| Step | Hyp | Ref
| Expression |
| 1 | | simp3 1139 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹 LIndF 𝑊) |
| 2 | | simp1 1137 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝑊 ∈ LMod) |
| 3 | | lindff1.b |
. . . 4
⊢ 𝐵 = (Base‘𝑊) |
| 4 | 3 | lindff 21835 |
. . 3
⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶𝐵) |
| 5 | 1, 2, 4 | syl2anc 584 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶𝐵) |
| 6 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑊 ∈ LMod) |
| 7 | | imassrn 6089 |
. . . . . . . . . 10
⊢ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹 |
| 8 | 5 | frnd 6744 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ⊆ 𝐵) |
| 9 | 7, 8 | sstrid 3995 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) |
| 10 | 9 | adantr 480 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) |
| 11 | | eqid 2737 |
. . . . . . . . 9
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
| 12 | 3, 11 | lspssid 20983 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
| 13 | 6, 10, 12 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
| 14 | 5 | ffund 6740 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → Fun 𝐹) |
| 15 | 14 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → Fun 𝐹) |
| 16 | | simprll 779 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ dom 𝐹) |
| 17 | 15, 16 | jca 511 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹)) |
| 18 | | eldifsn 4786 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑥 ∈ dom 𝐹 ∧ 𝑥 ≠ 𝑦)) |
| 19 | 18 | biimpri 228 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦})) |
| 20 | 19 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦})) |
| 21 | 20 | adantl 481 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦})) |
| 22 | | funfvima 7250 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹‘𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
| 23 | 17, 21, 22 | sylc 65 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))) |
| 24 | 13, 23 | sseldd 3984 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
| 25 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝐿 ∈ NzRing) |
| 26 | | simpl3 1194 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝐹 LIndF 𝑊) |
| 27 | | simprlr 780 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ dom 𝐹) |
| 28 | | lindff1.l |
. . . . . . . 8
⊢ 𝐿 = (Scalar‘𝑊) |
| 29 | 11, 28 | lindfind2 21838 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝑦 ∈ dom 𝐹) → ¬ (𝐹‘𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
| 30 | 6, 25, 26, 27, 29 | syl211anc 1378 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → ¬ (𝐹‘𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) |
| 31 | | nelne2 3040 |
. . . . . 6
⊢ (((𝐹‘𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))) ∧ ¬ (𝐹‘𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
| 32 | 24, 30, 31 | syl2anc 584 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
| 33 | 32 | expr 456 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| 34 | 33 | necon4d 2964 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 35 | 34 | ralrimivva 3202 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 36 | | dff13 7275 |
. 2
⊢ (𝐹:dom 𝐹–1-1→𝐵 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ dom 𝐹((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
| 37 | 5, 35, 36 | sylanbrc 583 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→𝐵) |