Step | Hyp | Ref
| Expression |
1 | | eliun 4925 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) ↔ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹‘𝑛)) |
2 | 1 | biimpi 215 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹‘𝑛)) |
3 | 2 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹‘𝑛)) |
4 | | iundjiun.nph |
. . . . . . . . 9
⊢
Ⅎ𝑛𝜑 |
5 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑛𝑥 |
6 | | nfiu1 4955 |
. . . . . . . . . 10
⊢
Ⅎ𝑛∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) |
7 | 5, 6 | nfel 2920 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝑥 ∈ ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) |
8 | | simp2 1135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹‘𝑛)) → 𝑛 ∈ (𝑁...𝑚)) |
9 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) → 𝜑) |
10 | | elfzuz 13181 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ (ℤ≥‘𝑁)) |
11 | | iundjiun.z |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑍 =
(ℤ≥‘𝑁) |
12 | 11 | eqcomi 2747 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘𝑁) = 𝑍 |
13 | 10, 12 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ 𝑍) |
14 | 13 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) → 𝑛 ∈ 𝑍) |
15 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
16 | | iundjiun.e |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐸:𝑍⟶𝑉) |
17 | 16 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ∈ 𝑉) |
18 | 17 | difexd 5248 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ V) |
19 | | iundjiun.f |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
20 | 19 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ 𝑍 ∧ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ∈ V) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
21 | 15, 18, 20 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
22 | | difssd 4063 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) ⊆ (𝐸‘𝑛)) |
23 | 21, 22 | eqsstrd 3955 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ⊆ (𝐸‘𝑛)) |
24 | 9, 14, 23 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) → (𝐹‘𝑛) ⊆ (𝐸‘𝑛)) |
25 | 24 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹‘𝑛)) → (𝐹‘𝑛) ⊆ (𝐸‘𝑛)) |
26 | | simp3 1136 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹‘𝑛)) → 𝑥 ∈ (𝐹‘𝑛)) |
27 | 25, 26 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹‘𝑛)) → 𝑥 ∈ (𝐸‘𝑛)) |
28 | | rspe 3232 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐸‘𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸‘𝑛)) |
29 | 8, 27, 28 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹‘𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸‘𝑛)) |
30 | | eliun 4925 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) ↔ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸‘𝑛)) |
31 | 29, 30 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹‘𝑛)) → 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) |
32 | 31 | 3exp 1117 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ (𝑁...𝑚) → (𝑥 ∈ (𝐹‘𝑛) → 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)))) |
33 | 4, 7, 32 | rexlimd 3245 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹‘𝑛) → 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛))) |
34 | 33 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛)) → (∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹‘𝑛) → 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛))) |
35 | 3, 34 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛)) → 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) |
36 | 35 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛)𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) |
37 | | dfss3 3905 |
. . . . 5
⊢ (∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) ⊆ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) ↔ ∀𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛)𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) |
38 | 36, 37 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) ⊆ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) |
39 | | fzssuz 13226 |
. . . . . . . . 9
⊢ (𝑁...𝑚) ⊆ (ℤ≥‘𝑁) |
40 | 39 | a1i 11 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) → (𝑁...𝑚) ⊆ (ℤ≥‘𝑁)) |
41 | 30 | biimpi 215 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸‘𝑛)) |
42 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝑥 ∈ (𝐸‘𝑖) |
43 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑖 → (𝐸‘𝑛) = (𝐸‘𝑖)) |
44 | 43 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → (𝑥 ∈ (𝐸‘𝑛) ↔ 𝑥 ∈ (𝐸‘𝑖))) |
45 | 42, 44 | uzwo4 42490 |
. . . . . . . 8
⊢ (((𝑁...𝑚) ⊆ (ℤ≥‘𝑁) ∧ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸‘𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖)))) |
46 | 40, 41, 45 | syl2anc 583 |
. . . . . . 7
⊢ (𝑥 ∈ ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖)))) |
47 | 46 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖)))) |
48 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖)))) → 𝑥 ∈ (𝐸‘𝑛)) |
