Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundjiun Structured version   Visualization version   GIF version

Theorem iundjiun 46431
Description: Given a sequence 𝐸 of sets, a sequence 𝐹 of disjoint sets is built, such that the indexed union stays the same. As in the proof of Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
iundjiun.nph 𝑛𝜑
iundjiun.z 𝑍 = (ℤ𝑁)
iundjiun.e (𝜑𝐸:𝑍𝑉)
iundjiun.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
iundjiun (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
Distinct variable groups:   𝑖,𝐸,𝑚,𝑛   𝑚,𝐹   𝑖,𝑁,𝑚,𝑛   𝑚,𝑍,𝑛   𝜑,𝑖,𝑚
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑖,𝑛)   𝑉(𝑖,𝑚,𝑛)   𝑍(𝑖)

Proof of Theorem iundjiun
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4955 . . . . . . . . 9 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) ↔ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
21biimpi 216 . . . . . . . 8 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
32adantl 481 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
4 iundjiun.nph . . . . . . . . 9 𝑛𝜑
5 nfcv 2891 . . . . . . . . . 10 𝑛𝑥
6 nfiu1 4987 . . . . . . . . . 10 𝑛 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)
75, 6nfel 2906 . . . . . . . . 9 𝑛 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)
8 simp2 1137 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑛 ∈ (𝑁...𝑚))
9 simpl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑁...𝑚)) → 𝜑)
10 elfzuz 13457 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ (ℤ𝑁))
11 iundjiun.z . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑁)
1211eqcomi 2738 . . . . . . . . . . . . . . . . 17 (ℤ𝑁) = 𝑍
1310, 12eleqtrdi 2838 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑁...𝑚) → 𝑛𝑍)
1413adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑁...𝑚)) → 𝑛𝑍)
15 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → 𝑛𝑍)
16 iundjiun.e . . . . . . . . . . . . . . . . . . 19 (𝜑𝐸:𝑍𝑉)
1716ffvelcdmda 7038 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝑉)
1817difexd 5281 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
19 iundjiun.f . . . . . . . . . . . . . . . . . 18 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
2019fvmpt2 6961 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍 ∧ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
2115, 18, 20syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
22 difssd 4096 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ⊆ (𝐸𝑛))
2321, 22eqsstrd 3978 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐹𝑛) ⊆ (𝐸𝑛))
249, 14, 23syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (𝑁...𝑚)) → (𝐹𝑛) ⊆ (𝐸𝑛))
25243adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → (𝐹𝑛) ⊆ (𝐸𝑛))
26 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑛))
2725, 26sseldd 3944 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐸𝑛))
28 rspe 3225 . . . . . . . . . . . 12 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
298, 27, 28syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
30 eliun 4955 . . . . . . . . . . 11 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ↔ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
3129, 30sylibr 234 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
32313exp 1119 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (𝑁...𝑚) → (𝑥 ∈ (𝐹𝑛) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))))
334, 7, 32rexlimd 3242 . . . . . . . 8 (𝜑 → (∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)))
3433adantr 480 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)) → (∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)))
353, 34mpd 15 . . . . . 6 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
3635ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
37 dfss3 3932 . . . . 5 ( 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) ⊆ 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ↔ ∀𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
3836, 37sylibr 234 . . . 4 (𝜑 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) ⊆ 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
39 fzssuz 13502 . . . . . . . . 9 (𝑁...𝑚) ⊆ (ℤ𝑁)
4039a1i 11 . . . . . . . 8 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → (𝑁...𝑚) ⊆ (ℤ𝑁))
4130biimpi 216 . . . . . . . 8 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
42 nfv 1914 . . . . . . . . 9 𝑛 𝑥 ∈ (𝐸𝑖)
43 fveq2 6840 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝐸𝑛) = (𝐸𝑖))
