MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexd Structured version   Visualization version   GIF version

Theorem mreexexd 17661
Description: Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if 𝐹 and 𝐺 are disjoint from 𝐻, (𝐹𝐻) is independent, 𝐹 is contained in the closure of (𝐺𝐻), and either 𝐹 or 𝐺 is finite, then there is a subset 𝑞 of 𝐺 equinumerous to 𝐹 such that (𝑞𝐻) is independent. This implies the case of Proposition 4.2.1 in [FaureFrolicher] p. 86 where either (𝐴𝐵) or (𝐵𝐴) is finite. The theorem is proven by induction using mreexexlem3d 17659 for the base case and mreexexlem4d 17660 for the induction step. (Contributed by David Moews, 1-May-2017.) Remove dependencies on ax-rep 5290 and ax-ac2 10506. (Revised by Brendan Leahy, 2-Jun-2021.)
Hypotheses
Ref Expression
mreexexlem2d.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexexlem2d.2 𝑁 = (mrCls‘𝐴)
mreexexlem2d.3 𝐼 = (mrInd‘𝐴)
mreexexlem2d.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexexlem2d.5 (𝜑𝐹 ⊆ (𝑋𝐻))
mreexexlem2d.6 (𝜑𝐺 ⊆ (𝑋𝐻))
mreexexlem2d.7 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
mreexexlem2d.8 (𝜑 → (𝐹𝐻) ∈ 𝐼)
mreexexd.9 (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin))
Assertion
Ref Expression
mreexexd (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹𝑞 ∧ (𝑞𝐻) ∈ 𝐼))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧   𝜑,𝑞   𝐼,𝑞   𝐻,𝑞
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠,𝑞)   𝐹(𝑦,𝑧,𝑠)   𝐺(𝑦,𝑧,𝑠)   𝐻(𝑦,𝑧,𝑠)   𝑁(𝑞)   𝑋(𝑞)

Proof of Theorem mreexexd
Dummy variables 𝑓 𝑔 𝑙 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mreexexlem2d.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
21elfvexd 6940 . 2 (𝜑𝑋 ∈ V)
3 mreexexlem2d.5 . 2 (𝜑𝐹 ⊆ (𝑋𝐻))
4 mreexexlem2d.6 . 2 (𝜑𝐺 ⊆ (𝑋𝐻))
5 mreexexlem2d.7 . 2 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
6 mreexexlem2d.8 . 2 (𝜑 → (𝐹𝐻) ∈ 𝐼)
7 exmid 892 . . 3 (𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin)
8 ficardid 10005 . . . . . . 7 (𝐹 ∈ Fin → (card‘𝐹) ≈ 𝐹)
98ensymd 9036 . . . . . 6 (𝐹 ∈ Fin → 𝐹 ≈ (card‘𝐹))
10 iftrue 4539 . . . . . 6 (𝐹 ∈ Fin → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐹))
119, 10breqtrrd 5181 . . . . 5 (𝐹 ∈ Fin → 𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))
1211a1i 11 . . . 4 (𝜑 → (𝐹 ∈ Fin → 𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
13 mreexexd.9 . . . . . . . 8 (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin))
1413orcanai 1000 . . . . . . 7 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ∈ Fin)
15 ficardid 10005 . . . . . . . 8 (𝐺 ∈ Fin → (card‘𝐺) ≈ 𝐺)
1615ensymd 9036 . . . . . . 7 (𝐺 ∈ Fin → 𝐺 ≈ (card‘𝐺))
1714, 16syl 17 . . . . . 6 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ≈ (card‘𝐺))
18 iffalse 4542 . . . . . . 7 𝐹 ∈ Fin → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐺))
1918adantl 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐺))
2017, 19breqtrrd 5181 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))
2120ex 411 . . . 4 (𝜑 → (¬ 𝐹 ∈ Fin → 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
2212, 21orim12d 962 . . 3 (𝜑 → ((𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin) → (𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))))
237, 22mpi 20 . 2 (𝜑 → (𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
24 ficardom 10004 . . . . 5 (𝐹 ∈ Fin → (card‘𝐹) ∈ ω)
2524adantl 480 . . . 4 ((𝜑𝐹 ∈ Fin) → (card‘𝐹) ∈ ω)
26 ficardom 10004 . . . . 5 (𝐺 ∈ Fin → (card‘𝐺) ∈ ω)
2714, 26syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → (card‘𝐺) ∈ ω)
2825, 27ifclda 4568 . . 3 (𝜑 → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∈ ω)
29 breq2 5157 . . . . . . . . . 10 (𝑙 = ∅ → (𝑓𝑙𝑓 ≈ ∅))
30 breq2 5157 . . . . . . . . . 10 (𝑙 = ∅ → (𝑔𝑙𝑔 ≈ ∅))
3129, 30orbi12d 916 . . . . . . . . 9 (𝑙 = ∅ → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅)))
32313anbi1d 1437 . . . . . . . 8 (𝑙 = ∅ → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
3332imbi1d 340 . . . . . . 7 (𝑙 = ∅ → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
34332ralbidv 3209 . . . . . 6 (𝑙 = ∅ → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
