Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundjiun Structured version   Visualization version   GIF version

Theorem iundjiun 45848
Description: Given a sequence 𝐸 of sets, a sequence 𝐹 of disjoint sets is built, such that the indexed union stays the same. As in the proof of Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
iundjiun.nph 𝑛𝜑
iundjiun.z 𝑍 = (ℤ𝑁)
iundjiun.e (𝜑𝐸:𝑍𝑉)
iundjiun.f 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
Assertion
Ref Expression
iundjiun (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
Distinct variable groups:   𝑖,𝐸,𝑚,𝑛   𝑚,𝐹   𝑖,𝑁,𝑚,𝑛   𝑚,𝑍,𝑛   𝜑,𝑖,𝑚
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑖,𝑛)   𝑉(𝑖,𝑚,𝑛)   𝑍(𝑖)

Proof of Theorem iundjiun
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 5000 . . . . . . . . 9 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) ↔ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
21biimpi 215 . . . . . . . 8 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
32adantl 481 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
4 iundjiun.nph . . . . . . . . 9 𝑛𝜑
5 nfcv 2899 . . . . . . . . . 10 𝑛𝑥
6 nfiu1 5030 . . . . . . . . . 10 𝑛 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)
75, 6nfel 2914 . . . . . . . . 9 𝑛 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)
8 simp2 1135 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑛 ∈ (𝑁...𝑚))
9 simpl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑁...𝑚)) → 𝜑)
10 elfzuz 13530 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ (ℤ𝑁))
11 iundjiun.z . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑁)
1211eqcomi 2737 . . . . . . . . . . . . . . . . 17 (ℤ𝑁) = 𝑍
1310, 12eleqtrdi 2839 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑁...𝑚) → 𝑛𝑍)
1413adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑁...𝑚)) → 𝑛𝑍)
15 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → 𝑛𝑍)
16 iundjiun.e . . . . . . . . . . . . . . . . . . 19 (𝜑𝐸:𝑍𝑉)
1716ffvelcdmda 7094 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝑉)
1817difexd 5331 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V)
19 iundjiun.f . . . . . . . . . . . . . . . . . 18 𝐹 = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
2019fvmpt2 7016 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍 ∧ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ∈ V) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
2115, 18, 20syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
22 difssd 4131 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) ⊆ (𝐸𝑛))
2321, 22eqsstrd 4018 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐹𝑛) ⊆ (𝐸𝑛))
249, 14, 23syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (𝑁...𝑚)) → (𝐹𝑛) ⊆ (𝐸𝑛))
25243adant3 1130 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → (𝐹𝑛) ⊆ (𝐸𝑛))
26 simp3 1136 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑛))
2725, 26sseldd 3981 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐸𝑛))
28 rspe 3243 . . . . . . . . . . . 12 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
298, 27, 28syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
30 eliun 5000 . . . . . . . . . . 11 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ↔ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
3129, 30sylibr 233 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑁...𝑚) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
32313exp 1117 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (𝑁...𝑚) → (𝑥 ∈ (𝐹𝑛) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))))
334, 7, 32rexlimd 3260 . . . . . . . 8 (𝜑 → (∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)))
3433adantr 480 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)) → (∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)))
353, 34mpd 15 . . . . . 6 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
3635ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
37 dfss3 3968 . . . . 5 ( 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) ⊆ 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ↔ ∀𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛)𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
3836, 37sylibr 233 . . . 4 (𝜑 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) ⊆ 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
39 fzssuz 13575 . . . . . . . . 9 (𝑁...𝑚) ⊆ (ℤ𝑁)
4039a1i 11 . . . . . . . 8 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → (𝑁...𝑚) ⊆ (ℤ𝑁))
4130biimpi 215 . . . . . . . 8 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛))
42 nfv 1910 . . . . . . . . 9 𝑛 𝑥 ∈ (𝐸𝑖)
43 fveq2 6897 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝐸𝑛) = (𝐸𝑖))
4443eleq2d 2815 . . . . . . . . 9 (𝑛 = 𝑖 → (𝑥 ∈ (𝐸𝑛) ↔ 𝑥 ∈ (𝐸𝑖)))
