MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindff1 Structured version   Visualization version   GIF version

Theorem lindff1 20883
Description: A linearly independent family over a nonzero ring has no repeated elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindff1.b 𝐵 = (Base‘𝑊)
lindff1.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
lindff1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1𝐵)

Proof of Theorem lindff1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1132 . . 3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹 LIndF 𝑊)
2 simp1 1130 . . 3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝑊 ∈ LMod)
3 lindff1.b . . . 4 𝐵 = (Base‘𝑊)
43lindff 20878 . . 3 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹𝐵)
51, 2, 4syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹𝐵)
6 simpl1 1185 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑊 ∈ LMod)
7 imassrn 5937 . . . . . . . . . 10 (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹
85frnd 6517 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ran 𝐹𝐵)
97, 8sstrid 3981 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵)
109adantr 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵)
11 eqid 2825 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
123, 11lspssid 19680 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
136, 10, 12syl2anc 584 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
145ffund 6514 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → Fun 𝐹)
1514adantr 481 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → Fun 𝐹)
16 simprll 775 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑥 ∈ dom 𝐹)
1715, 16jca 512 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (Fun 𝐹𝑥 ∈ dom 𝐹))
18 eldifsn 4717 . . . . . . . . . . 11 (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑥 ∈ dom 𝐹𝑥𝑦))
1918biimpri 229 . . . . . . . . . 10 ((𝑥 ∈ dom 𝐹𝑥𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
2019adantlr 711 . . . . . . . . 9 (((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
2120adantl 482 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
22 funfvima 6990 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
2317, 21, 22sylc 65 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
2413, 23sseldd 3971 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
25 simpl2 1186 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝐿 ∈ NzRing)
26 simpl3 1187 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝐹 LIndF 𝑊)
27 simprlr 776 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑦 ∈ dom 𝐹)
28 lindff1.l . . . . . . . 8 𝐿 = (Scalar‘𝑊)
2911, 28lindfind2 20881 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝑦 ∈ dom 𝐹) → ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
306, 25, 26, 27, 29syl211anc 1370 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
31 nelne2 3119 . . . . . 6 (((𝐹𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))) ∧ ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) → (𝐹𝑥) ≠ (𝐹𝑦))
3224, 30, 31syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
3332expr 457 . . . 4 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
3433necon4d 3044 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3534ralrimivva 3195 . 2 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
36 dff13 7010 . 2 (𝐹:dom 𝐹1-1𝐵 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
375, 35, 36sylanbrc 583 1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020  wral 3142  cdif 3936  wss 3939  {csn 4563   class class class wbr 5062  dom cdm 5553  ran crn 5554  cima 5556  Fun wfun 6345  wf 6347  1-1wf1 6348  cfv 6351  Basecbs 16476  Scalarcsca 16561  LModclmod 19557  LSpanclspn 19666  NzRingcnzr 19952   LIndF clindf 20867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-plusg 16571  df-0g 16708  df-mgm 17845  df-sgrp 17893  df-mnd 17904  df-grp 18039  df-mgp 19163  df-ur 19175  df-ring 19222  df-lmod 19559  df-lss 19627  df-lsp 19667  df-nzr 19953  df-lindf 20869
This theorem is referenced by:  islindf3  20889  matunitlindflem2  34759
  Copyright terms: Public domain W3C validator