Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundjiun Structured version   Visualization version   GIF version

Theorem iundjiun 46416
Description: Given a sequence 𝐸 of sets, a sequence 𝐹 of disjoint sets is built, such that the indexed union stays the same. As in the proof of Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
iundjiun.nph 𝑛𝜑
iundjiun.z 𝑍 = (ℤ𝑁)
iundjiun.e (𝜑𝐸:𝑍𝑉)
iundjiun.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
iundjiun (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
Distinct variable groups:   𝑖,𝐸,𝑚,𝑛   𝑚,𝐹   𝑖,𝑁,𝑚,𝑛   𝑚,𝑍,𝑛   𝜑,𝑖,𝑚
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑖,𝑛)   𝑉(𝑖,𝑚,𝑛)   𝑍(𝑖)

Proof of Theorem iundjiun
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 5000 . . . . . . . . 9 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) ↔ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
21biimpi 216 . . . . . . . 8 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
32adantl 481 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
4 iundjiun.nph . . . . . . . . 9 𝑛𝜑
5 nfcv 2903 . . . . . . . . . 10 𝑛𝑥
6 nfiu1 5032 . . . . . . . . . 10 𝑛 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)
75, 6nfel 2918 . . . . . . . . 9 𝑛 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)
8 simp2 1136 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑛 ∈ (𝑁...𝑚))
9 simpl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑁...𝑚)) → 𝜑)
10 elfzuz 13557 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ (ℤ𝑁))
11 iundjiun.z . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑁)
1211eqcomi 2744 . . . . . . . . . . . . . . . . 17 (ℤ𝑁) = 𝑍
1310, 12eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑁...𝑚) → 𝑛𝑍)
1413adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑁...𝑚)) → 𝑛𝑍)
15 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → 𝑛𝑍)
16 iundjiun.e . . . . . . . . . . . . . . . . . . 19 (𝜑𝐸:𝑍𝑉)
1716ffvelcdmda 7104 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝑉)
1817difexd 5337 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
19 iundjiun.f . . . . . . . . . . . . . . . . . 18 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
2019fvmpt2 7027 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍 ∧ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
2115, 18, 20syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
22 difssd 4147 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ⊆ (𝐸𝑛))
2321, 22eqsstrd 4034 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐹𝑛) ⊆ (𝐸𝑛))
249, 14, 23syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (𝑁...𝑚)) → (𝐹𝑛) ⊆ (𝐸𝑛))
25243adant3 1131 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → (𝐹𝑛) ⊆ (𝐸𝑛))
26 simp3 1137 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑛))
2725, 26sseldd 3996 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐸𝑛))
28 rspe 3247 . . . . . . . . . . . 12 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
298, 27, 28syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
30 eliun 5000 . . . . . . . . . . 11 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ↔ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
3129, 30sylibr 234 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
32313exp 1118 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (𝑁...𝑚) → (𝑥 ∈ (𝐹𝑛) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))))
334, 7, 32rexlimd 3264 . . . . . . . 8 (𝜑 → (∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)))
3433adantr 480 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)) → (∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)))
353, 34mpd 15 . . . . . 6 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
3635ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
37 dfss3 3984 . . . . 5 ( 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) ⊆ 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ↔ ∀𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
3836, 37sylibr 234 . . . 4 (𝜑 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) ⊆ 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
39 fzssuz 13602 . . . . . . . . 9 (𝑁...𝑚) ⊆ (ℤ𝑁)
4039a1i 11 . . . . . . . 8 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → (𝑁...𝑚) ⊆ (ℤ𝑁))
4130biimpi 216 . . . . . . . 8 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
42 nfv 1912 . . . . . . . . 9 𝑛 𝑥 ∈ (𝐸𝑖)
43 fveq2 6907 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝐸𝑛) = (𝐸𝑖))
