MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexd Structured version   Visualization version   GIF version

Theorem mreexexd 17274
Description: Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if 𝐹 and 𝐺 are disjoint from 𝐻, (𝐹𝐻) is independent, 𝐹 is contained in the closure of (𝐺𝐻), and either 𝐹 or 𝐺 is finite, then there is a subset 𝑞 of 𝐺 equinumerous to 𝐹 such that (𝑞𝐻) is independent. This implies the case of Proposition 4.2.1 in [FaureFrolicher] p. 86 where either (𝐴𝐵) or (𝐵𝐴) is finite. The theorem is proven by induction using mreexexlem3d 17272 for the base case and mreexexlem4d 17273 for the induction step. (Contributed by David Moews, 1-May-2017.) Remove dependencies on ax-rep 5205 and ax-ac2 10150. (Revised by Brendan Leahy, 2-Jun-2021.)
Hypotheses
Ref Expression
mreexexlem2d.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexexlem2d.2 𝑁 = (mrCls‘𝐴)
mreexexlem2d.3 𝐼 = (mrInd‘𝐴)
mreexexlem2d.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexexlem2d.5 (𝜑𝐹 ⊆ (𝑋𝐻))
mreexexlem2d.6 (𝜑𝐺 ⊆ (𝑋𝐻))
mreexexlem2d.7 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
mreexexlem2d.8 (𝜑 → (𝐹𝐻) ∈ 𝐼)
mreexexd.9 (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin))
Assertion
Ref Expression
mreexexd (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹𝑞 ∧ (𝑞𝐻) ∈ 𝐼))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧   𝜑,𝑞   𝐼,𝑞   𝐻,𝑞
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠,𝑞)   𝐹(𝑦,𝑧,𝑠)   𝐺(𝑦,𝑧,𝑠)   𝐻(𝑦,𝑧,𝑠)   𝑁(𝑞)   𝑋(𝑞)

Proof of Theorem mreexexd
Dummy variables 𝑓 𝑔 𝑙 𝑘 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mreexexlem2d.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
21elfvexd 6790 . 2 (𝜑𝑋 ∈ V)
3 mreexexlem2d.5 . 2 (𝜑𝐹 ⊆ (𝑋𝐻))
4 mreexexlem2d.6 . 2 (𝜑𝐺 ⊆ (𝑋𝐻))
5 mreexexlem2d.7 . 2 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
6 mreexexlem2d.8 . 2 (𝜑 → (𝐹𝐻) ∈ 𝐼)
7 exmid 891 . . 3 (𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin)
8 ficardid 9651 . . . . . . 7 (𝐹 ∈ Fin → (card‘𝐹) ≈ 𝐹)
98ensymd 8746 . . . . . 6 (𝐹 ∈ Fin → 𝐹 ≈ (card‘𝐹))
10 iftrue 4462 . . . . . 6 (𝐹 ∈ Fin → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐹))
119, 10breqtrrd 5098 . . . . 5 (𝐹 ∈ Fin → 𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))
1211a1i 11 . . . 4 (𝜑 → (𝐹 ∈ Fin → 𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
13 mreexexd.9 . . . . . . . 8 (𝜑 → (𝐹 ∈ Fin ∨ 𝐺 ∈ Fin))
1413orcanai 999 . . . . . . 7 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ∈ Fin)
15 ficardid 9651 . . . . . . . 8 (𝐺 ∈ Fin → (card‘𝐺) ≈ 𝐺)
1615ensymd 8746 . . . . . . 7 (𝐺 ∈ Fin → 𝐺 ≈ (card‘𝐺))
1714, 16syl 17 . . . . . 6 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ≈ (card‘𝐺))
18 iffalse 4465 . . . . . . 7 𝐹 ∈ Fin → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐺))
1918adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) = (card‘𝐺))
2017, 19breqtrrd 5098 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))
2120ex 412 . . . 4 (𝜑 → (¬ 𝐹 ∈ Fin → 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
2212, 21orim12d 961 . . 3 (𝜑 → ((𝐹 ∈ Fin ∨ ¬ 𝐹 ∈ Fin) → (𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))))
237, 22mpi 20 . 2 (𝜑 → (𝐹 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝐺 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
24 ficardom 9650 . . . . 5 (𝐹 ∈ Fin → (card‘𝐹) ∈ ω)
2524adantl 481 . . . 4 ((𝜑𝐹 ∈ Fin) → (card‘𝐹) ∈ ω)
26 ficardom 9650 . . . . 5 (𝐺 ∈ Fin → (card‘𝐺) ∈ ω)
2714, 26syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ Fin) → (card‘𝐺) ∈ ω)
2825, 27ifclda 4491 . . 3 (𝜑 → if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∈ ω)
29 breq2 5074 . . . . . . . . . 10 (𝑙 = ∅ → (𝑓𝑙𝑓 ≈ ∅))
30 breq2 5074 . . . . . . . . . 10 (𝑙 = ∅ → (𝑔𝑙𝑔 ≈ ∅))
3129, 30orbi12d 915 . . . . . . . . 9 (𝑙 = ∅ → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅)))
32313anbi1d 1438 . . . . . . . 8 (𝑙 = ∅ → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
3332imbi1d 341 . . . . . . 7 (𝑙 = ∅ → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
34332ralbidv 3122 . . . . . 6 (𝑙 = ∅ → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
3534albidv 1924 . . . . 5 (𝑙 = ∅ → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
3635imbi2d 340 . . . 4 (𝑙 = ∅ → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
