Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsup10exlem Structured version   Visualization version   GIF version

Theorem limsup10exlem 40912
Description: The range of the given function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsup10exlem.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
limsup10exlem.2 (𝜑𝐾 ∈ ℝ)
Assertion
Ref Expression
limsup10exlem (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1})
Distinct variable groups:   𝑛,𝐾   𝜑,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem limsup10exlem
StepHypRef Expression
1 c0ex 10370 . . . . . . 7 0 ∈ V
21prid1 4529 . . . . . 6 0 ∈ {0, 1}
3 1re 10376 . . . . . . . 8 1 ∈ ℝ
43elexi 3415 . . . . . . 7 1 ∈ V
54prid2 4530 . . . . . 6 1 ∈ {0, 1}
62, 5ifcli 4353 . . . . 5 if(2 ∥ 𝑛, 0, 1) ∈ {0, 1}
76a1i 11 . . . 4 ((𝜑𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈ {0, 1})
87ralrimiva 3148 . . 3 (𝜑 → ∀𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))if(2 ∥ 𝑛, 0, 1) ∈ {0, 1})
9 nfv 1957 . . . 4 𝑛𝜑
101, 4ifex 4355 . . . . 5 if(2 ∥ 𝑛, 0, 1) ∈ V
1110a1i 11 . . . 4 ((𝜑𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈ V)
12 limsup10exlem.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
139, 11, 12imassmpt 40392 . . 3 (𝜑 → ((𝐹 “ (𝐾[,)+∞)) ⊆ {0, 1} ↔ ∀𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))if(2 ∥ 𝑛, 0, 1) ∈ {0, 1}))
148, 13mpbird 249 . 2 (𝜑 → (𝐹 “ (𝐾[,)+∞)) ⊆ {0, 1})
15 limsup10exlem.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
1615ceilcld 40585 . . . . . . . . 9 (𝜑 → (⌈‘𝐾) ∈ ℤ)
17 1zzd 11760 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
1816, 17ifcld 4352 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
1918adantr 474 . . . . . . 7 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
20 simpr 479 . . . . . . 7 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
21 2teven 15483 . . . . . . 7 ((if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ ∧ 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 2 ∥ 𝑛)
2219, 20, 21syl2anc 579 . . . . . 6 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 2 ∥ 𝑛)
2322iftrued 4315 . . . . 5 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(2 ∥ 𝑛, 0, 1) = 0)
24 2nn 11448 . . . . . . 7 2 ∈ ℕ
2524a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
26 eqid 2778 . . . . . . . 8 (ℤ‘1) = (ℤ‘1)
273a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ∈ ℝ)
2815adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
2916zred 11834 . . . . . . . . . . . 12 (𝜑 → (⌈‘𝐾) ∈ ℝ)
3029adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → (⌈‘𝐾) ∈ ℝ)
31 simpr 479 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ 𝐾)
3215ceilged 40579 . . . . . . . . . . . 12 (𝜑𝐾 ≤ (⌈‘𝐾))
3332adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ (⌈‘𝐾))
3427, 28, 30, 31, 33letrd 10533 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ (⌈‘𝐾))
35 iftrue 4313 . . . . . . . . . . 11 (1 ≤ 𝐾 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾))
3635adantl 475 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾))
3734, 36breqtrrd 4914 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
383leidi 10909 . . . . . . . . . . 11 1 ≤ 1
3938a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤ 1)
40 iffalse 4316 . . . . . . . . . . 11 (¬ 1 ≤ 𝐾 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = 1)
4140adantl 475 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = 1)
4239, 41breqtrrd 4914 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
4337, 42pm2.61dan 803 . . . . . . . 8 (𝜑 → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
4426, 17, 18, 43eluzd 40541 . . . . . . 7 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ (ℤ‘1))
45 nnuz 12029 . . . . . . 7 ℕ = (ℤ‘1)
4644, 45syl6eleqr 2870 . . . . . 6 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℕ)
4725, 46nnmulcld 11428 . . . . 5 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℕ)
481a1i 11 . . . . 5 (𝜑 → 0 ∈ V)
4912, 23, 47, 48fvmptd2 6549 . . . 4 (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) = 0)
5010, 12fnmpti 6268 . . . . . 6 𝐹 Fn ℕ
5150a1i 11 . . . . 5 (𝜑𝐹 Fn ℕ)
5215rexrd 10426 . . . . . 6 (𝜑𝐾 ∈ ℝ*)
53 pnfxr 10430 . . . . . . 7 +∞ ∈ ℝ*
5453a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
