MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcprod1 Structured version   Visualization version   GIF version

Theorem nfcprod1 15881
Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
nfcprod1.1 𝑘𝐴
Assertion
Ref Expression
nfcprod1 𝑘𝑘𝐴 𝐵
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem nfcprod1
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 15877 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 nfcv 2892 . . . . 5 𝑘
3 nfcprod1.1 . . . . . . 7 𝑘𝐴
4 nfcv 2892 . . . . . . 7 𝑘(ℤ𝑚)
53, 4nfss 3942 . . . . . 6 𝑘 𝐴 ⊆ (ℤ𝑚)
6 nfv 1914 . . . . . . . . 9 𝑘 𝑦 ≠ 0
7 nfcv 2892 . . . . . . . . . . 11 𝑘𝑛
8 nfcv 2892 . . . . . . . . . . 11 𝑘 ·
9 nfmpt1 5209 . . . . . . . . . . 11 𝑘(𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
107, 8, 9nfseq 13983 . . . . . . . . . 10 𝑘seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
11 nfcv 2892 . . . . . . . . . 10 𝑘
12 nfcv 2892 . . . . . . . . . 10 𝑘𝑦
1310, 11, 12nfbr 5157 . . . . . . . . 9 𝑘seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
146, 13nfan 1899 . . . . . . . 8 𝑘(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
1514nfex 2323 . . . . . . 7 𝑘𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
164, 15nfrexw 3289 . . . . . 6 𝑘𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
17 nfcv 2892 . . . . . . . 8 𝑘𝑚
1817, 8, 9nfseq 13983 . . . . . . 7 𝑘seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
19 nfcv 2892 . . . . . . 7 𝑘𝑥
2018, 11, 19nfbr 5157 . . . . . 6 𝑘seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥
215, 16, 20nf3an 1901 . . . . 5 𝑘(𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
222, 21nfrexw 3289 . . . 4 𝑘𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
23 nfcv 2892 . . . . 5 𝑘
24 nfcv 2892 . . . . . . . 8 𝑘𝑓
25 nfcv 2892 . . . . . . . 8 𝑘(1...𝑚)
2624, 25, 3nff1o 6801 . . . . . . 7 𝑘 𝑓:(1...𝑚)–1-1-onto𝐴
27 nfcv 2892 . . . . . . . . . 10 𝑘1
28 nfcsb1v 3889 . . . . . . . . . . 11 𝑘(𝑓𝑛) / 𝑘𝐵
2923, 28nfmpt 5208 . . . . . . . . . 10 𝑘(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
3027, 8, 29nfseq 13983 . . . . . . . . 9 𝑘seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
3130, 17nffv 6871 . . . . . . . 8 𝑘(seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3231nfeq2 2910 . . . . . . 7 𝑘 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3326, 32nfan 1899 . . . . . 6 𝑘(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3433nfex 2323 . . . . 5 𝑘𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3523, 34nfrexw 3289 . . . 4 𝑘𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3622, 35nfor 1904 . . 3 𝑘(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
3736nfiotaw 6471 . 2 𝑘(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
381, 37nfcxfr 2890 1 𝑘𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wnfc 2877  wne 2926  wrex 3054  csb 3865  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  cio 6465  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   · cmul 11080  cn 12193  cz 12536  cuz 12800  ...cfz 13475  seqcseq 13973  cli 15457  cprod 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seq 13974  df-prod 15877
This theorem is referenced by:  fprodcn  45605  dvmptfprod  45950  vonicc  46690
  Copyright terms: Public domain W3C validator