37 breq2 5074 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑓𝑙𝑓𝑘))
38 breq2 5074 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑔𝑙𝑔𝑘))
3937, 38orbi12d 915 . . . . . . . . 9 (𝑙 = 𝑘 → ((𝑓𝑙𝑔𝑙) ↔ (𝑓𝑘𝑔𝑘)))
40393anbi1d 1438 . . . . . . . 8 (𝑙 = 𝑘 → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
4140imbi1d 341 . . . . . . 7 (𝑙 = 𝑘 → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
42412ralbidv 3122 . . . . . 6 (𝑙 = 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
4342albidv 1924 . . . . 5 (𝑙 = 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
4443imbi2d 340 . . . 4 (𝑙 = 𝑘 → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
45 breq2 5074 . . . . . . . . . 10 (𝑙 = suc 𝑘 → (𝑓𝑙𝑓 ≈ suc 𝑘))
46 breq2 5074 . . . . . . . . . 10 (𝑙 = suc 𝑘 → (𝑔𝑙𝑔 ≈ suc 𝑘))
4745, 46orbi12d 915 . . . . . . . . 9 (𝑙 = suc 𝑘 → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘)))
48473anbi1d 1438 . . . . . . . 8 (𝑙 = suc 𝑘 → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
4948imbi1d 341 . . . . . . 7 (𝑙 = suc 𝑘 → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
50492ralbidv 3122 . . . . . 6 (𝑙 = suc 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5150albidv 1924 . . . . 5 (𝑙 = suc 𝑘 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5251imbi2d 340 . . . 4 (𝑙 = suc 𝑘 → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
53 breq2 5074 . . . . . . . . . 10 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (𝑓𝑙𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
54 breq2 5074 . . . . . . . . . 10 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (𝑔𝑙𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))))
5553, 54orbi12d 915 . . . . . . . . 9 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((𝑓𝑙𝑔𝑙) ↔ (𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)))))
56553anbi1d 1438 . . . . . . . 8 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) ↔ ((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)))
5756imbi1d 341 . . . . . . 7 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ (((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
58572ralbidv 3122 . . . . . 6 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
5958albidv 1924 . . . . 5 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) ↔ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
6059imbi2d 340 . . . 4 (𝑙 = if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑙𝑔𝑙) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ↔ (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
611ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝐴 ∈ (Moore‘𝑋))
62 mreexexlem2d.2 . . . . . . . 8 𝑁 = (mrCls‘𝐴)
63 mreexexlem2d.3 . . . . . . . 8 𝐼 = (mrInd‘𝐴)
64 mreexexlem2d.4 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
6564ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
66 simplrl 773 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ∈ 𝒫 (𝑋))
6766elpwid 4541 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑋))
68 simplrr 774 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ∈ 𝒫 (𝑋))
6968elpwid 4541 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ⊆ (𝑋))
70 simpr2 1193 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑁‘(𝑔)))
71 simpr3 1194 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓) ∈ 𝐼)
72 simpr1 1192 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅))
73 en0 8758 . . . . . . . . . 10 (𝑓 ≈ ∅ ↔ 𝑓 = ∅)
74 en0 8758 . . . . . . . . . 10 (𝑔 ≈ ∅ ↔ 𝑔 = ∅)
7573, 74orbi12i 911 . . . . . . . . 9 ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ↔ (𝑓 = ∅ ∨ 𝑔 = ∅))
7672, 75sylib 217 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 = ∅ ∨ 𝑔 = ∅))
7761, 62, 63, 65, 67, 69, 70, 71, 76mreexexlem3d 17272 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
7877ex 412 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) → (((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
7978ralrimivva 3114 . . . . 5 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
8079alrimiv 1931 . . . 4 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ ∅ ∨ 𝑔 ≈ ∅) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
81 nfv 1918 . . . . . . . . 9 𝜑
82 nfv 1918 . . . . . . . . 9 𝑘 ∈ ω
83 nfa1 2150 . . . . . . . . 9 𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8481, 82, 83nf3an 1905 . . . . . . . 8 (𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
