MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa00 Structured version   Visualization version   GIF version

Theorem oa00 8200
Description: An ordinal sum is zero iff both of its arguments are zero. (Contributed by NM, 6-Dec-2004.)
Assertion
Ref Expression
oa00 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))

Proof of Theorem oa00
StepHypRef Expression
1 on0eln0 6228 . . . . . . 7 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
21adantr 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴𝐴 ≠ ∅))
3 oaword1 8193 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
43sseld 3893 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 +o 𝐵)))
52, 4sylbird 263 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → ∅ ∈ (𝐴 +o 𝐵)))
6 ne0i 4235 . . . . 5 (∅ ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅)
75, 6syl6 35 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → (𝐴 +o 𝐵) ≠ ∅))
87necon4d 2975 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → 𝐴 = ∅))
9 on0eln0 6228 . . . . . . 7 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
109adantl 485 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐵 ≠ ∅))
11 0elon 6226 . . . . . . . 8 ∅ ∈ On
12 oaord 8188 . . . . . . . 8 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
1311, 12mp3an1 1445 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
1413ancoms 462 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
1510, 14bitr3d 284 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
16 ne0i 4235 . . . . 5 ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅)
1715, 16syl6bi 256 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ → (𝐴 +o 𝐵) ≠ ∅))
1817necon4d 2975 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → 𝐵 = ∅))
198, 18jcad 516 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅)))
20 oveq12 7164 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 +o 𝐵) = (∅ +o ∅))
21 oa0 8156 . . . 4 (∅ ∈ On → (∅ +o ∅) = ∅)
2211, 21ax-mp 5 . . 3 (∅ +o ∅) = ∅
2320, 22eqtrdi 2809 . 2 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 +o 𝐵) = ∅)
2419, 23impbid1 228 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  c0 4227  Oncon0 6173  (class class class)co 7155   +o coa 8114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-oadd 8121
This theorem is referenced by:  oalimcl  8201  oeoa  8238
  Copyright terms: Public domain W3C validator