4443eleq2d 2814 . . . . . . . . 9 (𝑛 = 𝑖 → (𝑥 ∈ (𝐸𝑛) ↔ 𝑥 ∈ (𝐸𝑖)))
4542, 44uzwo4 45020 . . . . . . . 8 (((𝑁...𝑚) ⊆ (ℤ𝑁) ∧ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))))
4640, 41, 45syl2anc 584 . . . . . . 7 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))))
4746adantl 481 . . . . . 6 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))))
48 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → 𝑥 ∈ (𝐸𝑛))
49 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑖(𝜑𝑛 ∈ (𝑁...𝑚))
50 nfra1 3259 . . . . . . . . . . . . . . . . 17 𝑖𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))
5149, 50nfan 1899 . . . . . . . . . . . . . . . 16 𝑖((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
52 elfzoelz 13596 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ ℤ)
5352zred 12614 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ ℝ)
5453adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ ℝ)
55 elfzelz 13461 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ ℤ)
5655zred 12614 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ ℝ)
5756adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑛 ∈ ℝ)
58 1red 11151 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 1 ∈ ℝ)
5957, 58resubcld 11582 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) ∈ ℝ)
60 elfzolem1 13641 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ≤ (𝑛 − 1))
6160adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ≤ (𝑛 − 1))
6257ltm1d 12091 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) < 𝑛)
6354, 59, 57, 61, 62lelttrd 11308 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑛)
6463ad4ant24 754 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑛)
65 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
66 elfzel1 13460 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (𝑁...𝑚) → 𝑁 ∈ ℤ)
6766adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑁 ∈ ℤ)
68 elfzel2 13459 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (𝑁...𝑚) → 𝑚 ∈ ℤ)
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑚 ∈ ℤ)
7052adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ ℤ)
71 elfzole1 13604 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (𝑁..^𝑛) → 𝑁𝑖)
7271adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑁𝑖)
7369zred 12614 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑚 ∈ ℝ)
74 1red 11151 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ (𝑁...𝑚) → 1 ∈ ℝ)
7556, 74resubcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) ∈ ℝ)
7668zred 12614 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → 𝑚 ∈ ℝ)
7756ltm1d 12091 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) < 𝑛)
78 elfzle2 13465 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → 𝑛𝑚)
7975, 56, 76, 77, 78ltletrd 11310 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) < 𝑚)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) < 𝑚)
8154, 59, 73, 61, 80lelttrd 11308 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑚)
8254, 73, 81ltled 11298 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖𝑚)
8367, 69, 70, 72, 82elfzd 13452 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ (𝑁...𝑚))
8483adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ (𝑁...𝑚))
85 rspa 3224 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)) ∧ 𝑖 ∈ (𝑁...𝑚)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
8665, 84, 85syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
8786adantlll 718 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
8864, 87mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → ¬ 𝑥 ∈ (𝐸𝑖))
8988ex 412 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → (𝑖 ∈ (𝑁..^𝑛) → ¬ 𝑥 ∈ (𝐸𝑖)))
9051, 89ralrimi 3233 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ∀𝑖 ∈ (𝑁..^𝑛) ¬ 𝑥 ∈ (𝐸𝑖))
91 ralnex 3055 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (𝑁..^𝑛) ¬ 𝑥 ∈ (𝐸𝑖) ↔ ¬ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸𝑖))
9290, 91sylib 218 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ¬ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸𝑖))
93 eliun 4955 . . . . . . . . . . . . . 14 (𝑥 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ↔ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸𝑖))
9492, 93sylnibr 329 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ¬ 𝑥 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖))
9594adantrl 716 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → ¬ 𝑥 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖))
