MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexd Structured version   Visualization version   GIF version

Theorem mreexexd 17549
Description: Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if 𝐹 and 𝐺 are disjoint from 𝐻, (𝐹𝐻) is independent, 𝐹 is contained in the closure of (𝐺𝐻), and either 𝐹 or 𝐺 is finite, then there is a subset 𝑞 of 𝐺 equinumerous to 𝐹 such that (𝑞𝐻) is independent. This implies the case of Proposition 4.2.1 in [FaureFrolicher] p. 86 where either (𝐴𝐵) or (𝐵𝐴) is finite. The theorem is proven by induction using mreexexlem3d 17547 for the base case and mreexexlem4d 17548 for the induction step. (Contributed by David Moews, 1-May-2017.) Remove dependencies on ax-rep 5212 and ax-ac2 10349. (Revised by Brendan Leahy, 2-Jun-2021.)
Hypotheses
Ref Expression
mreexexlem2d.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexexlem2d.2 𝑁 = (mrCls‘𝐴)
mreexexlem2d.3 𝐼 = (mrInd‘𝐴)
mreexexlem2d.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexexlem2d.5 (𝜑𝐹 ⊆ (𝑋𝐻))
mreexexlem2d.6 (𝜑𝐺 ⊆ (𝑋𝐻))
mreexexlem2d.7 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
mreexexlem2d.8 (𝜑 → (𝐹𝐻) ∈ 𝐼)
mreexexd.9 (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin))
Assertion
Ref Expression
mreexexd (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹𝑞 ∧ (𝑞𝐻) ∈ 𝐼))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧   𝜑,𝑞   𝐼,𝑞   𝐻,𝑞
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠,𝑞)   𝐹(𝑦,𝑧,𝑠)   𝐺(𝑦,𝑧,𝑠)   𝐻(𝑦,𝑧,𝑠)   𝑁(𝑞)   𝑋(𝑞)

Proof of Theorem mreexexd
Dummy variables 𝑓 𝑔 𝑙 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mreexexlem2d.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
21elfvexd 6853 . 2 (𝜑𝑋 ∈ V)
3 mreexexlem2d.5 . 2 (𝜑𝐹 ⊆ (𝑋𝐻))
4 mreexexlem2d.6 . 2 (𝜑𝐺 ⊆ (𝑋𝐻))
5 mreexexlem2d.7 . 2 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
6 mreexexlem2d.8 . 2 (𝜑 → (𝐹𝐻) ∈ 𝐼)
7 exmid 894 . . 3 (𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin)
8 ficardid 9850 . . . . . . 7 (𝐹 ∈ Fin → (card‘𝐹) ≈ 𝐹)
98ensymd 8922 . . . . . 6 (𝐹 ∈ Fin → 𝐹 ≈ (card‘𝐹))
10 iftrue 4476 . . . . . 6 (𝐹 ∈ Fin → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐹))
119, 10breqtrrd 5114 . . . . 5 (𝐹 ∈ Fin → 𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))
1211a1i 11 . . . 4 (𝜑 → (𝐹 ∈ Fin → 𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
13 mreexexd.9 . . . . . . . 8 (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin))
1413orcanai 1004 . . . . . . 7 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ∈ Fin)
15 ficardid 9850 . . . . . . . 8 (𝐺 ∈ Fin → (card‘𝐺) ≈ 𝐺)
1615ensymd 8922 . . . . . . 7 (𝐺 ∈ Fin → 𝐺 ≈ (card‘𝐺))
1714, 16syl 17 . . . . . 6 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ≈ (card‘𝐺))
18 iffalse 4479 . . . . . . 7 𝐹 ∈ Fin → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐺))
1918adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐺))
2017, 19breqtrrd 5114 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))
2120ex 412 . . . 4 (𝜑 → (¬ 𝐹 ∈ Fin → 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
2212, 21orim12d 966 . . 3 (𝜑 → ((𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin) → (𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))))
237, 22mpi 20 . 2 (𝜑 → (𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
24 ficardom 9849 . . . . 5 (𝐹 ∈ Fin → (card‘𝐹) ∈ ω)
2524adantl 481 . . . 4 ((𝜑𝐹 ∈ Fin) → (card‘𝐹) ∈ ω)
26 ficardom 9849 . . . . 5 (𝐺 ∈ Fin → (card‘𝐺) ∈ ω)
2714, 26syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → (card‘𝐺) ∈ ω)
2825, 27ifclda 4506 . . 3 (𝜑 → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∈ ω)
29 breq2 5090 . . . . . . . . . 10 (𝑙 = ∅ → (𝑓𝑙𝑓 ≈ ∅))
30 breq2 5090 . . . . . . . . . 10 (𝑙 = ∅ → (𝑔𝑙𝑔 ≈ ∅))
3129, 30orbi12d 918 . . . . . . . . 9 (𝑙 = ∅ → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅)))
32313anbi1d 1442 . . . . . . . 8 (𝑙 = ∅ → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
3332imbi1d 341 . . . . . . 7 (𝑙 = ∅ → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
