Proof of Theorem limsup10exlem
Step | Hyp | Ref
| Expression |
1 | | c0ex 10969 |
. . . . . . 7
⊢ 0 ∈
V |
2 | 1 | prid1 4698 |
. . . . . 6
⊢ 0 ∈
{0, 1} |
3 | | 1re 10975 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
4 | 3 | elexi 3451 |
. . . . . . 7
⊢ 1 ∈
V |
5 | 4 | prid2 4699 |
. . . . . 6
⊢ 1 ∈
{0, 1} |
6 | 2, 5 | ifcli 4506 |
. . . . 5
⊢ if(2
∥ 𝑛, 0, 1) ∈ {0,
1} |
7 | 6 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈ {0,
1}) |
8 | 7 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))if(2 ∥ 𝑛, 0, 1) ∈ {0, 1}) |
9 | | nfv 1917 |
. . . 4
⊢
Ⅎ𝑛𝜑 |
10 | 1, 4 | ifex 4509 |
. . . . 5
⊢ if(2
∥ 𝑛, 0, 1) ∈
V |
11 | 10 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈
V) |
12 | | limsup10exlem.1 |
. . . 4
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) |
13 | 9, 11, 12 | imassmpt 42810 |
. . 3
⊢ (𝜑 → ((𝐹 “ (𝐾[,)+∞)) ⊆ {0, 1} ↔
∀𝑛 ∈ (ℕ
∩ (𝐾[,)+∞))if(2
∥ 𝑛, 0, 1) ∈ {0,
1})) |
14 | 8, 13 | mpbird 256 |
. 2
⊢ (𝜑 → (𝐹 “ (𝐾[,)+∞)) ⊆ {0,
1}) |
15 | | limsup10exlem.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ ℝ) |
16 | 15 | ceilcld 13563 |
. . . . . . . . 9
⊢ (𝜑 → (⌈‘𝐾) ∈
ℤ) |
17 | | 1zzd 12351 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℤ) |
18 | 16, 17 | ifcld 4505 |
. . . . . . . 8
⊢ (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈
ℤ) |
19 | 18 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ) |
20 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) |
21 | | 2teven 16064 |
. . . . . . 7
⊢ ((if(1
≤ 𝐾,
(⌈‘𝐾), 1)
∈ ℤ ∧ 𝑛 = (2
· if(1 ≤ 𝐾,
(⌈‘𝐾), 1)))
→ 2 ∥ 𝑛) |
22 | 19, 20, 21 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 2 ∥ 𝑛) |
23 | 22 | iftrued 4467 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(2 ∥ 𝑛, 0, 1) = 0) |
24 | | 2nn 12046 |
. . . . . . 7
⊢ 2 ∈
ℕ |
25 | 24 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℕ) |
26 | | eqid 2738 |
. . . . . . . 8
⊢
(ℤ≥‘1) =
(ℤ≥‘1) |
27 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 ≤ 𝐾) → 1 ∈ ℝ) |
28 | 15 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ∈ ℝ) |
29 | 16 | zred 12426 |
. . . . . . . . . . . 12
⊢ (𝜑 → (⌈‘𝐾) ∈
ℝ) |
30 | 29 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 ≤ 𝐾) → (⌈‘𝐾) ∈ ℝ) |
31 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ 𝐾) |
32 | 15 | ceilged 13566 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ≤ (⌈‘𝐾)) |
33 | 32 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ (⌈‘𝐾)) |
34 | 27, 28, 30, 31, 33 | letrd 11132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ (⌈‘𝐾)) |
35 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (1 ≤
𝐾 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾)) |
36 | 35 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾)) |
37 | 34, 36 | breqtrrd 5102 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1)) |
38 | 3 | leidi 11509 |
. . . . . . . . . . 11
⊢ 1 ≤
1 |
39 | 38 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤
1) |
40 | | iffalse 4468 |
. . . . . . . . . . 11
⊢ (¬ 1
≤ 𝐾 → if(1 ≤
𝐾, (⌈‘𝐾), 1) = 1) |
41 | 40 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = 1) |
42 | 39, 41 | breqtrrd 5102 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1)) |
43 | 37, 42 | pm2.61dan 810 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1)) |
44 | 26, 17, 18, 43 | eluzd 42949 |
. . . . . . 7
⊢ (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈
(ℤ≥‘1)) |
45 | | nnuz 12621 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
46 | 44, 45 | eleqtrrdi 2850 |
. . . . . 6
⊢ (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈
ℕ) |
47 | 25, 46 | nnmulcld 12026 |
. . . . 5
⊢ (𝜑 → (2 · if(1 ≤
𝐾, (⌈‘𝐾), 1)) ∈
ℕ) |
48 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 ∈
V) |
49 | 12, 23, 47, 48 | fvmptd2 6883 |
. . . 4
⊢ (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) = 0) |
50 | 10, 12 | fnmpti 6576 |
. . . . . 6
⊢ 𝐹 Fn ℕ |
51 | 50 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐹 Fn ℕ) |
