MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa00 Structured version   Visualization version   GIF version

Theorem oa00 8563
Description: An ordinal sum is zero iff both of its arguments are zero. Lemma 3.10 of [Schloeder] p. 8. (Contributed by NM, 6-Dec-2004.)
Assertion
Ref Expression
oa00 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))

Proof of Theorem oa00
StepHypRef Expression
1 on0eln0 6421 . . . . . . 7 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
21adantr 479 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴𝐴 ≠ ∅))
3 oaword1 8556 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
43sseld 3982 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 +o 𝐵)))
52, 4sylbird 259 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → ∅ ∈ (𝐴 +o 𝐵)))
6 ne0i 4335 . . . . 5 (∅ ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅)
75, 6syl6 35 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → (𝐴 +o 𝐵) ≠ ∅))
87necon4d 2962 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → 𝐴 = ∅))
9 on0eln0 6421 . . . . . . 7 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
109adantl 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐵 ≠ ∅))
11 0elon 6419 . . . . . . . 8 ∅ ∈ On
12 oaord 8551 . . . . . . . 8 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
1311, 12mp3an1 1446 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
1413ancoms 457 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
1510, 14bitr3d 280 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
16 ne0i 4335 . . . . 5 ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅)
1715, 16syl6bi 252 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ → (𝐴 +o 𝐵) ≠ ∅))
1817necon4d 2962 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → 𝐵 = ∅))
198, 18jcad 511 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅)))
20 oveq12 7422 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 +o 𝐵) = (∅ +o ∅))
21 oa0 8520 . . . 4 (∅ ∈ On → (∅ +o ∅) = ∅)
2211, 21ax-mp 5 . . 3 (∅ +o ∅) = ∅
2320, 22eqtrdi 2786 . 2 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 +o 𝐵) = ∅)
2419, 23impbid1 224 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wne 2938  c0 4323  Oncon0 6365  (class class class)co 7413   +o coa 8467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-oadd 8474
This theorem is referenced by:  oalimcl  8564  oeoa  8601
  Copyright terms: Public domain W3C validator