34332ralbidv 3196 . . . . . 6 (𝑙 = ∅ → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
3534albidv 1921 . . . . 5 (𝑙 = ∅ → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
3635imbi2d 340 . . . 4 (𝑙 = ∅ → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
37 breq2 5090 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑓𝑙𝑓𝑘))
38 breq2 5090 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑔𝑙𝑔𝑘))
3937, 38orbi12d 918 . . . . . . . . 9 (𝑙 = 𝑘 → ((𝑓𝑙𝑔𝑙) ↔ (𝑓𝑘𝑔𝑘)))
40393anbi1d 1442 . . . . . . . 8 (𝑙 = 𝑘 → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
4140imbi1d 341 . . . . . . 7 (𝑙 = 𝑘 → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
42412ralbidv 3196 . . . . . 6 (𝑙 = 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
4342albidv 1921 . . . . 5 (𝑙 = 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
4443imbi2d 340 . . . 4 (𝑙 = 𝑘 → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
45 breq2 5090 . . . . . . . . . 10 (𝑙 = suc 𝑘 → (𝑓𝑙𝑓 ≈ suc 𝑘))
46 breq2 5090 . . . . . . . . . 10 (𝑙 = suc 𝑘 → (𝑔𝑙𝑔 ≈ suc 𝑘))
4745, 46orbi12d 918 . . . . . . . . 9 (𝑙 = suc 𝑘 → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘)))
48473anbi1d 1442 . . . . . . . 8 (𝑙 = suc 𝑘 → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
4948imbi1d 341 . . . . . . 7 (𝑙 = suc 𝑘 → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
50492ralbidv 3196 . . . . . 6 (𝑙 = suc 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5150albidv 1921 . . . . 5 (𝑙 = suc 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5251imbi2d 340 . . . 4 (𝑙 = suc 𝑘 → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
53 breq2 5090 . . . . . . . . . 10 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (𝑓𝑙𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
54 breq2 5090 . . . . . . . . . 10 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (𝑔𝑙𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
5553, 54orbi12d 918 . . . . . . . . 9 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))))
56553anbi1d 1442 . . . . . . . 8 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
5756imbi1d 341 . . . . . . 7 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
58572ralbidv 3196 . . . . . 6 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5958albidv 1921 . . . . 5 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
6059imbi2d 340 . . . 4 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
611ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝐴 ∈ (Moore‘𝑋))
62 mreexexlem2d.2 . . . . . . . 8 𝑁 = (mrCls‘𝐴)
63 mreexexlem2d.3 . . . . . . . 8 𝐼 = (mrInd‘𝐴)
64 mreexexlem2d.4 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
6564ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
66 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ∈ 𝒫 (𝑋))
6766elpwid 4554 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑋))
68 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ∈ 𝒫 (𝑋))
6968elpwid 4554 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ⊆ (𝑋))
70 simpr2 1196 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑁‘(𝑔)))
71 simpr3 1197 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓) ∈ 𝐼)
72 simpr1 1195 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅))
73 en0 8935 . . . . . . . . . 10 (𝑓 ≈ ∅ ↔ 𝑓 = ∅)
74 en0 8935 . . . . . . . . . 10 (𝑔 ≈ ∅ ↔ 𝑔 = ∅)
7573, 74orbi12i 914 . . . . . . . . 9 ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ↔ (𝑓 = ∅ ∨ 𝑔 = ∅))
7672, 75sylib 218 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 = ∅ ∨ 𝑔 = ∅))
7761, 62, 63, 65, 67, 69, 70, 71, 76mreexexlem3d 17547 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
7877ex 412 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) → (((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
7978ralrimivva 3175 . . . . 5 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
8079alrimiv 1928 . . . 4 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
81 nfv 1915 . . . . . . . . 9 𝜑
82 nfv 1915 . . . . . . . . 9 𝑘 ∈ ω