52 | 15 | rexrd 11025 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈
ℝ*) |
53 | | pnfxr 11029 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
54 | 53 | a1i 11 |
. . . . . 6
⊢ (𝜑 → +∞ ∈
ℝ*) |
55 | 47 | nnxrd 42585 |
. . . . . 6
⊢ (𝜑 → (2 · if(1 ≤
𝐾, (⌈‘𝐾), 1)) ∈
ℝ*) |
56 | 47 | nnred 11988 |
. . . . . . 7
⊢ (𝜑 → (2 · if(1 ≤
𝐾, (⌈‘𝐾), 1)) ∈
ℝ) |
57 | 46 | nnred 11988 |
. . . . . . . 8
⊢ (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈
ℝ) |
58 | 33, 36 | breqtrrd 5102 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1)) |
59 | 15 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ∈ ℝ) |
60 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ∈
ℝ) |
61 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 1 ≤ 𝐾) → ¬ 1 ≤ 𝐾) |
62 | 59, 60, 61 | nleltd 42992 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 < 1) |
63 | 59, 60, 62 | ltled 11123 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ 1) |
64 | 41 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 = if(1 ≤ 𝐾, (⌈‘𝐾), 1)) |
65 | 63, 64 | breqtrd 5100 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1)) |
66 | 58, 65 | pm2.61dan 810 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1)) |
67 | 46 | nnrpd 12770 |
. . . . . . . . 9
⊢ (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈
ℝ+) |
68 | | 2timesgt 42827 |
. . . . . . . . 9
⊢ (if(1
≤ 𝐾,
(⌈‘𝐾), 1)
∈ ℝ+ → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) |
69 | 67, 68 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤
𝐾, (⌈‘𝐾), 1))) |
70 | 15, 57, 56, 66, 69 | lelttrd 11133 |
. . . . . . 7
⊢ (𝜑 → 𝐾 < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) |
71 | 15, 56, 70 | ltled 11123 |
. . . . . 6
⊢ (𝜑 → 𝐾 ≤ (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) |
72 | 56 | ltpnfd 12857 |
. . . . . 6
⊢ (𝜑 → (2 · if(1 ≤
𝐾, (⌈‘𝐾), 1)) <
+∞) |
73 | 52, 54, 55, 71, 72 | elicod 13129 |
. . . . 5
⊢ (𝜑 → (2 · if(1 ≤
𝐾, (⌈‘𝐾), 1)) ∈ (𝐾[,)+∞)) |
74 | 51, 47, 73 | fnfvimad 7110 |
. . . 4
⊢ (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) ∈ (𝐹 “ (𝐾[,)+∞))) |
75 | 49, 74 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → 0 ∈ (𝐹 “ (𝐾[,)+∞))) |
76 | 18 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈
ℤ) |
77 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) |
78 | | 2tp1odd 16061 |
. . . . . . 7
⊢ ((if(1
≤ 𝐾,
(⌈‘𝐾), 1)
∈ ℤ ∧ 𝑛 =
((2 · if(1 ≤ 𝐾,
(⌈‘𝐾), 1)) +
1)) → ¬ 2 ∥ 𝑛) |
79 | 76, 77, 78 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → ¬ 2 ∥ 𝑛) |
80 | 79 | iffalsed 4470 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(2 ∥ 𝑛, 0, 1) = 1) |
81 | 47 | peano2nnd 11990 |
. . . . 5
⊢ (𝜑 → ((2 · if(1 ≤
𝐾, (⌈‘𝐾), 1)) + 1) ∈
ℕ) |
82 | | 1xr 11034 |
. . . . . 6
⊢ 1 ∈
ℝ* |
83 | 82 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℝ*) |
84 | 12, 80, 81, 83 | fvmptd2 6883 |
. . . 4
⊢ (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) =
1) |
85 | 81 | nnxrd 42585 |
. . . . . 6
⊢ (𝜑 → ((2 · if(1 ≤
𝐾, (⌈‘𝐾), 1)) + 1) ∈
ℝ*) |
86 | 81 | nnred 11988 |
. . . . . . 7
⊢ (𝜑 → ((2 · if(1 ≤
𝐾, (⌈‘𝐾), 1)) + 1) ∈
ℝ) |
87 | 56 | ltp1d 11905 |
. . . . . . . 8
⊢ (𝜑 → (2 · if(1 ≤
𝐾, (⌈‘𝐾), 1)) < ((2 · if(1
≤ 𝐾,
(⌈‘𝐾), 1)) +
1)) |
88 | 15, 56, 86, 70, 87 | lttrd 11136 |
. . . . . . 7
⊢ (𝜑 → 𝐾 < ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) |
89 | 15, 86, 88 | ltled 11123 |
. . . . . 6
⊢ (𝜑 → 𝐾 ≤ ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) |
90 | 86 | ltpnfd 12857 |
. . . . . 6
⊢ (𝜑 → ((2 · if(1 ≤
𝐾, (⌈‘𝐾), 1)) + 1) <
+∞) |
91 | 52, 54, 85, 89, 90 | elicod 13129 |
. . . . 5
⊢ (𝜑 → ((2 · if(1 ≤
𝐾, (⌈‘𝐾), 1)) + 1) ∈ (𝐾[,)+∞)) |
92 | 51, 81, 91 | fnfvimad 7110 |
. . . 4
⊢ (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) ∈ (𝐹 “ (𝐾[,)+∞))) |
93 | 84, 92 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → 1 ∈ (𝐹 “ (𝐾[,)+∞))) |
94 | 75, 93 | prssd 4755 |
. 2
⊢ (𝜑 → {0, 1} ⊆ (𝐹 “ (𝐾[,)+∞))) |
95 | 14, 94 | eqssd 3938 |
1
⊢ (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1}) |