Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsrabdioph Structured version   Visualization version   GIF version

Theorem dvdsrabdioph 38844
Description: Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
dvdsrabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hints:   𝐴(𝑡)   𝐵(𝑡)

Proof of Theorem dvdsrabdioph
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabdiophlem1 38835 . . . 4 ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐴 ∈ ℤ)
2 rabdiophlem1 38835 . . . 4 ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐵 ∈ ℤ)
3 divides 15475 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∃𝑎 ∈ ℤ (𝑎 · 𝐴) = 𝐵))
4 oveq1 6989 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 · 𝐴) = (𝑏 · 𝐴))
54eqeq1d 2782 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑎 · 𝐴) = 𝐵 ↔ (𝑏 · 𝐴) = 𝐵))
6 oveq1 6989 . . . . . . . . 9 (𝑎 = -𝑏 → (𝑎 · 𝐴) = (-𝑏 · 𝐴))
76eqeq1d 2782 . . . . . . . 8 (𝑎 = -𝑏 → ((𝑎 · 𝐴) = 𝐵 ↔ (-𝑏 · 𝐴) = 𝐵))
85, 7rexzrexnn0 38838 . . . . . . 7 (∃𝑎 ∈ ℤ (𝑎 · 𝐴) = 𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵))
93, 8syl6bb 279 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)))
109ralimi 3112 . . . . 5 (∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)))
11 r19.26 3122 . . . . 5 (∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐵 ∈ ℤ))
12 rabbi 3324 . . . . 5 (∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))(𝐴𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)) ↔ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
1310, 11, 123imtr3i 283 . . . 4 ((∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐵 ∈ ℤ) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
141, 2, 13syl2an 587 . . 3 (((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
15143adant1 1111 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
16 nfcv 2934 . . . 4 𝑡(ℕ0𝑚 (1...𝑁))
17 nfcv 2934 . . . 4 𝑎(ℕ0𝑚 (1...𝑁))
18 nfv 1874 . . . 4 𝑎𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)
19 nfcv 2934 . . . . 5 𝑡0
20 nfcv 2934 . . . . . . . 8 𝑡𝑏
21 nfcv 2934 . . . . . . . 8 𝑡 ·
22 nfcsb1v 3806 . . . . . . . 8 𝑡𝑎 / 𝑡𝐴
2320, 21, 22nfov 7012 . . . . . . 7 𝑡(𝑏 · 𝑎 / 𝑡𝐴)
24 nfcsb1v 3806 . . . . . . 7 𝑡𝑎 / 𝑡𝐵
2523, 24nfeq 2945 . . . . . 6 𝑡(𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵
26 nfcv 2934 . . . . . . . 8 𝑡-𝑏
2726, 21, 22nfov 7012 . . . . . . 7 𝑡(-𝑏 · 𝑎 / 𝑡𝐴)
2827, 24nfeq 2945 . . . . . 6 𝑡(-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵
2925, 28nfor 1868 . . . . 5 𝑡((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)
3019, 29nfrex 3255 . . . 4 𝑡𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)
31 csbeq1a 3797 . . . . . . . 8 (𝑡 = 𝑎𝐴 = 𝑎 / 𝑡𝐴)
3231oveq2d 6998 . . . . . . 7 (𝑡 = 𝑎 → (𝑏 · 𝐴) = (𝑏 · 𝑎 / 𝑡𝐴))
33 csbeq1a 3797 . . . . . . 7 (𝑡 = 𝑎𝐵 = 𝑎 / 𝑡𝐵)
3432, 33eqeq12d 2795 . . . . . 6 (𝑡 = 𝑎 → ((𝑏 · 𝐴) = 𝐵 ↔ (𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
3531oveq2d 6998 . . . . . . 7 (𝑡 = 𝑎 → (-𝑏 · 𝐴) = (-𝑏 · 𝑎 / 𝑡𝐴))
3635, 33eqeq12d 2795 . . . . . 6 (𝑡 = 𝑎 → ((-𝑏 · 𝐴) = 𝐵 ↔ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
3734, 36orbi12d 903 . . . . 5 (𝑡 = 𝑎 → (((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵) ↔ ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)))
3837rexbidv 3244 . . . 4 (𝑡 = 𝑎 → (∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵) ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)))
3916, 17, 18, 30, 38cbvrab 3413 . . 3 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)}
40 simp1 1117 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ ℕ0)
41 peano2nn0 11755 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
42413ad2ant1 1114 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑁 + 1) ∈ ℕ0)
43 ovex 7014 . . . . . . . . . 10 (1...(𝑁 + 1)) ∈ V
44 nn0p1nn 11754 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
45 elfz1end 12759 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (1...(𝑁 + 1)))
4644, 45sylib 210 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
47 mzpproj 38770 . . . . . . . . . 10 (((1...(𝑁 + 1)) ∈ V ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
4843, 46, 47sylancr 579 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
4948adantr 473 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
50 eqid 2780 . . . . . . . . 9 (𝑁 + 1) = (𝑁 + 1)
5150rabdiophlem2 38836 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1))))
52 mzpmulmpt 38775 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1)))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