4542, 44uzwo4 44417 . . . . . . . 8 (((𝑁...𝑚) ⊆ (ℤ𝑁) ∧ ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))))
4640, 41, 45syl2anc 583 . . . . . . 7 (𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))))
4746adantl 481 . . . . . 6 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))))
48 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → 𝑥 ∈ (𝐸𝑛))
49 nfv 1910 . . . . . . . . . . . . . . . . 17 𝑖(𝜑𝑛 ∈ (𝑁...𝑚))
50 nfra1 3278 . . . . . . . . . . . . . . . . 17 𝑖𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))
5149, 50nfan 1895 . . . . . . . . . . . . . . . 16 𝑖((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
52 elfzoelz 13665 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ ℤ)
5352zred 12697 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ∈ ℝ)
5453adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ ℝ)
55 elfzelz 13534 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ ℤ)
5655zred 12697 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (𝑁...𝑚) → 𝑛 ∈ ℝ)
5756adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑛 ∈ ℝ)
58 1red 11246 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 1 ∈ ℝ)
5957, 58resubcld 11673 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) ∈ ℝ)
60 elfzolem1 44703 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (𝑁..^𝑛) → 𝑖 ≤ (𝑛 − 1))
6160adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ≤ (𝑛 − 1))
6257ltm1d 12177 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) < 𝑛)
6354, 59, 57, 61, 62lelttrd 11403 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑛)
6463ad4ant24 753 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑛)
65 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
66 elfzel1 13533 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (𝑁...𝑚) → 𝑁 ∈ ℤ)
6766adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑁 ∈ ℤ)
68 elfzel2 13532 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (𝑁...𝑚) → 𝑚 ∈ ℤ)
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑚 ∈ ℤ)
7052adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ ℤ)
71 elfzole1 13673 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (𝑁..^𝑛) → 𝑁𝑖)
7271adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑁𝑖)
7369zred 12697 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑚 ∈ ℝ)
74 1red 11246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ (𝑁...𝑚) → 1 ∈ ℝ)
7556, 74resubcld 11673 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) ∈ ℝ)
7668zred 12697 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → 𝑚 ∈ ℝ)
7756ltm1d 12177 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) < 𝑛)
78 elfzle2 13538 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (𝑁...𝑚) → 𝑛𝑚)
7975, 56, 76, 77, 78ltletrd 11405 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (𝑁...𝑚) → (𝑛 − 1) < 𝑚)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑛 − 1) < 𝑚)
8154, 59, 73, 61, 80lelttrd 11403 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 < 𝑚)
8254, 73, 81ltled 11393 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖𝑚)
8367, 69, 70, 72, 82elfzd 13525 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (𝑁...𝑚) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ (𝑁...𝑚))
8483adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → 𝑖 ∈ (𝑁...𝑚))
85 rspa 3242 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)) ∧ 𝑖 ∈ (𝑁...𝑚)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
8665, 84, 85syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ (𝑁...𝑚) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
8786adantlll 717 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → (𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))
8864, 87mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) ∧ 𝑖 ∈ (𝑁..^𝑛)) → ¬ 𝑥 ∈ (𝐸𝑖))
8988ex 412 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → (𝑖 ∈ (𝑁..^𝑛) → ¬ 𝑥 ∈ (𝐸𝑖)))
9051, 89ralrimi 3251 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ∀𝑖 ∈ (𝑁..^𝑛) ¬ 𝑥 ∈ (𝐸𝑖))
91 ralnex 3069 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (𝑁..^𝑛) ¬ 𝑥 ∈ (𝐸𝑖) ↔ ¬ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸𝑖))
9290, 91sylib 217 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ¬ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸𝑖))
93 eliun 5000 . . . . . . . . . . . . . 14 (𝑥 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) ↔ ∃𝑖 ∈ (𝑁..^𝑛)𝑥 ∈ (𝐸𝑖))
9492, 93sylnibr 329 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ¬ 𝑥 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖))
9594adantrl 715 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → ¬ 𝑥 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖))
9648, 95eldifd 3958 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → 𝑥 ∈ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
