MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcprod1 Structured version   Visualization version   GIF version

Theorem nfcprod1 15956
Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
nfcprod1.1 𝑘𝐴
Assertion
Ref Expression
nfcprod1 𝑘𝑘𝐴 𝐵
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem nfcprod1
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 15952 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 nfcv 2908 . . . . 5 𝑘
3 nfcprod1.1 . . . . . . 7 𝑘𝐴
4 nfcv 2908 . . . . . . 7 𝑘(ℤ𝑚)
53, 4nfss 4001 . . . . . 6 𝑘 𝐴 ⊆ (ℤ𝑚)
6 nfv 1913 . . . . . . . . 9 𝑘 𝑦 ≠ 0
7 nfcv 2908 . . . . . . . . . . 11 𝑘𝑛
8 nfcv 2908 . . . . . . . . . . 11 𝑘 ·
9 nfmpt1 5274 . . . . . . . . . . 11 𝑘(𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
107, 8, 9nfseq 14062 . . . . . . . . . 10 𝑘seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
11 nfcv 2908 . . . . . . . . . 10 𝑘
12 nfcv 2908 . . . . . . . . . 10 𝑘𝑦
1310, 11, 12nfbr 5213 . . . . . . . . 9 𝑘seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
146, 13nfan 1898 . . . . . . . 8 𝑘(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
1514nfex 2328 . . . . . . 7 𝑘𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
164, 15nfrexw 3319 . . . . . 6 𝑘𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
17 nfcv 2908 . . . . . . . 8 𝑘𝑚
1817, 8, 9nfseq 14062 . . . . . . 7 𝑘seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
19 nfcv 2908 . . . . . . 7 𝑘𝑥
2018, 11, 19nfbr 5213 . . . . . 6 𝑘seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥
215, 16, 20nf3an 1900 . . . . 5 𝑘(𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
222, 21nfrexw 3319 . . . 4 𝑘𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
23 nfcv 2908 . . . . 5 𝑘
24 nfcv 2908 . . . . . . . 8 𝑘𝑓
25 nfcv 2908 . . . . . . . 8 𝑘(1...𝑚)
2624, 25, 3nff1o 6860 . . . . . . 7 𝑘 𝑓:(1...𝑚)–1-1-onto𝐴
27 nfcv 2908 . . . . . . . . . 10 𝑘1
28 nfcsb1v 3946 . . . . . . . . . . 11 𝑘(𝑓𝑛) / 𝑘𝐵
2923, 28nfmpt 5273 . . . . . . . . . 10 𝑘(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
3027, 8, 29nfseq 14062 . . . . . . . . 9 𝑘seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
3130, 17nffv 6930 . . . . . . . 8 𝑘(seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3231nfeq2 2926 . . . . . . 7 𝑘 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3326, 32nfan 1898 . . . . . 6 𝑘(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3433nfex 2328 . . . . 5 𝑘𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3523, 34nfrexw 3319 . . . 4 𝑘𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3622, 35nfor 1903 . . 3 𝑘(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
3736nfiotaw 6529 . 2 𝑘(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
381, 37nfcxfr 2906 1 𝑘𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wnfc 2893  wne 2946  wrex 3076  csb 3921  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  cio 6523  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   · cmul 11189  cn 12293  cz 12639  cuz 12903  ...cfz 13567  seqcseq 14052  cli 15530  cprod 15951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seq 14053  df-prod 15952
This theorem is referenced by:  fprodcn  45521  dvmptfprod  45866  vonicc  46606
  Copyright terms: Public domain W3C validator