MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindff1 Structured version   Visualization version   GIF version

Theorem lindff1 21752
Description: A linearly independent family over a nonzero ring has no repeated elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindff1.b 𝐵 = (Base‘𝑊)
lindff1.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
lindff1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1𝐵)

Proof of Theorem lindff1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹 LIndF 𝑊)
2 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝑊 ∈ LMod)
3 lindff1.b . . . 4 𝐵 = (Base‘𝑊)
43lindff 21747 . . 3 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹𝐵)
51, 2, 4syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹𝐵)
6 simpl1 1192 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑊 ∈ LMod)
7 imassrn 6015 . . . . . . . . . 10 (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹
85frnd 6654 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ran 𝐹𝐵)
97, 8sstrid 3941 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵)
109adantr 480 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵)
11 eqid 2731 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
123, 11lspssid 20913 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
136, 10, 12syl2anc 584 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
145ffund 6650 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → Fun 𝐹)
1514adantr 480 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → Fun 𝐹)
16 simprll 778 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑥 ∈ dom 𝐹)
1715, 16jca 511 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (Fun 𝐹𝑥 ∈ dom 𝐹))
18 eldifsn 4733 . . . . . . . . . . 11 (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑥 ∈ dom 𝐹𝑥𝑦))
1918biimpri 228 . . . . . . . . . 10 ((𝑥 ∈ dom 𝐹𝑥𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
2019adantlr 715 . . . . . . . . 9 (((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
2120adantl 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
22 funfvima 7159 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
2317, 21, 22sylc 65 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
2413, 23sseldd 3930 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
25 simpl2 1193 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝐿 ∈ NzRing)
26 simpl3 1194 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝐹 LIndF 𝑊)
27 simprlr 779 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑦 ∈ dom 𝐹)
28 lindff1.l . . . . . . . 8 𝐿 = (Scalar‘𝑊)
2911, 28lindfind2 21750 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝑦 ∈ dom 𝐹) → ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
306, 25, 26, 27, 29syl211anc 1378 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
31 nelne2 3026 . . . . . 6 (((𝐹𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))) ∧ ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) → (𝐹𝑥) ≠ (𝐹𝑦))
3224, 30, 31syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
3332expr 456 . . . 4 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
3433necon4d 2952 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3534ralrimivva 3175 . 2 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
36 dff13 7183 . 2 (𝐹:dom 𝐹1-1𝐵 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
375, 35, 36sylanbrc 583 1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  cdif 3894  wss 3897  {csn 4571   class class class wbr 5086  dom cdm 5611  ran crn 5612  cima 5614  Fun wfun 6470  wf 6472  1-1wf1 6473  cfv 6476  Basecbs 17115  Scalarcsca 17159  NzRingcnzr 20422  LModclmod 20788  LSpanclspn 20899   LIndF clindf 21736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-mgp 20054  df-ur 20095  df-ring 20148  df-nzr 20423  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lindf 21738
This theorem is referenced by:  islindf3  21758  matunitlindflem2  37657
  Copyright terms: Public domain W3C validator