Step | Hyp | Ref
| Expression |
1 | | simp3 1132 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹 LIndF 𝑊) |
2 | | simp1 1130 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝑊 ∈ LMod) |
3 | | lindff1.b |
. . . 4
⊢ 𝐵 = (Base‘𝑊) |
4 | 3 | lindff 20372 |
. . 3
⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶𝐵) |
5 | 1, 2, 4 | syl2anc 567 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶𝐵) |
6 | | simpl1 1227 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑊 ∈ LMod) |
7 | | imassrn 5619 |
. . . . . . . . . 10
⊢ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹 |
8 | | frn 6194 |
. . . . . . . . . . 11
⊢ (𝐹:dom 𝐹⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
9 | 5, 8 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ⊆ 𝐵) |
10 | 7, 9 | syl5ss 3764 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) |
11 | 10 | adantr 466 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) |
12 | | eqid 2771 |
. . . . . . . . 9
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
13 | 3, 12 | lspssid 19199 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
14 | 6, 11, 13 | syl2anc 567 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
15 | | ffun 6189 |
. . . . . . . . . . 11
⊢ (𝐹:dom 𝐹⟶𝐵 → Fun 𝐹) |
16 | 5, 15 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → Fun 𝐹) |
17 | 16 | adantr 466 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → Fun 𝐹) |
18 | | simprll 758 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ dom 𝐹) |
19 | 17, 18 | jca 497 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹)) |
20 | | eldifsn 4454 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑥 ∈ dom 𝐹 ∧ 𝑥 ≠ 𝑦)) |
21 | 20 | biimpri 218 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦})) |
22 | 21 | adantlr 688 |
. . . . . . . . 9
⊢ (((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦})) |
23 | 22 | adantl 467 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦})) |
24 | | funfvima 6636 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹‘𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
25 | 19, 23, 24 | sylc 65 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) |
26 | 14, 25 | sseldd 3754 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
27 | | simpl2 1229 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝐿 ∈ NzRing) |
28 | | simpl3 1231 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝐹 LIndF 𝑊) |
29 | | simprlr 759 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ dom 𝐹) |
30 | | lindff1.l |
. . . . . . . 8
⊢ 𝐿 = (Scalar‘𝑊) |
31 | 12, 30 | lindfind2 20375 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝑦 ∈ dom 𝐹) → ¬ (𝐹‘𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
32 | 6, 27, 28, 29, 31 | syl211anc 1482 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → ¬ (𝐹‘𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
33 | | nelne2 3040 |
. . . . . 6
⊢ (((𝐹‘𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))) ∧ ¬ (𝐹‘𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
34 | 26, 32, 33 | syl2anc 567 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
35 | 34 | expr 444 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
36 | 35 | necon4d 2967 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
37 | 36 | ralrimivva 3120 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
38 | | dff13 6656 |
. 2
⊢ (𝐹:dom 𝐹–1-1→𝐵 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
39 | 5, 37, 38 | sylanbrc 566 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→𝐵) |