Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsrabdioph Structured version   Visualization version   GIF version

Theorem dvdsrabdioph 41119
Description: Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
dvdsrabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hints:   𝐴(𝑡)   𝐵(𝑡)

Proof of Theorem dvdsrabdioph
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabdiophlem1 41110 . . . 4 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ)
2 rabdiophlem1 41110 . . . 4 ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐵 ∈ ℤ)
3 divides 16138 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∃𝑎 ∈ ℤ (𝑎 · 𝐴) = 𝐵))
4 oveq1 7364 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 · 𝐴) = (𝑏 · 𝐴))
54eqeq1d 2738 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑎 · 𝐴) = 𝐵 ↔ (𝑏 · 𝐴) = 𝐵))
6 oveq1 7364 . . . . . . . . 9 (𝑎 = -𝑏 → (𝑎 · 𝐴) = (-𝑏 · 𝐴))
76eqeq1d 2738 . . . . . . . 8 (𝑎 = -𝑏 → ((𝑎 · 𝐴) = 𝐵 ↔ (-𝑏 · 𝐴) = 𝐵))
85, 7rexzrexnn0 41113 . . . . . . 7 (∃𝑎 ∈ ℤ (𝑎 · 𝐴) = 𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵))
93, 8bitrdi 286 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)))
109ralimi 3086 . . . . 5 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)))
11 r19.26 3114 . . . . 5 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐵 ∈ ℤ))
12 rabbi 3432 . . . . 5 (∀𝑡 ∈ (ℕ0m (1...𝑁))(𝐴𝐵 ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)) ↔ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
1310, 11, 123imtr3i 290 . . . 4 ((∀𝑡 ∈ (ℕ0m (1...𝑁))𝐴 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0m (1...𝑁))𝐵 ∈ ℤ) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
141, 2, 13syl2an 596 . . 3 (((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
15143adant1 1130 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)})
16 nfcv 2907 . . . 4 𝑡(ℕ0m (1...𝑁))
17 nfcv 2907 . . . 4 𝑎(ℕ0m (1...𝑁))
18 nfv 1917 . . . 4 𝑎𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)
19 nfcv 2907 . . . . 5 𝑡0
20 nfcv 2907 . . . . . . . 8 𝑡𝑏
21 nfcv 2907 . . . . . . . 8 𝑡 ·
22 nfcsb1v 3880 . . . . . . . 8 𝑡𝑎 / 𝑡𝐴
2320, 21, 22nfov 7387 . . . . . . 7 𝑡(𝑏 · 𝑎 / 𝑡𝐴)
24 nfcsb1v 3880 . . . . . . 7 𝑡𝑎 / 𝑡𝐵
2523, 24nfeq 2920 . . . . . 6 𝑡(𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵
26 nfcv 2907 . . . . . . . 8 𝑡-𝑏
2726, 21, 22nfov 7387 . . . . . . 7 𝑡(-𝑏 · 𝑎 / 𝑡𝐴)
2827, 24nfeq 2920 . . . . . 6 𝑡(-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵
2925, 28nfor 1907 . . . . 5 𝑡((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)
3019, 29nfrexw 3296 . . . 4 𝑡𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)
31 csbeq1a 3869 . . . . . . . 8 (𝑡 = 𝑎𝐴 = 𝑎 / 𝑡𝐴)
3231oveq2d 7373 . . . . . . 7 (𝑡 = 𝑎 → (𝑏 · 𝐴) = (𝑏 · 𝑎 / 𝑡𝐴))
33 csbeq1a 3869 . . . . . . 7 (𝑡 = 𝑎𝐵 = 𝑎 / 𝑡𝐵)
3432, 33eqeq12d 2752 . . . . . 6 (𝑡 = 𝑎 → ((𝑏 · 𝐴) = 𝐵 ↔ (𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
3531oveq2d 7373 . . . . . . 7 (𝑡 = 𝑎 → (-𝑏 · 𝐴) = (-𝑏 · 𝑎 / 𝑡𝐴))
3635, 33eqeq12d 2752 . . . . . 6 (𝑡 = 𝑎 → ((-𝑏 · 𝐴) = 𝐵 ↔ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
3734, 36orbi12d 917 . . . . 5 (𝑡 = 𝑎 → (((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵) ↔ ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)))
3837rexbidv 3175 . . . 4 (𝑡 = 𝑎 → (∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵) ↔ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)))
3916, 17, 18, 30, 38cbvrabw 3439 . . 3 {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)}
40 simp1 1136 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → 𝑁 ∈ ℕ0)
41 peano2nn0 12453 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
42413ad2ant1 1133 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑁 + 1) ∈ ℕ0)
43 ovex 7390 . . . . . . . . . 10 (1...(𝑁 + 1)) ∈ V
44 nn0p1nn 12452 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
45 elfz1end 13471 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (1...(𝑁 + 1)))
4644, 45sylib 217 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
47 mzpproj 41046 . . . . . . . . . 10 (((1...(𝑁 + 1)) ∈ V ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
4843, 46, 47sylancr 587 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
4948adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
50 eqid 2736 . . . . . . . . 9 (𝑁 + 1) = (𝑁 + 1)
5150rabdiophlem2 41111 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1))))
52 mzpmulmpt 41051 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1)))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
5349, 51, 52syl2anc 584 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