4443eleq2d 2825 . . . . . . . . 9 (𝑛 = 𝑖 → (𝑥 ∈ (𝐸𝑛) ↔ 𝑥 ∈ (𝐸𝑖)))
4542, 44uzwo4 44993 . . . . . . . 8 (((𝑁...𝑚) ⊆ (ℤ𝑁) ∧ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))))
4640, 41, 45syl2anc 584 . . . . . . 7 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))))
4746adantl 481 . . . . . 6 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))))
48 simprl 771 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → 𝑥 ∈ (𝐸𝑛))
49 nfv 1912 . . . . . . . . . . . . . . . . 17 𝑖(𝜑𝑛 ∈ (𝑁...𝑚))
50 nfra1 3282 . . . . . . . . . . . . . . . . 17 𝑖𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))
5149, 50nfan 1897 . . . . . . . . . . . . . . . 16 𝑖((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
52 elfzoelz 13696 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ ℤ)
5352zred 12720 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ ℝ)
5453adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ ℝ)
55 elfzelz 13561 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ ℤ)
5655zred 12720 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ ℝ)
5756adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑛 ∈ ℝ)
58 1red 11260 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 1 ∈ ℝ)
5957, 58resubcld 11689 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) ∈ ℝ)
60 elfzolem1 13741 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ≤ (𝑛 − 1))
6160adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ≤ (𝑛 − 1))
6257ltm1d 12198 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) < 𝑛)
6354, 59, 57, 61, 62lelttrd 11417 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑛)
6463ad4ant24 754 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑛)
65 simplr 769 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
66 elfzel1 13560 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (𝑁...𝑚) → 𝑁 ∈ ℤ)
6766adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑁 ∈ ℤ)
68 elfzel2 13559 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (𝑁...𝑚) → 𝑚 ∈ ℤ)
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑚 ∈ ℤ)
7052adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ ℤ)
71 elfzole1 13704 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (𝑁..^𝑛) → 𝑁𝑖)
7271adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑁𝑖)
7369zred 12720 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑚 ∈ ℝ)
74 1red 11260 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ (𝑁...𝑚) → 1 ∈ ℝ)
7556, 74resubcld 11689 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) ∈ ℝ)
7668zred 12720 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → 𝑚 ∈ ℝ)
7756ltm1d 12198 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) < 𝑛)
78 elfzle2 13565 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → 𝑛𝑚)
7975, 56, 76, 77, 78ltletrd 11419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) < 𝑚)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) < 𝑚)
8154, 59, 73, 61, 80lelttrd 11417 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑚)
8254, 73, 81ltled 11407 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖𝑚)
8367, 69, 70, 72, 82elfzd 13552 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ (𝑁...𝑚))
8483adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ (𝑁...𝑚))
85 rspa 3246 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)) ∧ 𝑖 ∈ (𝑁...𝑚)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
8665, 84, 85syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
8786adantlll 718 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
8864, 87mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → ¬ 𝑥 ∈ (𝐸𝑖))
8988ex 412 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → (𝑖 ∈ (𝑁..^𝑛) → ¬ 𝑥 ∈ (𝐸𝑖)))
9051, 89ralrimi 3255 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ∀𝑖 ∈ (𝑁..^𝑛) ¬ 𝑥 ∈ (𝐸𝑖))
91 ralnex 3070 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (𝑁..^𝑛) ¬ 𝑥 ∈ (𝐸𝑖) ↔ ¬ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸𝑖))
9290, 91sylib 218 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ¬ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸𝑖))
93 eliun 5000 . . . . . . . . . . . . . 14 (𝑥 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ↔ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸𝑖))
9492, 93sylnibr 329 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ¬ 𝑥 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖))
9594adantrl 716 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → ¬ 𝑥 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖))
