MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa00 Structured version   Visualization version   GIF version

Theorem oa00 8523
Description: An ordinal sum is zero iff both of its arguments are zero. Lemma 3.10 of [Schloeder] p. 8. (Contributed by NM, 6-Dec-2004.)
Assertion
Ref Expression
oa00 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))

Proof of Theorem oa00
StepHypRef Expression
1 on0eln0 6389 . . . . . . 7 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
21adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴𝐴 ≠ ∅))
3 oaword1 8516 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
43sseld 3945 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 +o 𝐵)))
52, 4sylbird 260 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → ∅ ∈ (𝐴 +o 𝐵)))
6 ne0i 4304 . . . . 5 (∅ ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅)
75, 6syl6 35 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → (𝐴 +o 𝐵) ≠ ∅))
87necon4d 2949 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → 𝐴 = ∅))
9 on0eln0 6389 . . . . . . 7 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
109adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐵 ≠ ∅))
11 0elon 6387 . . . . . . . 8 ∅ ∈ On
12 oaord 8511 . . . . . . . 8 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
1311, 12mp3an1 1450 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
1413ancoms 458 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
1510, 14bitr3d 281 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
16 ne0i 4304 . . . . 5 ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅)
1715, 16biimtrdi 253 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ → (𝐴 +o 𝐵) ≠ ∅))
1817necon4d 2949 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → 𝐵 = ∅))
198, 18jcad 512 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅)))
20 oveq12 7396 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 +o 𝐵) = (∅ +o ∅))
21 oa0 8480 . . . 4 (∅ ∈ On → (∅ +o ∅) = ∅)
2211, 21ax-mp 5 . . 3 (∅ +o ∅) = ∅
2320, 22eqtrdi 2780 . 2 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 +o 𝐵) = ∅)
2419, 23impbid1 225 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4296  Oncon0 6332  (class class class)co 7387   +o coa 8431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-oadd 8438
This theorem is referenced by:  oalimcl  8524  oeoa  8561
  Copyright terms: Public domain W3C validator