| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oa00 | Structured version Visualization version GIF version | ||
| Description: An ordinal sum is zero iff both of its arguments are zero. Lemma 3.10 of [Schloeder] p. 8. (Contributed by NM, 6-Dec-2004.) |
| Ref | Expression |
|---|---|
| oa00 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on0eln0 6363 | . . . . . . 7 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 3 | oaword1 8467 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵)) | |
| 4 | 3 | sseld 3928 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 +o 𝐵))) |
| 5 | 2, 4 | sylbird 260 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → ∅ ∈ (𝐴 +o 𝐵))) |
| 6 | ne0i 4288 | . . . . 5 ⊢ (∅ ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅) | |
| 7 | 5, 6 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → (𝐴 +o 𝐵) ≠ ∅)) |
| 8 | 7 | necon4d 2952 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → 𝐴 = ∅)) |
| 9 | on0eln0 6363 | . . . . . . 7 ⊢ (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅)) | |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅)) |
| 11 | 0elon 6361 | . . . . . . . 8 ⊢ ∅ ∈ On | |
| 12 | oaord 8462 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵))) | |
| 13 | 11, 12 | mp3an1 1450 | . . . . . . 7 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵))) |
| 14 | 13 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵))) |
| 15 | 10, 14 | bitr3d 281 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵))) |
| 16 | ne0i 4288 | . . . . 5 ⊢ ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅) | |
| 17 | 15, 16 | biimtrdi 253 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ → (𝐴 +o 𝐵) ≠ ∅)) |
| 18 | 17 | necon4d 2952 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → 𝐵 = ∅)) |
| 19 | 8, 18 | jcad 512 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| 20 | oveq12 7355 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 +o 𝐵) = (∅ +o ∅)) | |
| 21 | oa0 8431 | . . . 4 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
| 22 | 11, 21 | ax-mp 5 | . . 3 ⊢ (∅ +o ∅) = ∅ |
| 23 | 20, 22 | eqtrdi 2782 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 +o 𝐵) = ∅) |
| 24 | 19, 23 | impbid1 225 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 Oncon0 6306 (class class class)co 7346 +o coa 8382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-oadd 8389 |
| This theorem is referenced by: oalimcl 8475 oeoa 8512 |
| Copyright terms: Public domain | W3C validator |