3534albidv 1916 . . . . 5 (𝑙 = ∅ → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
3635imbi2d 339 . . . 4 (𝑙 = ∅ → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
37 breq2 5157 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑓𝑙𝑓𝑘))
38 breq2 5157 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑔𝑙𝑔𝑘))
3937, 38orbi12d 916 . . . . . . . . 9 (𝑙 = 𝑘 → ((𝑓𝑙𝑔𝑙) ↔ (𝑓𝑘𝑔𝑘)))
40393anbi1d 1437 . . . . . . . 8 (𝑙 = 𝑘 → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
4140imbi1d 340 . . . . . . 7 (𝑙 = 𝑘 → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
42412ralbidv 3209 . . . . . 6 (𝑙 = 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
4342albidv 1916 . . . . 5 (𝑙 = 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
4443imbi2d 339 . . . 4 (𝑙 = 𝑘 → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
45 breq2 5157 . . . . . . . . . 10 (𝑙 = suc 𝑘 → (𝑓𝑙𝑓 ≈ suc 𝑘))
46 breq2 5157 . . . . . . . . . 10 (𝑙 = suc 𝑘 → (𝑔𝑙𝑔 ≈ suc 𝑘))
4745, 46orbi12d 916 . . . . . . . . 9 (𝑙 = suc 𝑘 → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘)))
48473anbi1d 1437 . . . . . . . 8 (𝑙 = suc 𝑘 → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
4948imbi1d 340 . . . . . . 7 (𝑙 = suc 𝑘 → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
50492ralbidv 3209 . . . . . 6 (𝑙 = suc 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5150albidv 1916 . . . . 5 (𝑙 = suc 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5251imbi2d 339 . . . 4 (𝑙 = suc 𝑘 → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
53 breq2 5157 . . . . . . . . . 10 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (𝑓𝑙𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
54 breq2 5157 . . . . . . . . . 10 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (𝑔𝑙𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
5553, 54orbi12d 916 . . . . . . . . 9 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))))
56553anbi1d 1437 . . . . . . . 8 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
5756imbi1d 340 . . . . . . 7 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
58572ralbidv 3209 . . . . . 6 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5958albidv 1916 . . . . 5 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
6059imbi2d 339 . . . 4 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
611ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝐴 ∈ (Moore‘𝑋))
62 mreexexlem2d.2 . . . . . . . 8 𝑁 = (mrCls‘𝐴)
63 mreexexlem2d.3 . . . . . . . 8 𝐼 = (mrInd‘𝐴)
64 mreexexlem2d.4 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
6564ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
66 simplrl 775 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ∈ 𝒫 (𝑋))
6766elpwid 4616 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑋))
68 simplrr 776 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ∈ 𝒫 (𝑋))
6968elpwid 4616 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ⊆ (𝑋))
70 simpr2 1192 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑁‘(𝑔)))
71 simpr3 1193 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓) ∈ 𝐼)
72 simpr1 1191 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅))
73 en0 9049 . . . . . . . . . 10 (𝑓 ≈ ∅ ↔ 𝑓 = ∅)
74 en0 9049 . . . . . . . . . 10 (𝑔 ≈ ∅ ↔ 𝑔 = ∅)
7573, 74orbi12i 912 . . . . . . . . 9 ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ↔ (𝑓 = ∅ ∨ 𝑔 = ∅))
7672, 75sylib 217 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 = ∅ ∨ 𝑔 = ∅))
7761, 62, 63, 65, 67, 69, 70, 71, 76mreexexlem3d 17659 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
7877ex 411 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) → (((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
7978ralrimivva 3191 . . . . 5 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
8079alrimiv 1923 . . . 4 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
81 nfv 1910 . . . . . . . . 9 𝜑
82 nfv 1910 . . . . . . . . 9 𝑘 ∈ ω
83 nfa1 2141 . . . . . . . . 9 𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8481, 82, 83nf3an 1897 . . . . . . . 8 (𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