9714, 21syldan 590 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑁...𝑚)) → (𝐹𝑛) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
9897eqcomd 2734 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑁...𝑚)) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = (𝐹𝑛))
9998adantr 480 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = (𝐹𝑛))
10096, 99eleqtrd 2831 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑁...𝑚)) ∧ (𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖)))) → 𝑥 ∈ (𝐹𝑛))
101100ex 412 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑁...𝑚)) → ((𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → 𝑥 ∈ (𝐹𝑛)))
102101ex 412 . . . . . . . 8 (𝜑 → (𝑛 ∈ (𝑁...𝑚) → ((𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → 𝑥 ∈ (𝐹𝑛))))
1034, 102reximdai 3255 . . . . . . 7 (𝜑 → (∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛)))
104103adantr 480 . . . . . 6 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → (∃𝑛 ∈ (𝑁...𝑚)(𝑥 ∈ (𝐸𝑛) ∧ ∀𝑖 ∈ (𝑁...𝑚)(𝑖 < 𝑛 → ¬ 𝑥 ∈ (𝐸𝑖))) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛)))
10547, 104mpd 15 . . . . 5 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → ∃𝑛 ∈ (𝑁...𝑚)𝑥 ∈ (𝐹𝑛))
106105, 1sylibr 233 . . . 4 ((𝜑𝑥 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛)) → 𝑥 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛))
10738, 106eqelssd 4001 . . 3 (𝜑 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
108107ralrimivw 3147 . 2 (𝜑 → ∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛))
10911iuneqfzuz 44717 . . 3 (∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) → 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
110108, 109syl 17 . 2 (𝜑 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛))
111 fveq2 6897 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝐸𝑛) = (𝐸𝑚))
112 oveq2 7428 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑁..^𝑛) = (𝑁..^𝑚))
113112iuneq1d 5023 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖) = 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖))
114111, 113difeq12d 4121 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)) = ((𝐸𝑚) ∖ 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖)))
115114cbvmptv 5261 . . . . . . . . . . . 12 (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖))) = (𝑚𝑍 ↦ ((𝐸𝑚) ∖ 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖)))
11619, 115eqtri 2756 . . . . . . . . . . 11 𝐹 = (𝑚𝑍 ↦ ((𝐸𝑚) ∖ 𝑖 ∈ (𝑁..^𝑚)(𝐸𝑖)))
117 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → 𝑛𝑍)
118 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → 𝑘𝑍)
119 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → 𝑛 < 𝑘)
12011, 116, 117, 118, 119iundjiunlem 45847 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑛 < 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
121120adantlr 714 . . . . . . . . 9 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ 𝑛 < 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
122 simpll 766 . . . . . . . . . 10 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → ((𝜑𝑛𝑍) ∧ 𝑘𝑍))
123 neqne 2945 . . . . . . . . . . . 12 𝑛 = 𝑘𝑛𝑘)
124 id 22 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍𝑘𝑍)
125124, 11eleqtrdi 2839 . . . . . . . . . . . . . . . . 17 (𝑘𝑍𝑘 ∈ (ℤ𝑁))
126 eluzelz 12863 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ ℤ)
127125, 126syl 17 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
128127zred 12697 . . . . . . . . . . . . . . 15 (𝑘𝑍𝑘 ∈ ℝ)
129128adantl 481 . . . . . . . . . . . . . 14 ((𝑛𝑍𝑘𝑍) → 𝑘 ∈ ℝ)
130129ad2antrr 725 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 ∈ ℝ)
131 id 22 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛𝑍)
132131, 11eleqtrdi 2839 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑛 ∈ (ℤ𝑁))
133 eluzelz 12863 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
134132, 133syl 17 . . . . . . . . . . . . . . 15 (𝑛𝑍𝑛 ∈ ℤ)
135134zred 12697 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛 ∈ ℝ)
136135ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑛 ∈ ℝ)
137 simpr 484 . . . . . . . . . . . . . . 15 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → ¬ 𝑛 < 𝑘)
138129adantr 480 . . . . . . . . . . . . . . . 16 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑘 ∈ ℝ)
139135ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑛 ∈ ℝ)
140138, 139lenltd 11391 . . . . . . . . . . . . . . 15 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → (𝑘𝑛 ↔ ¬ 𝑛 < 𝑘))
141137, 140mpbird 257 . . . . . . . . . . . . . 14 (((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 < 𝑘) → 𝑘𝑛)
142141adantlr 714 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘𝑛)
143 simplr 768 . . . . . . . . . . . . 13 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑛𝑘)
