 | | simprll 778 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ dom 𝐹) |
17 | 15, 16 | jca 515 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹)) |
18 | | eldifsn 4680 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑥 ∈ dom 𝐹 ∧ 𝑥 ≠ 𝑦)) |
19 | 18 | biimpri 231 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦})) |
20 | 19 | adantlr 714 |
. . . . . . . . 9
⊢ (((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦})) |
21 | 20 | adantl 485 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦})) |
22 | | funfvima 6989 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹‘𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
23 | 17, 21, 22 | sylc 65 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) |
24 | 13, 23 | sseldd 3895 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
25 | | simpl2 1189 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝐿 ∈ NzRing) |
26 | | simpl3 1190 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝐹 LIndF 𝑊) |
27 | | simprlr 779 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ dom 𝐹) |
28 | | lindff1.l |
. . . . . . . 8
⊢ 𝐿 = (Scalar‘𝑊) |
29 | 11, 28 | lindfind2 20588 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝑦 ∈ dom 𝐹) → ¬ (𝐹‘𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
30 | 6, 25, 26, 27, 29 | syl211anc 1373 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → ¬ (𝐹‘𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
31 | | nelne2 3048 |
. . . . . 6
⊢ (((𝐹‘𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))) ∧ ¬ (𝐹‘𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
32 | 24, 30, 31 | syl2anc 587 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
33 | 32 | expr 460 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
34 | 33 | necon4d 2975 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
35 | 34 | ralrimivva 3120 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
36 | | dff13 7010 |
. 2
⊢ (𝐹:dom 𝐹–1-1→𝐵 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
37 | 5, 35, 36 | sylanbrc 586 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→𝐵) |