85 nfv 1910 . . . . . . . . . 10 𝑓𝜑
86 nfv 1910 . . . . . . . . . 10 𝑓 𝑘 ∈ ω
87 nfra1 3272 . . . . . . . . . . 11 𝑓𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8887nfal 2312 . . . . . . . . . 10 𝑓𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8985, 86, 88nf3an 1897 . . . . . . . . 9 𝑓(𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
90 nfv 1910 . . . . . . . . . . . . 13 𝑔𝜑
91 nfv 1910 . . . . . . . . . . . . 13 𝑔 𝑘 ∈ ω
92 nfra2w 3287 . . . . . . . . . . . . . 14 𝑔𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
9392nfal 2312 . . . . . . . . . . . . 13 𝑔𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
9490, 91, 93nf3an 1897 . . . . . . . . . . . 12 𝑔(𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
95 nfv 1910 . . . . . . . . . . . 12 𝑔 𝑓 ∈ 𝒫 (𝑋)
9694, 95nfan 1895 . . . . . . . . . . 11 𝑔((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋))
9713ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → 𝐴 ∈ (Moore‘𝑋))
9897ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝐴 ∈ (Moore‘𝑋))
99643ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
10099ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
101 simplrl 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ∈ 𝒫 (𝑋))
102101elpwid 4616 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑋))
103 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ∈ 𝒫 (𝑋))
104103elpwid 4616 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ⊆ (𝑋))
105 simpr2 1192 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑁‘(𝑔)))
106 simpr3 1193 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓) ∈ 𝐼)
107 simpll2 1210 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑘 ∈ ω)
108 simpll3 1211 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
109 simpr1 1191 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘))
11098, 62, 63, 100, 102, 104, 105, 106, 107, 108, 109mreexexlem4d 17660 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
111110ex 411 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) → (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
112111expr 455 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋)) → (𝑔 ∈ 𝒫 (𝑋) → (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
11396, 112ralrimi 3245 . . . . . . . . . 10 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋)) → ∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
114113ex 411 . . . . . . . . 9 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → (𝑓 ∈ 𝒫 (𝑋) → ∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
11589, 114ralrimi 3245 . . . . . . . 8 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
11684, 115alrimi 2202 . . . . . . 7 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
1171163exp 1116 . . . . . 6 (𝜑 → (𝑘 ∈ ω → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
118117com12 32 . . . . 5 (𝑘 ∈ ω → (𝜑 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
119118a2d 29 . . . 4 (𝑘 ∈ ω → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
12036, 44, 52, 60, 80, 119finds 7909 . . 3 (if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∈ ω → (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
12128, 120mpcom 38 . 2 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
1222, 3, 4, 5, 6, 23, 121mreexexlemd 17657 1 (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹𝑞 ∧ (𝑞𝐻) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3a 1084  wal 1532   = wceq 1534  wcel 2099  wral 3051  wrex 3060  Vcvv 3462  cdif 3944  cun 3945  wss 3947  c0 4325  ifcif 4533  𝒫 cpw 4607  {csn 4633   class class class wbr 5153  suc csuc 6378  cfv 6554  ωcom 7876  cen 8971  Fincfn 8974  cardccrd 9978  Moorecmre 17595  mrClscmrc 17596  mrIndcmri 17597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-om 7877  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-card 9982  df-mre 17599  df-mrc 17600  df-mri 17601
This theorem is referenced by:  mreexdomd  17662  lindsdom  37315  aacllem  48549
  Copyright terms: Public domain W3C validator