49 | | nfv 1918 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖(𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) |
50 | | nfra1 3142 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖)) |
51 | 49, 50 | nfan 1903 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) |
52 | | elfzoelz 13316 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ ℤ) |
53 | 52 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ ℝ) |
54 | 53 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ ℝ) |
55 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ ℤ) |
56 | 55 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ ℝ) |
57 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑛 ∈ ℝ) |
58 | | 1red 10907 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 1 ∈ ℝ) |
59 | 57, 58 | resubcld 11333 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) ∈ ℝ) |
60 | | elfzolem1 42750 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ≤ (𝑛 − 1)) |
61 | 60 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ≤ (𝑛 − 1)) |
62 | 57 | ltm1d 11837 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) < 𝑛) |
63 | 54, 59, 57, 61, 62 | lelttrd 11063 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑛) |
64 | 63 | ad4ant24 750 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑛) |
65 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) |
66 | | elfzel1 13184 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (𝑁...𝑚) → 𝑁 ∈ ℤ) |
67 | 66 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑁 ∈ ℤ) |
68 | | elfzel2 13183 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (𝑁...𝑚) → 𝑚 ∈ ℤ) |
69 | 68 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑚 ∈ ℤ) |
70 | 52 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ ℤ) |
71 | | elfzole1 13324 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 ∈ (𝑁..^𝑛) → 𝑁 ≤ 𝑖) |
72 | 71 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑁 ≤ 𝑖) |
73 | 69 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑚 ∈ ℝ) |
74 | | 1red 10907 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ (𝑁...𝑚) → 1 ∈ ℝ) |
75 | 56, 74 | resubcld 11333 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) ∈ ℝ) |
76 | 68 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ (𝑁...𝑚) → 𝑚 ∈ ℝ) |
77 | 56 | ltm1d 11837 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) < 𝑛) |
78 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ (𝑁...𝑚) → 𝑛 ≤ 𝑚) |
79 | 75, 56, 76, 77, 78 | ltletrd 11065 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) < 𝑚) |
80 | 79 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) < 𝑚) |
81 | 54, 59, 73, 61, 80 | lelttrd 11063 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑚) |
82 | 54, 73, 81 | ltled 11053 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ≤ 𝑚) |
83 | 67, 69, 70, 72, 82 | elfzd 13176 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ (𝑁...𝑚)) |
84 | 83 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ (𝑁...𝑚)) |
85 | | rspa 3130 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑖 ∈
(𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖)) ∧ 𝑖 ∈ (𝑁...𝑚)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) |
86 | 65, 84, 85 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) |
87 | 86 | adantlll 714 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) |
88 | 64, 87 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → ¬ 𝑥 ∈ (𝐸‘𝑖)) |
89 | 88 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) → (𝑖 ∈ (𝑁..^𝑛) → ¬ 𝑥 ∈ (𝐸‘𝑖))) |
90 | 51, 89 | ralrimi 3139 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) → ∀𝑖 ∈ (𝑁..^𝑛) ¬ 𝑥 ∈ (𝐸‘𝑖)) |
91 | | ralnex 3163 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖 ∈
(𝑁..^𝑛) ¬ 𝑥 ∈ (𝐸‘𝑖) ↔ ¬ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸‘𝑖)) |
92 | 90, 91 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) → ¬ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸‘𝑖)) |
93 | | eliun 4925 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) ↔ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸‘𝑖)) |
94 | 92, 93 | sylnibr 328 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) → ¬ 𝑥 ∈ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) |
95 | 94 | adantrl 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖)))) → ¬ 𝑥 ∈ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) |
96 | 48, 95 | eldifd 3894 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖)))) → 𝑥 ∈ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
97 | 14, 21 | syldan 590 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) → (𝐹‘𝑛) = ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
98 | 97 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) = (𝐹‘𝑛)) |
99 | 98 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖)))) → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) = (𝐹‘𝑛)) |
100 | 96, 99 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖)))) → 𝑥 ∈ (𝐹‘𝑛)) |
