Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsup10exlem Structured version   Visualization version   GIF version

Theorem limsup10exlem 43649
Description: The range of the given function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsup10exlem.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
limsup10exlem.2 (𝜑𝐾 ∈ ℝ)
Assertion
Ref Expression
limsup10exlem (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1})
Distinct variable groups:   𝑛,𝐾   𝜑,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem limsup10exlem
StepHypRef Expression
1 c0ex 11070 . . . . . . 7 0 ∈ V
21prid1 4710 . . . . . 6 0 ∈ {0, 1}
3 1re 11076 . . . . . . . 8 1 ∈ ℝ
43elexi 3460 . . . . . . 7 1 ∈ V
54prid2 4711 . . . . . 6 1 ∈ {0, 1}
62, 5ifcli 4520 . . . . 5 if(2 ∥ 𝑛, 0, 1) ∈ {0, 1}
76a1i 11 . . . 4 ((𝜑𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈ {0, 1})
87ralrimiva 3139 . . 3 (𝜑 → ∀𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))if(2 ∥ 𝑛, 0, 1) ∈ {0, 1})
9 nfv 1916 . . . 4 𝑛𝜑
101, 4ifex 4523 . . . . 5 if(2 ∥ 𝑛, 0, 1) ∈ V
1110a1i 11 . . . 4 ((𝜑𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈ V)
12 limsup10exlem.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
139, 11, 12imassmpt 43138 . . 3 (𝜑 → ((𝐹 “ (𝐾[,)+∞)) ⊆ {0, 1} ↔ ∀𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))if(2 ∥ 𝑛, 0, 1) ∈ {0, 1}))
148, 13mpbird 256 . 2 (𝜑 → (𝐹 “ (𝐾[,)+∞)) ⊆ {0, 1})
15 limsup10exlem.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
1615ceilcld 13664 . . . . . . . . 9 (𝜑 → (⌈‘𝐾) ∈ ℤ)
17 1zzd 12452 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
1816, 17ifcld 4519 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
1918adantr 481 . . . . . . 7 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
20 simpr 485 . . . . . . 7 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
21 2teven 16163 . . . . . . 7 ((if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ ∧ 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 2 ∥ 𝑛)
2219, 20, 21syl2anc 584 . . . . . 6 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 2 ∥ 𝑛)
2322iftrued 4481 . . . . 5 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(2 ∥ 𝑛, 0, 1) = 0)
24 2nn 12147 . . . . . . 7 2 ∈ ℕ
2524a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
26 eqid 2736 . . . . . . . 8 (ℤ‘1) = (ℤ‘1)
273a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ∈ ℝ)
2815adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
2916zred 12527 . . . . . . . . . . . 12 (𝜑 → (⌈‘𝐾) ∈ ℝ)
3029adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → (⌈‘𝐾) ∈ ℝ)
31 simpr 485 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ 𝐾)
3215ceilged 13667 . . . . . . . . . . . 12 (𝜑𝐾 ≤ (⌈‘𝐾))
3332adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ (⌈‘𝐾))
3427, 28, 30, 31, 33letrd 11233 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ (⌈‘𝐾))
35 iftrue 4479 . . . . . . . . . . 11 (1 ≤ 𝐾 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾))
3635adantl 482 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾))
3734, 36breqtrrd 5120 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
383leidi 11610 . . . . . . . . . . 11 1 ≤ 1
3938a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤ 1)
40 iffalse 4482 . . . . . . . . . . 11 (¬ 1 ≤ 𝐾 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = 1)
4140adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = 1)
4239, 41breqtrrd 5120 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
4337, 42pm2.61dan 810 . . . . . . . 8 (𝜑 → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
4426, 17, 18, 43eluzd 43284 . . . . . . 7 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ (ℤ‘1))
45 nnuz 12722 . . . . . . 7 ℕ = (ℤ‘1)
4644, 45eleqtrrdi 2848 . . . . . 6 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℕ)
4725, 46nnmulcld 12127 . . . . 5 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℕ)
481a1i 11 . . . . 5 (𝜑 → 0 ∈ V)
4912, 23, 47, 48fvmptd2 6939 . . . 4 (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) = 0)
5010, 12fnmpti 6627 . . . . . 6 𝐹 Fn ℕ
5150a1i 11 . . . . 5 (𝜑𝐹 Fn ℕ)
5215rexrd 11126 . . . . . 6 (𝜑𝐾 ∈ ℝ*)
53 pnfxr 11130 . . . . . . 7 +∞ ∈ ℝ*
5453a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
5547nnxrd 42905 . . . . . 6 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℝ*)