144130, 136, 142, 143leneltd 11399 . . . . . . . . . . . 12 ((((𝑛𝑍𝑘𝑍) ∧ 𝑛𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛)
145123, 144sylanl2 680 . . . . . . . . . . 11 ((((𝑛𝑍𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛)
146145ad5ant2345 1368 . . . . . . . . . 10 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → 𝑘 < 𝑛)
147 anass 468 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) ↔ (𝜑 ∧ (𝑛𝑍𝑘𝑍)))
148 incom 4201 . . . . . . . . . . . . 13 ((𝐹𝑛) ∩ (𝐹𝑘)) = ((𝐹𝑘) ∩ (𝐹𝑛))
149148a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ((𝐹𝑘) ∩ (𝐹𝑛)))
150 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → 𝑘𝑍)
151 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → 𝑛𝑍)
152 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → 𝑘 < 𝑛)
15311, 116, 150, 151, 152iundjiunlem 45847 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹𝑘) ∩ (𝐹𝑛)) = ∅)
154149, 153eqtrd 2768 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛𝑍𝑘𝑍)) ∧ 𝑘 < 𝑛) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
155147, 154sylanb 580 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ 𝑘 < 𝑛) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
156122, 146, 155syl2anc 583 . . . . . . . . 9 (((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) ∧ ¬ 𝑛 < 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
157121, 156pm2.61dan 812 . . . . . . . 8 ((((𝜑𝑛𝑍) ∧ 𝑘𝑍) ∧ ¬ 𝑛 = 𝑘) → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
158157ex 412 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (¬ 𝑛 = 𝑘 → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
159 df-or 847 . . . . . . 7 ((𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅) ↔ (¬ 𝑛 = 𝑘 → ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
160158, 159sylibr 233 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
161160ralrimiva 3143 . . . . 5 ((𝜑𝑛𝑍) → ∀𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
162161ex 412 . . . 4 (𝜑 → (𝑛𝑍 → ∀𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)))
1634, 162ralrimi 3251 . . 3 (𝜑 → ∀𝑛𝑍𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
164 nfcv 2899 . . . . 5 𝑚(𝐹𝑛)
165 nfmpt1 5256 . . . . . . 7 𝑛(𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑁..^𝑛)(𝐸𝑖)))
16619, 165nfcxfr 2897 . . . . . 6 𝑛𝐹
167 nfcv 2899 . . . . . 6 𝑛𝑚
168166, 167nffv 6907 . . . . 5 𝑛(𝐹𝑚)
169 fveq2 6897 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
170164, 168, 169cbvdisj 5123 . . . 4 (Disj 𝑛𝑍 (𝐹𝑛) ↔ Disj 𝑚𝑍 (𝐹𝑚))
171 fveq2 6897 . . . . 5 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
172171disjor 5128 . . . 4 (Disj 𝑚𝑍 (𝐹𝑚) ↔ ∀𝑚𝑍𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅))
173 nfcv 2899 . . . . . 6 𝑛𝑍
174 nfv 1910 . . . . . . 7 𝑛 𝑚 = 𝑘
175 nfcv 2899 . . . . . . . . . 10 𝑛𝑘
176166, 175nffv 6907 . . . . . . . . 9 𝑛(𝐹𝑘)
177168, 176nfin 4216 . . . . . . . 8 𝑛((𝐹𝑚) ∩ (𝐹𝑘))
178 nfcv 2899 . . . . . . . 8 𝑛
179177, 178nfeq 2913 . . . . . . 7 𝑛((𝐹𝑚) ∩ (𝐹𝑘)) = ∅
180174, 179nfor 1900 . . . . . 6 𝑛(𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅)
181173, 180nfralw 3305 . . . . 5 𝑛𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅)
182 nfv 1910 . . . . 5 𝑚𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)
183 equequ1 2021 . . . . . . 7 (𝑚 = 𝑛 → (𝑚 = 𝑘𝑛 = 𝑘))
184 fveq2 6897 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
185184ineq1d 4211 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐹𝑚) ∩ (𝐹𝑘)) = ((𝐹𝑛) ∩ (𝐹𝑘)))
186185eqeq1d 2730 . . . . . . 7 (𝑚 = 𝑛 → (((𝐹𝑚) ∩ (𝐹𝑘)) = ∅ ↔ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
187183, 186orbi12d 917 . . . . . 6 (𝑚 = 𝑛 → ((𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅) ↔ (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)))
188187ralbidv 3174 . . . . 5 (𝑚 = 𝑛 → (∀𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅) ↔ ∀𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅)))
189181, 182, 188cbvralw 3300 . . . 4 (∀𝑚𝑍𝑘𝑍 (𝑚 = 𝑘 ∨ ((𝐹𝑚) ∩ (𝐹𝑘)) = ∅) ↔ ∀𝑛𝑍𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
190170, 172, 1893bitri 297 . . 3 (Disj 𝑛𝑍 (𝐹𝑛) ↔ ∀𝑛𝑍𝑘𝑍 (𝑛 = 𝑘 ∨ ((𝐹𝑛) ∩ (𝐹𝑘)) = ∅))
191163, 190sylibr 233 . 2 (𝜑Disj 𝑛𝑍 (𝐹𝑛))
192108, 110, 191jca31 514 1 (𝜑 → ((∀𝑚𝑍 𝑛 ∈ (𝑁...𝑚)(𝐹𝑛) = 𝑛 ∈ (𝑁...𝑚)(𝐸𝑛) ∧ 𝑛𝑍 (𝐹𝑛) = 𝑛𝑍 (𝐸𝑛)) ∧ Disj 𝑛𝑍 (𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1085   = wceq 1534  wnf 1778  wcel 2099  wne 2937  wral 3058  wrex 3067  Vcvv 3471  cdif 3944  cin 3946  wss 3947  c0 4323   ciun 4996  Disj wdisj 5113   class class class wbr 5148  cmpt 5231  wf 6544  cfv 6548  (class class class)co 7420  cr 11138  1c1 11140   < clt 11279  cle 11280  cmin 11475  cz 12589  cuz 12853  ...cfz 13517  ..^cfzo 13660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-fzo 13661
This theorem is referenced by:  meaiunlelem  45856  meaiuninclem  45868  carageniuncllem2  45910
  Copyright terms: Public domain W3C validator