85 nfv 1918 . . . . . . . . . 10 𝑓𝜑
86 nfv 1918 . . . . . . . . . 10 𝑓 𝑘 ∈ ω
87 nfra1 3142 . . . . . . . . . . 11 𝑓𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8887nfal 2321 . . . . . . . . . 10 𝑓𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
8985, 86, 88nf3an 1905 . . . . . . . . 9 𝑓(𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
90 nfv 1918 . . . . . . . . . . . . 13 𝑔𝜑
91 nfv 1918 . . . . . . . . . . . . 13 𝑔 𝑘 ∈ ω
92 nfra2w 3151 . . . . . . . . . . . . . 14 𝑔𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
9392nfal 2321 . . . . . . . . . . . . 13 𝑔𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
9490, 91, 93nf3an 1905 . . . . . . . . . . . 12 𝑔(𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
95 nfv 1918 . . . . . . . . . . . 12 𝑔 𝑓 ∈ 𝒫 (𝑋)
9694, 95nfan 1903 . . . . . . . . . . 11 𝑔((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋))
9713ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → 𝐴 ∈ (Moore‘𝑋))
9897ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝐴 ∈ (Moore‘𝑋))
99643ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
10099ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
101 simplrl 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ∈ 𝒫 (𝑋))
102101elpwid 4541 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑋))
103 simplrr 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ∈ 𝒫 (𝑋))
104103elpwid 4541 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑔 ⊆ (𝑋))
105 simpr2 1193 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑓 ⊆ (𝑁‘(𝑔)))
106 simpr3 1194 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓) ∈ 𝐼)
107 simpll2 1211 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → 𝑘 ∈ ω)
108 simpll3 1212 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
109 simpr1 1192 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → (𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘))
11098, 62, 63, 100, 102, 104, 105, 106, 107, 108, 109mreexexlem4d 17273 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) ∧ ((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))
111110ex 412 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ (𝑓 ∈ 𝒫 (𝑋) ∧ 𝑔 ∈ 𝒫 (𝑋))) → (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
112111expr 456 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋)) → (𝑔 ∈ 𝒫 (𝑋) → (((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
11396, 112ralrimi 3139 . . . . . . . . . 10 (((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) ∧ 𝑓 ∈ 𝒫 (𝑋)) → ∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
114113ex 412 . . . . . . . . 9 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → (𝑓 ∈ 𝒫 (𝑋) → ∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
11589, 114ralrimi 3139 . . . . . . . 8 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
11684, 115alrimi 2209 . . . . . . 7 ((𝜑𝑘 ∈ ω ∧ ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
1171163exp 1117 . . . . . 6 (𝜑 → (𝑘 ∈ ω → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
118117com12 32 . . . . 5 (𝑘 ∈ ω → (𝜑 → (∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
119118a2d 29 . . . 4 (𝑘 ∈ ω → ((𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝑘𝑔𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))) → (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ suc 𝑘𝑔 ≈ suc 𝑘) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))))
12036, 44, 52, 60, 80, 119finds 7719 . . 3 (if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∈ ω → (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼))))
12128, 120mpcom 38 . 2 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺)) ∨ 𝑔 ≈ if(𝐹 ∈ Fin, (card‘𝐹), (card‘𝐺))) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑖 ∈ 𝒫 𝑔(𝑓𝑖 ∧ (𝑖) ∈ 𝐼)))
1222, 3, 4, 5, 6, 23, 121mreexexlemd 17270 1 (𝜑 → ∃𝑞 ∈ 𝒫 𝐺(𝐹𝑞 ∧ (𝑞𝐻) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  suc csuc 6253  cfv 6418  ωcom 7687  cen 8688  Fincfn 8691  cardccrd 9624  Moorecmre 17208  mrClscmrc 17209  mrIndcmri 17210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-mre 17212  df-mrc 17213  df-mri 17214
This theorem is referenced by:  mreexdomd  17275  lindsdom  35698  aacllem  46391
  Copyright terms: Public domain W3C validator