5647nnred 12089 . . . . . . 7 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℝ)
5746nnred 12089 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ)
5833, 36breqtrrd 5120 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
5915adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
603a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ∈ ℝ)
61 simpr 485 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → ¬ 1 ≤ 𝐾)
6259, 60, 61nleltd 43327 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 < 1)
6359, 60, 62ltled 11224 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ 1)
6441eqcomd 2742 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 = if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6563, 64breqtrd 5118 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6658, 65pm2.61dan 810 . . . . . . . 8 (𝜑𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6746nnrpd 12871 . . . . . . . . 9 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ+)
68 2timesgt 43162 . . . . . . . . 9 (if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ+ → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
6967, 68syl 17 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7015, 57, 56, 66, 69lelttrd 11234 . . . . . . 7 (𝜑𝐾 < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7115, 56, 70ltled 11224 . . . . . 6 (𝜑𝐾 ≤ (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7256ltpnfd 12958 . . . . . 6 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) < +∞)
7352, 54, 55, 71, 72elicod 13230 . . . . 5 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ (𝐾[,)+∞))
7451, 47, 73fnfvimad 7166 . . . 4 (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) ∈ (𝐹 “ (𝐾[,)+∞)))
7549, 74eqeltrrd 2838 . . 3 (𝜑 → 0 ∈ (𝐹 “ (𝐾[,)+∞)))
7618adantr 481 . . . . . . 7 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
77 simpr 485 . . . . . . 7 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
78 2tp1odd 16160 . . . . . . 7 ((if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ ∧ 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → ¬ 2 ∥ 𝑛)
7976, 77, 78syl2anc 584 . . . . . 6 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → ¬ 2 ∥ 𝑛)
8079iffalsed 4484 . . . . 5 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(2 ∥ 𝑛, 0, 1) = 1)
8147peano2nnd 12091 . . . . 5 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℕ)
82 1xr 11135 . . . . . 6 1 ∈ ℝ*
8382a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ*)
8412, 80, 81, 83fvmptd2 6939 . . . 4 (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) = 1)
8581nnxrd 42905 . . . . . 6 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℝ*)
8681nnred 12089 . . . . . . 7 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℝ)
8756ltp1d 12006 . . . . . . . 8 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) < ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
8815, 56, 86, 70, 87lttrd 11237 . . . . . . 7 (𝜑𝐾 < ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
8915, 86, 88ltled 11224 . . . . . 6 (𝜑𝐾 ≤ ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
9086ltpnfd 12958 . . . . . 6 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) < +∞)
9152, 54, 85, 89, 90elicod 13230 . . . . 5 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ (𝐾[,)+∞))
9251, 81, 91fnfvimad 7166 . . . 4 (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) ∈ (𝐹 “ (𝐾[,)+∞)))
9384, 92eqeltrrd 2838 . . 3 (𝜑 → 1 ∈ (𝐹 “ (𝐾[,)+∞)))
9475, 93prssd 4769 . 2 (𝜑 → {0, 1} ⊆ (𝐹 “ (𝐾[,)+∞)))
9514, 94eqssd 3949 1 (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  Vcvv 3441  cin 3897  wss 3898  ifcif 4473  {cpr 4575   class class class wbr 5092  cmpt 5175  cima 5623   Fn wfn 6474  cfv 6479  (class class class)co 7337  cr 10971  0cc0 10972  1c1 10973   + caddc 10975   · cmul 10977  +∞cpnf 11107  *cxr 11109   < clt 11110  cle 11111  cn 12074  2c2 12129  cz 12420  cuz 12683  +crp 12831  [,)cico 13182  cceil 13612  cdvds 16062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-sup 9299  df-inf 9300  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-n0 12335  df-z 12421  df-uz 12684  df-rp 12832  df-ico 13186  df-fl 13613  df-ceil 13614  df-dvds 16063
This theorem is referenced by:  limsup10ex  43650  liminf10ex  43651
  Copyright terms: Public domain W3C validator