5547nnxrd 40134 . . . . . 6 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℝ*)
5647nnred 11391 . . . . . . 7 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℝ)
5746nnred 11391 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ)
5833, 36breqtrrd 4914 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
5915adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
603a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ∈ ℝ)
61 simpr 479 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → ¬ 1 ≤ 𝐾)
6259, 60, 61nleltd 40587 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 < 1)
6359, 60, 62ltled 10524 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ 1)
6441eqcomd 2784 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 = if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6563, 64breqtrd 4912 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6658, 65pm2.61dan 803 . . . . . . . 8 (𝜑𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6746nnrpd 12179 . . . . . . . . 9 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ+)
68 2timesgt 40410 . . . . . . . . 9 (if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ+ → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
6967, 68syl 17 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7015, 57, 56, 66, 69lelttrd 10534 . . . . . . 7 (𝜑𝐾 < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7115, 56, 70ltled 10524 . . . . . 6 (𝜑𝐾 ≤ (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7256ltpnfd 12266 . . . . . 6 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) < +∞)
7352, 54, 55, 71, 72elicod 12536 . . . . 5 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ (𝐾[,)+∞))
7451, 47, 73fnfvima2 40389 . . . 4 (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) ∈ (𝐹 “ (𝐾[,)+∞)))
7549, 74eqeltrrd 2860 . . 3 (𝜑 → 0 ∈ (𝐹 “ (𝐾[,)+∞)))
7618adantr 474 . . . . . . 7 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
77 simpr 479 . . . . . . 7 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
78 2tp1odd 15480 . . . . . . 7 ((if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ ∧ 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → ¬ 2 ∥ 𝑛)
7976, 77, 78syl2anc 579 . . . . . 6 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → ¬ 2 ∥ 𝑛)
8079iffalsed 4318 . . . . 5 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(2 ∥ 𝑛, 0, 1) = 1)
8147peano2nnd 11393 . . . . 5 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℕ)
82 1xr 10436 . . . . . 6 1 ∈ ℝ*
8382a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ*)
8412, 80, 81, 83fvmptd2 6549 . . . 4 (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) = 1)
8581nnxrd 40134 . . . . . 6 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℝ*)
8681nnred 11391 . . . . . . 7 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℝ)
8756ltp1d 11308 . . . . . . . 8 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) < ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
8815, 56, 86, 70, 87lttrd 10537 . . . . . . 7 (𝜑𝐾 < ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
8915, 86, 88ltled 10524 . . . . . 6 (𝜑𝐾 ≤ ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
9086ltpnfd 12266 . . . . . 6 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) < +∞)
9152, 54, 85, 89, 90elicod 12536 . . . . 5 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ (𝐾[,)+∞))
9251, 81, 91fnfvima2 40389 . . . 4 (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) ∈ (𝐹 “ (𝐾[,)+∞)))
9384, 92eqeltrrd 2860 . . 3 (𝜑 → 1 ∈ (𝐹 “ (𝐾[,)+∞)))
9475, 93prssd 4584 . 2 (𝜑 → {0, 1} ⊆ (𝐹 “ (𝐾[,)+∞)))
9514, 94eqssd 3838 1 (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2107  wral 3090  Vcvv 3398  cin 3791  wss 3792  ifcif 4307  {cpr 4400   class class class wbr 4886  cmpt 4965  cima 5358   Fn wfn 6130  cfv 6135  (class class class)co 6922  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  +∞cpnf 10408  *cxr 10410   < clt 10411  cle 10412  cn 11374  2c2 11430  cz 11728  cuz 11992  +crp 12137  [,)cico 12489  cceil 12911  cdvds 15387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-ico 12493  df-fl 12912  df-ceil 12913  df-dvds 15388
This theorem is referenced by:  limsup10ex  40913  liminf10ex  40914
  Copyright terms: Public domain W3C validator