9648, 95eldifd 3922 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → 𝑥 ∈ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
9714, 21syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑁...𝑚)) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
9897eqcomd 2735 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑁...𝑚)) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = (𝐹𝑛))
9998adantr 480 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = (𝐹𝑛))
10096, 99eleqtrd 2830 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → 𝑥 ∈ (𝐹𝑛))
101100ex 412 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑁...𝑚)) → ((𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → 𝑥 ∈ (𝐹𝑛)))
102101ex 412 . . . . . . . 8 (𝜑 → (𝑛 ∈ (𝑁...𝑚) → ((𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → 𝑥 ∈ (𝐹𝑛))))
1034, 102reximdai 3237 . . . . . . 7 (𝜑 → (∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛)))
104103adantr 480 . . . . . 6 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → (∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛)))
10547, 104mpd 15 . . . . 5 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
106105, 1sylibr 234 . . . 4 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛))
10738, 106eqelssd 3965 . . 3 (𝜑 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
108107ralrimivw 3129 . 2 (𝜑 → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
10911iuneqfzuz 45304 . . 3 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
110108, 109syl 17 . 2 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
111 fveq2 6840 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
112 oveq2 7377 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑁..^𝑛) = (𝑁..^𝑚))
113112iuneq1d 4979 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖))
114111, 113difeq12d 4086 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = ((𝐸𝑚) ∖ 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖)))
115114cbvmptv 5206 . . . . . . . . . . . 12 (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖))) = (𝑚𝑍 ↦ ((𝐸𝑚) ∖ 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖)))
11619, 115eqtri 2752 . . . . . . . . . . 11 𝐹 = (𝑚𝑍 ↦ ((𝐸𝑚) ∖ 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖)))
117 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → 𝑛𝑍)
118 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → 𝑘𝑍)
119 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → 𝑛 < 𝑘)
12011, 116, 117, 118, 119iundjiunlem 46430 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
121120adantlr 715 . . . . . . . . 9 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ 𝑛 < 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
122 simpll 766 . . . . . . . . . 10 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → ((𝜑𝑛𝑍) ∧ 𝑘𝑍))
123 neqne 2933 . . . . . . . . . . . 12 𝑛 = 𝑘𝑛𝑘)
124 id 22 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍𝑘𝑍)
125124, 11eleqtrdi 2838 . . . . . . . . . . . . . . . . 17 (𝑘𝑍𝑘 ∈ (ℤ𝑁))
126 eluzelz 12779 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℤ)
127125, 126syl 17 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
128127zred 12614 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℝ)
129128adantl 481 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑘𝑍) → 𝑘 ∈ ℝ)
130129ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 ∈ ℝ)
131 id 22 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛𝑍)
132131, 11eleqtrdi 2838 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
133 eluzelz 12779 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
134132, 133syl 17 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ ℤ)
135134zred 12614 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ ℝ)
136135ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑛 ∈ ℝ)
137 simpr 484 . . . . . . . . . . . . . . 15 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → ¬ 𝑛 < 𝑘)
138129adantr 480 . . . . . . . . . . . . . . . 16 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑘 ∈ ℝ)
139135ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑛 ∈ ℝ)
140138, 139lenltd 11296 . . . . . . . . . . . . . . 15 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → (𝑘𝑛 ↔ ¬ 𝑛 < 𝑘))
141137, 140mpbird 257 . . . . . . . . . . . . . 14 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑘𝑛)
142141adantlr 715 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘𝑛)
143 simplr 768 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑛𝑘)
