Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsup10exlem Structured version   Visualization version   GIF version

Theorem limsup10exlem 45727
Description: The range of the given function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsup10exlem.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
limsup10exlem.2 (𝜑𝐾 ∈ ℝ)
Assertion
Ref Expression
limsup10exlem (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1})
Distinct variable groups:   𝑛,𝐾   𝜑,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem limsup10exlem
StepHypRef Expression
1 c0ex 11252 . . . . . . 7 0 ∈ V
21prid1 4766 . . . . . 6 0 ∈ {0, 1}
3 1re 11258 . . . . . . . 8 1 ∈ ℝ
43elexi 3500 . . . . . . 7 1 ∈ V
54prid2 4767 . . . . . 6 1 ∈ {0, 1}
62, 5ifcli 4577 . . . . 5 if(2 ∥ 𝑛, 0, 1) ∈ {0, 1}
76a1i 11 . . . 4 ((𝜑𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈ {0, 1})
87ralrimiva 3143 . . 3 (𝜑 → ∀𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))if(2 ∥ 𝑛, 0, 1) ∈ {0, 1})
9 nfv 1911 . . . 4 𝑛𝜑
101, 4ifex 4580 . . . . 5 if(2 ∥ 𝑛, 0, 1) ∈ V
1110a1i 11 . . . 4 ((𝜑𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈ V)
12 limsup10exlem.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
139, 11, 12imassmpt 45207 . . 3 (𝜑 → ((𝐹 “ (𝐾[,)+∞)) ⊆ {0, 1} ↔ ∀𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))if(2 ∥ 𝑛, 0, 1) ∈ {0, 1}))
148, 13mpbird 257 . 2 (𝜑 → (𝐹 “ (𝐾[,)+∞)) ⊆ {0, 1})
15 limsup10exlem.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
1615ceilcld 13879 . . . . . . . . 9 (𝜑 → (⌈‘𝐾) ∈ ℤ)
17 1zzd 12645 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
1816, 17ifcld 4576 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
1918adantr 480 . . . . . . 7 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
20 simpr 484 . . . . . . 7 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
21 2teven 16388 . . . . . . 7 ((if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ ∧ 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 2 ∥ 𝑛)
2219, 20, 21syl2anc 584 . . . . . 6 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 2 ∥ 𝑛)
2322iftrued 4538 . . . . 5 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(2 ∥ 𝑛, 0, 1) = 0)
24 2nn 12336 . . . . . . 7 2 ∈ ℕ
2524a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
26 eqid 2734 . . . . . . . 8 (ℤ‘1) = (ℤ‘1)
273a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ∈ ℝ)
2815adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
2916zred 12719 . . . . . . . . . . . 12 (𝜑 → (⌈‘𝐾) ∈ ℝ)
3029adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → (⌈‘𝐾) ∈ ℝ)
31 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ 𝐾)
3215ceilged 13882 . . . . . . . . . . . 12 (𝜑𝐾 ≤ (⌈‘𝐾))
3332adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ (⌈‘𝐾))
3427, 28, 30, 31, 33letrd 11415 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ (⌈‘𝐾))
35 iftrue 4536 . . . . . . . . . . 11 (1 ≤ 𝐾 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾))
3635adantl 481 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾))
3734, 36breqtrrd 5175 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
383leidi 11794 . . . . . . . . . . 11 1 ≤ 1
3938a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤ 1)
40 iffalse 4539 . . . . . . . . . . 11 (¬ 1 ≤ 𝐾 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = 1)
4140adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = 1)
4239, 41breqtrrd 5175 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
4337, 42pm2.61dan 813 . . . . . . . 8 (𝜑 → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
4426, 17, 18, 43eluzd 45358 . . . . . . 7 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ (ℤ‘1))
45 nnuz 12918 . . . . . . 7 ℕ = (ℤ‘1)
4644, 45eleqtrrdi 2849 . . . . . 6 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℕ)
4725, 46nnmulcld 12316 . . . . 5 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℕ)
481a1i 11 . . . . 5 (𝜑 → 0 ∈ V)
4912, 23, 47, 48fvmptd2 7023 . . . 4 (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) = 0)
5010, 12fnmpti 6711 . . . . . 6 𝐹 Fn ℕ
5150a1i 11 . . . . 5 (𝜑𝐹 Fn ℕ)
5215rexrd 11308 . . . . . 6 (𝜑𝐾 ∈ ℝ*)
53 pnfxr 11312 . . . . . . 7 +∞ ∈ ℝ*