54533adant3 1132 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
5550rabdiophlem2 41111 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1))))
56553adant2 1131 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1))))
57 eqrabdioph 41086 . . . . . 6 (((𝑁 + 1) ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1)))) → {𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
5842, 54, 56, 57syl3anc 1371 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
59 mzpnegmpt 41053 . . . . . . . . 9 ((𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ -(𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
6049, 59syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ -(𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
61 mzpmulmpt 41051 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ -(𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1)))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
6260, 51, 61syl2anc 584 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
63623adant3 1132 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))))
64 eqrabdioph 41086 . . . . . 6 (((𝑁 + 1) ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑m (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐵) ∈ (mzPoly‘(1...(𝑁 + 1)))) → {𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
6542, 63, 56, 64syl3anc 1371 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)))
66 orrabdioph 41090 . . . . 5 (({𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1)) ∧ {𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵} ∈ (Dioph‘(𝑁 + 1))) → {𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)} ∈ (Dioph‘(𝑁 + 1)))
6758, 65, 66syl2anc 584 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)} ∈ (Dioph‘(𝑁 + 1)))
68 oveq1 7364 . . . . . . 7 (𝑏 = (𝑐‘(𝑁 + 1)) → (𝑏 · 𝑎 / 𝑡𝐴) = ((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴))
6968eqeq1d 2738 . . . . . 6 (𝑏 = (𝑐‘(𝑁 + 1)) → ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ ((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
70 negeq 11393 . . . . . . . 8 (𝑏 = (𝑐‘(𝑁 + 1)) → -𝑏 = -(𝑐‘(𝑁 + 1)))
7170oveq1d 7372 . . . . . . 7 (𝑏 = (𝑐‘(𝑁 + 1)) → (-𝑏 · 𝑎 / 𝑡𝐴) = (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴))
7271eqeq1d 2738 . . . . . 6 (𝑏 = (𝑐‘(𝑁 + 1)) → ((-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵))
7369, 72orbi12d 917 . . . . 5 (𝑏 = (𝑐‘(𝑁 + 1)) → (((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵) ↔ (((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)))
74 csbeq1 3858 . . . . . . . 8 (𝑎 = (𝑐 ↾ (1...𝑁)) → 𝑎 / 𝑡𝐴 = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)
7574oveq2d 7373 . . . . . . 7 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴))
76 csbeq1 3858 . . . . . . 7 (𝑎 = (𝑐 ↾ (1...𝑁)) → 𝑎 / 𝑡𝐵 = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)
7775, 76eqeq12d 2752 . . . . . 6 (𝑎 = (𝑐 ↾ (1...𝑁)) → (((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ ((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵))
7874oveq2d 7373 . . . . . . 7 (𝑎 = (𝑐 ↾ (1...𝑁)) → (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴))
7978, 76eqeq12d 2752 . . . . . 6 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ↔ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵))
8077, 79orbi12d 917 . . . . 5 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((((𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵) ↔ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)))
8150, 73, 80rexrabdioph 41103 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑐 ∈ (ℕ0m (1...(𝑁 + 1))) ∣ (((𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵 ∨ (-(𝑐‘(𝑁 + 1)) · (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐵)} ∈ (Dioph‘(𝑁 + 1))) → {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)} ∈ (Dioph‘𝑁))
8240, 67, 81syl2anc 584 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵 ∨ (-𝑏 · 𝑎 / 𝑡𝐴) = 𝑎 / 𝑡𝐵)} ∈ (Dioph‘𝑁))
8339, 82eqeltrid 2842 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 ((𝑏 · 𝐴) = 𝐵 ∨ (-𝑏 · 𝐴) = 𝐵)} ∈ (Dioph‘𝑁))
8415, 83eqeltrd 2838 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  csb 3855   class class class wbr 5105  cmpt 5188  cres 5635  cfv 6496  (class class class)co 7357  m cmap 8765  1c1 11052   + caddc 11054   · cmul 11056  -cneg 11386  cn 12153  0cn0 12413  cz 12499  ...cfz 13424  cdvds 16136  mzPolycmzp 41031  Diophcdioph 41064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231  df-dvds 16137  df-mzpcl 41032  df-mzp 41033  df-dioph 41065
This theorem is referenced by:  rmydioph  41324  expdiophlem2  41332
  Copyright terms: Public domain W3C validator