101 | 100 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁...𝑚)) → ((𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) → 𝑥 ∈ (𝐹‘𝑛))) |
102 | 101 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 ∈ (𝑁...𝑚) → ((𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) → 𝑥 ∈ (𝐹‘𝑛)))) |
103 | 4, 102 | reximdai 3239 |
. . . . . . 7
⊢ (𝜑 → (∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹‘𝑛))) |
104 | 103 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) → (∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸‘𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸‘𝑖))) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹‘𝑛))) |
105 | 47, 104 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹‘𝑛)) |
106 | 105, 1 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) → 𝑥 ∈ ∪
𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛)) |
107 | 38, 106 | eqelssd 3938 |
. . 3
⊢ (𝜑 → ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) |
108 | 107 | ralrimivw 3108 |
. 2
⊢ (𝜑 → ∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛)) |
109 | 11 | iuneqfzuz 42764 |
. . 3
⊢
(∀𝑚 ∈
𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) → ∪
𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
110 | 108, 109 | syl 17 |
. 2
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) |
111 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → (𝐸‘𝑛) = (𝐸‘𝑚)) |
112 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → (𝑁..^𝑛) = (𝑁..^𝑚)) |
113 | 112 | iuneq1d 4948 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖) = ∪ 𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖)) |
114 | 111, 113 | difeq12d 4054 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖)) = ((𝐸‘𝑚) ∖ ∪
𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) |
115 | 114 | cbvmptv 5183 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) = (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪
𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) |
116 | 19, 115 | eqtri 2766 |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑚 ∈ 𝑍 ↦ ((𝐸‘𝑚) ∖ ∪
𝑖 ∈ (𝑁..^𝑚)(𝐸‘𝑖))) |
117 | | simpllr 772 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 < 𝑘) → 𝑛 ∈ 𝑍) |
118 | | simplr 765 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 < 𝑘) → 𝑘 ∈ 𝑍) |
119 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 < 𝑘) → 𝑛 < 𝑘) |
120 | 11, 116, 117, 118, 119 | iundjiunlem 43887 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 < 𝑘) → ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅) |
121 | 120 | adantlr 711 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ 𝑛 < 𝑘) → ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅) |
122 | | simpll 763 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → ((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍)) |
123 | | neqne 2950 |
. . . . . . . . . . . 12
⊢ (¬
𝑛 = 𝑘 → 𝑛 ≠ 𝑘) |
124 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ 𝑍) |
125 | 124, 11 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ (ℤ≥‘𝑁)) |
126 | | eluzelz 12521 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘𝑁) → 𝑘 ∈ ℤ) |
127 | 125, 126 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
128 | 127 | zred 12355 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℝ) |
129 | 128 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℝ) |
130 | 129 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 ≠ 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 ∈ ℝ) |
131 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍) |
132 | 131, 11 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑁)) |
133 | | eluzelz 12521 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → 𝑛 ∈ ℤ) |
134 | 132, 133 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
135 | 134 | zred 12355 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℝ) |
136 | 135 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 ≠ 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑛 ∈ ℝ) |
137 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑛 < 𝑘) → ¬ 𝑛 < 𝑘) |
138 | 129 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑘 ∈ ℝ) |
139 | 135 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑛 ∈ ℝ) |
140 | 138, 139 | lenltd 11051 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑛 < 𝑘) → (𝑘 ≤ 𝑛 ↔ ¬ 𝑛 < 𝑘)) |
141 | 137, 140 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑘 ≤ 𝑛) |
142 | 141 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 ≠ 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 ≤ 𝑛) |
143 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 ≠ 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑛 ≠ 𝑘) |
144 | 130, 136,
142, 143 | leneltd 11059 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 ≠ 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛) |
145 | 123, 144 | sylanl2 677 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛) |
146 | 145 | ad5ant2345 1368 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛) |
147 | | anass 468 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍))) |