5349, 51, 52syl2anc 576 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
54533adant3 1113 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
5550rabdiophlem2 38836 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1))))
56553adant2 1112 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1))))
57 eqrabdioph 38811 . . . . . 6 (((𝑁 + 1) ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1)))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
5842, 54, 56, 57syl3anc 1352 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
59 mzpnegmpt 38777 . . . . . . . . 9 ((𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ -(𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
6049, 59syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ -(𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
61 mzpmulmpt 38775 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ -(𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1)))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
6260, 51, 61syl2anc 576 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
63623adant3 1113 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
64 eqrabdioph 38811 . . . . . 6 (((𝑁 + 1) ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1)))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
6542, 63, 56, 64syl3anc 1352 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
66 orrabdioph 38815 . . . . 5 (({𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)) ∧ {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)} ∈ (Dioph‘(𝑁 + 1)))
6758, 65, 66syl2anc 576 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)} ∈ (Dioph‘(𝑁 + 1)))
68 oveq1 6989 . . . . . . 7 (𝑏 = (𝑐‘(𝑁 + 1)) → (𝑏 · 𝑎 / 𝑡𝐴) = ((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴))
6968eqeq1d 2782 . . . . . 6 (𝑏 = (𝑐‘(𝑁 + 1)) → ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ ((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
70 negeq 10684 . . . . . . . 8 (𝑏 = (𝑐‘(𝑁 + 1)) → -𝑏 = -(𝑐‘(𝑁 + 1)))
7170oveq1d 6997 . . . . . . 7 (𝑏 = (𝑐‘(𝑁 + 1)) → (-𝑏 · 𝑎 / 𝑡𝐴) = (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴))
7271eqeq1d 2782 . . . . . 6 (𝑏 = (𝑐‘(𝑁 + 1)) → ((-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
7369, 72orbi12d 903 . . . . 5 (𝑏 = (𝑐‘(𝑁 + 1)) → (((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵) ↔ (((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)))
74 csbeq1 3791 . . . . . . . 8 (𝑎 = (𝑐 ↾ (1...𝑁)) → 𝑎 / 𝑡𝐴 = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)
7574oveq2d 6998 . . . . . . 7 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴))
76 csbeq1 3791 . . . . . . 7 (𝑎 = (𝑐 ↾ (1...𝑁)) → 𝑎 / 𝑡𝐵 = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)
7775, 76eqeq12d 2795 . . . . . 6 (𝑎 = (𝑐 ↾ (1...𝑁)) → (((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵))
7874oveq2d 6998 . . . . . . 7 (𝑎 = (𝑐 ↾ (1...𝑁)) → (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴))
7978, 76eqeq12d 2795 . . . . . 6 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵))
8077, 79orbi12d 903 . . . . 5 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵) ↔ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)))
8150, 73, 80rexrabdioph 38828 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)} ∈ (Dioph‘(𝑁 + 1))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)} ∈ (Dioph‘𝑁))
8240, 67, 81syl2anc 576 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)} ∈ (Dioph‘𝑁))
8339, 82syl5eqel 2872 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)} ∈ (Dioph‘𝑁))
8415, 83eqeltrd 2868 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 834  w3a 1069   = wceq 1508  wcel 2051  wral 3090  wrex 3091  {crab 3094  Vcvv 3417  csb 3788   class class class wbr 4934  cmpt 5013  cres 5413  cfv 6193  (class class class)co 6982  𝑚 cmap 8212  1c1 10342   + caddc 10344   · cmul 10346  -cneg 10677  cn 11445  0cn0 11713  cz 11799  ...cfz 12714  cdvds 15473  mzPolycmzp 38755  Diophcdioph 38788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-map 8214  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-dju 9130  df-card 9168  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-nn 11446  df-n0 11714  df-z 11800  df-uz 12065  df-fz 12715  df-hash 13512  df-dvds 15474  df-mzpcl 38756  df-mzp 38757  df-dioph 38789
This theorem is referenced by:  rmydioph  39048  expdiophlem2  39056
  Copyright terms: Public domain W3C validator