MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindff1 Structured version   Visualization version   GIF version

Theorem lindff1 21766
Description: A linearly independent family over a nonzero ring has no repeated elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindff1.b 𝐵 = (Base‘𝑊)
lindff1.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
lindff1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1𝐵)

Proof of Theorem lindff1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹 LIndF 𝑊)
2 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝑊 ∈ LMod)
3 lindff1.b . . . 4 𝐵 = (Base‘𝑊)
43lindff 21761 . . 3 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹𝐵)
51, 2, 4syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹𝐵)
6 simpl1 1192 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑊 ∈ LMod)
7 imassrn 6027 . . . . . . . . . 10 (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹
85frnd 6667 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ran 𝐹𝐵)
97, 8sstrid 3942 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵)
109adantr 480 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵)
11 eqid 2733 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
123, 11lspssid 20927 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
136, 10, 12syl2anc 584 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
145ffund 6663 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → Fun 𝐹)
1514adantr 480 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → Fun 𝐹)
16 simprll 778 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑥 ∈ dom 𝐹)
1715, 16jca 511 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (Fun 𝐹𝑥 ∈ dom 𝐹))
18 eldifsn 4739 . . . . . . . . . . 11 (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑥 ∈ dom 𝐹𝑥𝑦))
1918biimpri 228 . . . . . . . . . 10 ((𝑥 ∈ dom 𝐹𝑥𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
2019adantlr 715 . . . . . . . . 9 (((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
2120adantl 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
22 funfvima 7173 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
2317, 21, 22sylc 65 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
2413, 23sseldd 3931 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
25 simpl2 1193 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝐿 ∈ NzRing)
26 simpl3 1194 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝐹 LIndF 𝑊)
27 simprlr 779 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑦 ∈ dom 𝐹)
28 lindff1.l . . . . . . . 8 𝐿 = (Scalar‘𝑊)
2911, 28lindfind2 21764 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝑦 ∈ dom 𝐹) → ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
306, 25, 26, 27, 29syl211anc 1378 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
31 nelne2 3027 . . . . . 6 (((𝐹𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))) ∧ ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) → (𝐹𝑥) ≠ (𝐹𝑦))
3224, 30, 31syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
3332expr 456 . . . 4 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
3433necon4d 2953 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3534ralrimivva 3176 . 2 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
36 dff13 7197 . 2 (𝐹:dom 𝐹1-1𝐵 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
375, 35, 36sylanbrc 583 1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  cdif 3895  wss 3898  {csn 4577   class class class wbr 5095  dom cdm 5621  ran crn 5622  cima 5624  Fun wfun 6483  wf 6485  1-1wf1 6486  cfv 6489  Basecbs 17127  Scalarcsca 17171  NzRingcnzr 20436  LModclmod 20802  LSpanclspn 20913   LIndF clindf 21750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-mgp 20067  df-ur 20108  df-ring 20161  df-nzr 20437  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lindf 21752
This theorem is referenced by:  islindf3  21772  matunitlindflem2  37730
  Copyright terms: Public domain W3C validator