9648, 95eldifd 3974 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → 𝑥 ∈ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
9714, 21syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑁...𝑚)) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
9897eqcomd 2741 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑁...𝑚)) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = (𝐹𝑛))
9998adantr 480 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = (𝐹𝑛))
10096, 99eleqtrd 2841 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → 𝑥 ∈ (𝐹𝑛))
101100ex 412 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑁...𝑚)) → ((𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → 𝑥 ∈ (𝐹𝑛)))
102101ex 412 . . . . . . . 8 (𝜑 → (𝑛 ∈ (𝑁...𝑚) → ((𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → 𝑥 ∈ (𝐹𝑛))))
1034, 102reximdai 3259 . . . . . . 7 (𝜑 → (∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛)))
104103adantr 480 . . . . . 6 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → (∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛)))
10547, 104mpd 15 . . . . 5 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
106105, 1sylibr 234 . . . 4 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛))
10738, 106eqelssd 4017 . . 3 (𝜑 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
108107ralrimivw 3148 . 2 (𝜑 → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
10911iuneqfzuz 45285 . . 3 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
110108, 109syl 17 . 2 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
111 fveq2 6907 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
112 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑁..^𝑛) = (𝑁..^𝑚))
113112iuneq1d 5024 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖))
114111, 113difeq12d 4137 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = ((𝐸𝑚) ∖ 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖)))
115114cbvmptv 5261 . . . . . . . . . . . 12 (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖))) = (𝑚𝑍 ↦ ((𝐸𝑚) ∖ 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖)))
11619, 115eqtri 2763 . . . . . . . . . . 11 𝐹 = (𝑚𝑍 ↦ ((𝐸𝑚) ∖ 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖)))
117 simpllr 776 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → 𝑛𝑍)
118 simplr 769 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → 𝑘𝑍)
119 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → 𝑛 < 𝑘)
12011, 116, 117, 118, 119iundjiunlem 46415 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
121120adantlr 715 . . . . . . . . 9 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ 𝑛 < 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
122 simpll 767 . . . . . . . . . 10 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → ((𝜑𝑛𝑍) ∧ 𝑘𝑍))
123 neqne 2946 . . . . . . . . . . . 12 𝑛 = 𝑘𝑛𝑘)
124 id 22 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍𝑘𝑍)
125124, 11eleqtrdi 2849 . . . . . . . . . . . . . . . . 17 (𝑘𝑍𝑘 ∈ (ℤ𝑁))
126 eluzelz 12886 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℤ)
127125, 126syl 17 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
128127zred 12720 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℝ)
129128adantl 481 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑘𝑍) → 𝑘 ∈ ℝ)
130129ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 ∈ ℝ)
131 id 22 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛𝑍)
132131, 11eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
133 eluzelz 12886 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
134132, 133syl 17 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ ℤ)
135134zred 12720 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ ℝ)
136135ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑛 ∈ ℝ)
137 simpr 484 . . . . . . . . . . . . . . 15 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → ¬ 𝑛 < 𝑘)
138129adantr 480 . . . . . . . . . . . . . . . 16 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑘 ∈ ℝ)
139135ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑛 ∈ ℝ)
140138, 139lenltd 11405 . . . . . . . . . . . . . . 15 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → (𝑘𝑛 ↔ ¬ 𝑛 < 𝑘))
141137, 140mpbird 257 . . . . . . . . . . . . . 14 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑘𝑛)
142141adantlr 715 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘𝑛)
143 simplr 769 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑛𝑘)