5453a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
5547nnxrd 45223 . . . . . 6 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℝ*)
5647nnred 12278 . . . . . . 7 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℝ)
5746nnred 12278 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ)
5833, 36breqtrrd 5175 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
5915adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
603a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ∈ ℝ)
61 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → ¬ 1 ≤ 𝐾)
6259, 60, 61nleltd 45401 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 < 1)
6359, 60, 62ltled 11406 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ 1)
6441eqcomd 2740 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 = if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6563, 64breqtrd 5173 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6658, 65pm2.61dan 813 . . . . . . . 8 (𝜑𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6746nnrpd 13072 . . . . . . . . 9 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ+)
68 2timesgt 45238 . . . . . . . . 9 (if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ+ → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
6967, 68syl 17 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7015, 57, 56, 66, 69lelttrd 11416 . . . . . . 7 (𝜑𝐾 < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7115, 56, 70ltled 11406 . . . . . 6 (𝜑𝐾 ≤ (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7256ltpnfd 13160 . . . . . 6 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) < +∞)
7352, 54, 55, 71, 72elicod 13433 . . . . 5 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ (𝐾[,)+∞))
7451, 47, 73fnfvimad 7253 . . . 4 (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) ∈ (𝐹 “ (𝐾[,)+∞)))
7549, 74eqeltrrd 2839 . . 3 (𝜑 → 0 ∈ (𝐹 “ (𝐾[,)+∞)))
7618adantr 480 . . . . . . 7 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
77 simpr 484 . . . . . . 7 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
78 2tp1odd 16385 . . . . . . 7 ((if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ ∧ 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → ¬ 2 ∥ 𝑛)
7976, 77, 78syl2anc 584 . . . . . 6 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → ¬ 2 ∥ 𝑛)
8079iffalsed 4541 . . . . 5 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(2 ∥ 𝑛, 0, 1) = 1)
8147peano2nnd 12280 . . . . 5 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℕ)
82 1xr 11317 . . . . . 6 1 ∈ ℝ*
8382a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ*)
8412, 80, 81, 83fvmptd2 7023 . . . 4 (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) = 1)
8581nnxrd 45223 . . . . . 6 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℝ*)
8681nnred 12278 . . . . . . 7 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℝ)
8756ltp1d 12195 . . . . . . . 8 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) < ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
8815, 56, 86, 70, 87lttrd 11419 . . . . . . 7 (𝜑𝐾 < ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
8915, 86, 88ltled 11406 . . . . . 6 (𝜑𝐾 ≤ ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
9086ltpnfd 13160 . . . . . 6 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) < +∞)
9152, 54, 85, 89, 90elicod 13433 . . . . 5 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ (𝐾[,)+∞))
9251, 81, 91fnfvimad 7253 . . . 4 (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) ∈ (𝐹 “ (𝐾[,)+∞)))
9384, 92eqeltrrd 2839 . . 3 (𝜑 → 1 ∈ (𝐹 “ (𝐾[,)+∞)))
9475, 93prssd 4826 . 2 (𝜑 → {0, 1} ⊆ (𝐹 “ (𝐾[,)+∞)))
9514, 94eqssd 4012 1 (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  cin 3961  wss 3962  ifcif 4530  {cpr 4632   class class class wbr 5147  cmpt 5230  cima 5691   Fn wfn 6557  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  cn 12263  2c2 12318  cz 12610  cuz 12875  +crp 13031  [,)cico 13385  cceil 13827  cdvds 16286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-ico 13389  df-fl 13828  df-ceil 13829  df-dvds 16287
This theorem is referenced by:  limsup10ex  45728  liminf10ex  45729
  Copyright terms: Public domain W3C validator