144130, 136, 142, 143leneltd 11304 . . . . . . . . . . . 12 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛)
145123, 144sylanl2 681 . . . . . . . . . . 11 ((((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛)
146145ad5ant2345 1372 . . . . . . . . . 10 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛)
147 anass 468 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) ↔ (𝜑 ∧ (𝑛𝑍𝑘𝑍)))
148 incom 4168 . . . . . . . . . . . . 13 ((𝐹𝑛) ∩ (𝐹𝑘)) = ((𝐹𝑘) ∩ (𝐹𝑛))
149148a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ((𝐹𝑘) ∩ (𝐹𝑛)))
150 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → 𝑘𝑍)
151 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → 𝑛𝑍)
152 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → 𝑘 < 𝑛)
15311, 116, 150, 151, 152iundjiunlem 46430 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹𝑘) ∩ (𝐹𝑛)) = ∅)
154149, 153eqtrd 2764 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
155147, 154sylanb 581 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑘 < 𝑛) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
156122, 146, 155syl2anc 584 . . . . . . . . 9 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
157121, 156pm2.61dan 812 . . . . . . . 8 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
158157ex 412 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (¬ 𝑛 = 𝑘 → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
159 df-or 848 . . . . . . 7 ((𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅) ↔ (¬ 𝑛 = 𝑘 → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
160158, 159sylibr 234 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
161160ralrimiva 3125 . . . . 5 ((𝜑𝑛𝑍) → ∀𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
162161ex 412 . . . 4 (𝜑 → (𝑛𝑍 → ∀𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)))
1634, 162ralrimi 3233 . . 3 (𝜑 → ∀𝑛𝑍𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
164 nfcv 2891 . . . . 5 𝑚(𝐹𝑛)
165 nfmpt1 5201 . . . . . . 7 𝑛(𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
16619, 165nfcxfr 2889 . . . . . 6 𝑛𝐹
167 nfcv 2891 . . . . . 6 𝑛𝑚
168166, 167nffv 6850 . . . . 5 𝑛(𝐹𝑚)
169 fveq2 6840 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
170164, 168, 169cbvdisj 5079 . . . 4 (Disj 𝑛𝑍 (𝐹𝑛) ↔ Disj 𝑚𝑍 (𝐹𝑚))
171 fveq2 6840 . . . . 5 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
172171disjor 5084 . . . 4 (Disj 𝑚𝑍 (𝐹𝑚) ↔ ∀𝑚𝑍𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅))
173 nfcv 2891 . . . . . 6 𝑛𝑍
174 nfv 1914 . . . . . . 7 𝑛 𝑚 = 𝑘
175 nfcv 2891 . . . . . . . . . 10 𝑛𝑘
176166, 175nffv 6850 . . . . . . . . 9 𝑛(𝐹𝑘)
177168, 176nfin 4183 . . . . . . . 8 𝑛((𝐹𝑚) ∩ (𝐹𝑘))
178 nfcv 2891 . . . . . . . 8 𝑛
179177, 178nfeq 2905 . . . . . . 7 𝑛((𝐹𝑚) ∩ (𝐹𝑘)) = ∅
180174, 179nfor 1904 . . . . . 6 𝑛(𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅)
181173, 180nfralw 3283 . . . . 5 𝑛𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅)
182 nfv 1914 . . . . 5 𝑚𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
183 equequ1 2025 . . . . . . 7 (𝑚 = 𝑛 → (𝑚 = 𝑘𝑛 = 𝑘))
184 fveq2 6840 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
185184ineq1d 4178 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐹𝑚) ∩ (𝐹𝑘)) = ((𝐹𝑛) ∩ (𝐹𝑘)))
186185eqeq1d 2731 . . . . . . 7 (𝑚 = 𝑛 → (((𝐹𝑚) ∩ (𝐹𝑘)) = ∅ ↔ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
187183, 186orbi12d 918 . . . . . 6 (𝑚 = 𝑛 → ((𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅) ↔ (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)))
188187ralbidv 3156 . . . . 5 (𝑚 = 𝑛 → (∀𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅) ↔ ∀𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)))
189181, 182, 188cbvralw 3278 . . . 4 (∀𝑚𝑍𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅) ↔ ∀𝑛𝑍𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
190170, 172, 1893bitri 297 . . 3 (Disj 𝑛𝑍 (𝐹𝑛) ↔ ∀𝑛𝑍𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
191163, 190sylibr 234 . 2 (𝜑Disj 𝑛𝑍 (𝐹𝑛))
192108, 110, 191jca31 514 1 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  cin 3910  wss 3911  c0 4292   ciun 4951  Disj wdisj 5069   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045   < clt 11184  cle 11185  cmin 11381  cz 12505  cuz 12769  ...cfz 13444  ..^cfzo 13591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592
This theorem is referenced by:  meaiunlelem  46439  meaiuninclem  46451  carageniuncllem2  46493
  Copyright terms: Public domain W3C validator