83 nfa1 2154 . . . . . . . . 9 𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8481, 82, 83nf3an 1902 . . . . . . . 8 (𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
85 nfv 1915 . . . . . . . . . 10 𝑓𝜑
86 nfv 1915 . . . . . . . . . 10 𝑓 𝑘 ∈ ω
87 nfra1 3256 . . . . . . . . . . 11 𝑓𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8887nfal 2324 . . . . . . . . . 10 𝑓𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8985, 86, 88nf3an 1902 . . . . . . . . 9 𝑓(𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
90 nfv 1915 . . . . . . . . . . . . 13 𝑔𝜑
91 nfv 1915 . . . . . . . . . . . . 13 𝑔 𝑘 ∈ ω
92 nfra2w 3268 . . . . . . . . . . . . . 14 𝑔𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
9392nfal 2324 . . . . . . . . . . . . 13 𝑔𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
9490, 91, 93nf3an 1902 . . . . . . . . . . . 12 𝑔(𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
95 nfv 1915 . . . . . . . . . . . 12 𝑔 𝑓 ∈ 𝒫 (𝑋)
9694, 95nfan 1900 . . . . . . . . . . 11 𝑔((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋))
9713ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → 𝐴 ∈ (Moore‘𝑋))
9897ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝐴 ∈ (Moore‘𝑋))
99643ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
10099ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
101 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ∈ 𝒫 (𝑋))
102101elpwid 4554 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑋))
103 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ∈ 𝒫 (𝑋))
104103elpwid 4554 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ⊆ (𝑋))
105 simpr2 1196 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑁‘(𝑔)))
106 simpr3 1197 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓) ∈ 𝐼)
107 simpll2 1214 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑘 ∈ ω)
108 simpll3 1215 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
109 simpr1 1195 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘))
11098, 62, 63, 100, 102, 104, 105, 106, 107, 108, 109mreexexlem4d 17548 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
111110ex 412 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) → (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
112111expr 456 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋)) → (𝑔 ∈ 𝒫 (𝑋) → (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
11396, 112ralrimi 3230 . . . . . . . . . 10 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋)) → ∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
114113ex 412 . . . . . . . . 9 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → (𝑓 ∈ 𝒫 (𝑋) → ∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
11589, 114ralrimi 3230 . . . . . . . 8 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
11684, 115alrimi 2216 . . . . . . 7 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
1171163exp 1119 . . . . . 6 (𝜑 → (𝑘 ∈ ω → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
118117com12 32 . . . . 5 (𝑘 ∈ ω → (𝜑 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
119118a2d 29 . . . 4 (𝑘 ∈ ω → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
12036, 44, 52, 60, 80, 119finds 7821 . . 3 (if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∈ ω → (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
12128, 120mpcom 38 . 2 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
1222, 3, 4, 5, 6, 23, 121mreexexlemd 17545 1 (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹𝑞 ∧ (𝑞𝐻) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  cun 3895  wss 3897  c0 4278  ifcif 4470  𝒫 cpw 4545  {csn 4571   class class class wbr 5086  suc csuc 6303  cfv 6476  ωcom 7791  cen 8861  Fincfn 8864  cardccrd 9823  Moorecmre 17479  mrClscmrc 17480  mrIndcmri 17481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-om 7792  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9827  df-mre 17483  df-mrc 17484  df-mri 17485
This theorem is referenced by:  mreexdomd  17550  lindsdom  37654  aacllem  49833
  Copyright terms: Public domain W3C validator