144130, 136, 142, 143leneltd 11413 . . . . . . . . . . . 12 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛)
145123, 144sylanl2 681 . . . . . . . . . . 11 ((((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛)
146145ad5ant2345 1369 . . . . . . . . . 10 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛)
147 anass 468 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) ↔ (𝜑 ∧ (𝑛𝑍𝑘𝑍)))
148 incom 4217 . . . . . . . . . . . . 13 ((𝐹𝑛) ∩ (𝐹𝑘)) = ((𝐹𝑘) ∩ (𝐹𝑛))
149148a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ((𝐹𝑘) ∩ (𝐹𝑛)))
150 simplrr 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → 𝑘𝑍)
151 simplrl 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → 𝑛𝑍)
152 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → 𝑘 < 𝑛)
15311, 116, 150, 151, 152iundjiunlem 46415 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹𝑘) ∩ (𝐹𝑛)) = ∅)
154149, 153eqtrd 2775 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
155147, 154sylanb 581 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑘 < 𝑛) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
156122, 146, 155syl2anc 584 . . . . . . . . 9 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
157121, 156pm2.61dan 813 . . . . . . . 8 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
158157ex 412 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (¬ 𝑛 = 𝑘 → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
159 df-or 848 . . . . . . 7 ((𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅) ↔ (¬ 𝑛 = 𝑘 → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
160158, 159sylibr 234 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
161160ralrimiva 3144 . . . . 5 ((𝜑𝑛𝑍) → ∀𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
162161ex 412 . . . 4 (𝜑 → (𝑛𝑍 → ∀𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)))
1634, 162ralrimi 3255 . . 3 (𝜑 → ∀𝑛𝑍𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
164 nfcv 2903 . . . . 5 𝑚(𝐹𝑛)
165 nfmpt1 5256 . . . . . . 7 𝑛(𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
16619, 165nfcxfr 2901 . . . . . 6 𝑛𝐹
167 nfcv 2903 . . . . . 6 𝑛𝑚
168166, 167nffv 6917 . . . . 5 𝑛(𝐹𝑚)
169 fveq2 6907 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
170164, 168, 169cbvdisj 5125 . . . 4 (Disj 𝑛𝑍 (𝐹𝑛) ↔ Disj 𝑚𝑍 (𝐹𝑚))
171 fveq2 6907 . . . . 5 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
172171disjor 5130 . . . 4 (Disj 𝑚𝑍 (𝐹𝑚) ↔ ∀𝑚𝑍𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅))
173 nfcv 2903 . . . . . 6 𝑛𝑍
174 nfv 1912 . . . . . . 7 𝑛 𝑚 = 𝑘
175 nfcv 2903 . . . . . . . . . 10 𝑛𝑘
176166, 175nffv 6917 . . . . . . . . 9 𝑛(𝐹𝑘)
177168, 176nfin 4232 . . . . . . . 8 𝑛((𝐹𝑚) ∩ (𝐹𝑘))
178 nfcv 2903 . . . . . . . 8 𝑛
179177, 178nfeq 2917 . . . . . . 7 𝑛((𝐹𝑚) ∩ (𝐹𝑘)) = ∅
180174, 179nfor 1902 . . . . . 6 𝑛(𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅)
181173, 180nfralw 3309 . . . . 5 𝑛𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅)
182 nfv 1912 . . . . 5 𝑚𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
183 equequ1 2022 . . . . . . 7 (𝑚 = 𝑛 → (𝑚 = 𝑘𝑛 = 𝑘))
184 fveq2 6907 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
185184ineq1d 4227 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐹𝑚) ∩ (𝐹𝑘)) = ((𝐹𝑛) ∩ (𝐹𝑘)))
186185eqeq1d 2737 . . . . . . 7 (𝑚 = 𝑛 → (((𝐹𝑚) ∩ (𝐹𝑘)) = ∅ ↔ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
187183, 186orbi12d 918 . . . . . 6 (𝑚 = 𝑛 → ((𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅) ↔ (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)))
188187ralbidv 3176 . . . . 5 (𝑚 = 𝑛 → (∀𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅) ↔ ∀𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)))
189181, 182, 188cbvralw 3304 . . . 4 (∀𝑚𝑍𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅) ↔ ∀𝑛𝑍𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
190170, 172, 1893bitri 297 . . 3 (Disj 𝑛𝑍 (𝐹𝑛) ↔ ∀𝑛𝑍𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
191163, 190sylibr 234 . 2 (𝜑Disj 𝑛𝑍 (𝐹𝑛))
192108, 110, 191jca31 514 1 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wnf 1780  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  cin 3962  wss 3963  c0 4339   ciun 4996  Disj wdisj 5115   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   < clt 11293  cle 11294  cmin 11490  cz 12611  cuz 12876  ...cfz 13544  ..^cfzo 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692
This theorem is referenced by:  meaiunlelem  46424  meaiuninclem  46436  carageniuncllem2  46478
  Copyright terms: Public domain W3C validator