148 | | incom 4131 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ((𝐹‘𝑘) ∩ (𝐹‘𝑛)) |
149 | 148 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ((𝐹‘𝑘) ∩ (𝐹‘𝑛))) |
150 | | simplrr 774 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) ∧ 𝑘 < 𝑛) → 𝑘 ∈ 𝑍) |
151 | | simplrl 773 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) ∧ 𝑘 < 𝑛) → 𝑛 ∈ 𝑍) |
152 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) ∧ 𝑘 < 𝑛) → 𝑘 < 𝑛) |
153 | 11, 116, 150, 151, 152 | iundjiunlem 43887 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹‘𝑘) ∩ (𝐹‘𝑛)) = ∅) |
154 | 149, 153 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅) |
155 | 147, 154 | sylanb 580 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ 𝑘 < 𝑛) → ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅) |
156 | 122, 146,
155 | syl2anc 583 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅) |
157 | 121, 156 | pm2.61dan 809 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) ∧ ¬ 𝑛 = 𝑘) → ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅) |
158 | 157 | ex 412 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (¬ 𝑛 = 𝑘 → ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅)) |
159 | | df-or 844 |
. . . . . . 7
⊢ ((𝑛 = 𝑘 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅) ↔ (¬ 𝑛 = 𝑘 → ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅)) |
160 | 158, 159 | sylibr 233 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝑛 = 𝑘 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅)) |
161 | 160 | ralrimiva 3107 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∀𝑘 ∈ 𝑍 (𝑛 = 𝑘 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅)) |
162 | 161 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ 𝑍 → ∀𝑘 ∈ 𝑍 (𝑛 = 𝑘 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅))) |
163 | 4, 162 | ralrimi 3139 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑛 = 𝑘 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅)) |
164 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑚(𝐹‘𝑛) |
165 | | nfmpt1 5178 |
. . . . . . 7
⊢
Ⅎ𝑛(𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪
𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) |
166 | 19, 165 | nfcxfr 2904 |
. . . . . 6
⊢
Ⅎ𝑛𝐹 |
167 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑛𝑚 |
168 | 166, 167 | nffv 6766 |
. . . . 5
⊢
Ⅎ𝑛(𝐹‘𝑚) |
169 | | fveq2 6756 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
170 | 164, 168,
169 | cbvdisj 5045 |
. . . 4
⊢
(Disj 𝑛
∈ 𝑍 (𝐹‘𝑛) ↔ Disj 𝑚 ∈ 𝑍 (𝐹‘𝑚)) |
171 | | fveq2 6756 |
. . . . 5
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
172 | 171 | disjor 5050 |
. . . 4
⊢
(Disj 𝑚
∈ 𝑍 (𝐹‘𝑚) ↔ ∀𝑚 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑚 = 𝑘 ∨ ((𝐹‘𝑚) ∩ (𝐹‘𝑘)) = ∅)) |
173 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑛𝑍 |
174 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑛 𝑚 = 𝑘 |
175 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑛𝑘 |
176 | 166, 175 | nffv 6766 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝐹‘𝑘) |
177 | 168, 176 | nfin 4147 |
. . . . . . . 8
⊢
Ⅎ𝑛((𝐹‘𝑚) ∩ (𝐹‘𝑘)) |
178 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑛∅ |
179 | 177, 178 | nfeq 2919 |
. . . . . . 7
⊢
Ⅎ𝑛((𝐹‘𝑚) ∩ (𝐹‘𝑘)) = ∅ |
180 | 174, 179 | nfor 1908 |
. . . . . 6
⊢
Ⅎ𝑛(𝑚 = 𝑘 ∨ ((𝐹‘𝑚) ∩ (𝐹‘𝑘)) = ∅) |
181 | 173, 180 | nfralw 3149 |
. . . . 5
⊢
Ⅎ𝑛∀𝑘 ∈ 𝑍 (𝑚 = 𝑘 ∨ ((𝐹‘𝑚) ∩ (𝐹‘𝑘)) = ∅) |
182 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑚∀𝑘 ∈ 𝑍 (𝑛 = 𝑘 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅) |
183 | | equequ1 2029 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑚 = 𝑘 ↔ 𝑛 = 𝑘)) |
184 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) |
185 | 184 | ineq1d 4142 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → ((𝐹‘𝑚) ∩ (𝐹‘𝑘)) = ((𝐹‘𝑛) ∩ (𝐹‘𝑘))) |
186 | 185 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (((𝐹‘𝑚) ∩ (𝐹‘𝑘)) = ∅ ↔ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅)) |
187 | 183, 186 | orbi12d 915 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((𝑚 = 𝑘 ∨ ((𝐹‘𝑚) ∩ (𝐹‘𝑘)) = ∅) ↔ (𝑛 = 𝑘 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅))) |
188 | 187 | ralbidv 3120 |
. . . . 5
⊢ (𝑚 = 𝑛 → (∀𝑘 ∈ 𝑍 (𝑚 = 𝑘 ∨ ((𝐹‘𝑚) ∩ (𝐹‘𝑘)) = ∅) ↔ ∀𝑘 ∈ 𝑍 (𝑛 = 𝑘 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅))) |
189 | 181, 182,
188 | cbvralw 3363 |
. . . 4
⊢
(∀𝑚 ∈
𝑍 ∀𝑘 ∈ 𝑍 (𝑚 = 𝑘 ∨ ((𝐹‘𝑚) ∩ (𝐹‘𝑘)) = ∅) ↔ ∀𝑛 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑛 = 𝑘 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅)) |
190 | 170, 172,
189 | 3bitri 296 |
. . 3
⊢
(Disj 𝑛
∈ 𝑍 (𝐹‘𝑛) ↔ ∀𝑛 ∈ 𝑍 ∀𝑘 ∈ 𝑍 (𝑛 = 𝑘 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑘)) = ∅)) |
191 | 163, 190 | sylibr 233 |
. 2
⊢ (𝜑 → Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛)) |
192 | 108, 110,
191 | jca31 514 |
1
⊢ (𝜑 → ((∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) ∧ ∪
𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∧ Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛))) |