Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsup10exlem Structured version   Visualization version   GIF version

Theorem limsup10exlem 45743
Description: The range of the given function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsup10exlem.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
limsup10exlem.2 (𝜑𝐾 ∈ ℝ)
Assertion
Ref Expression
limsup10exlem (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1})
Distinct variable groups:   𝑛,𝐾   𝜑,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem limsup10exlem
StepHypRef Expression
1 c0ex 11144 . . . . . . 7 0 ∈ V
21prid1 4722 . . . . . 6 0 ∈ {0, 1}
3 1re 11150 . . . . . . . 8 1 ∈ ℝ
43elexi 3467 . . . . . . 7 1 ∈ V
54prid2 4723 . . . . . 6 1 ∈ {0, 1}
62, 5ifcli 4532 . . . . 5 if(2 ∥ 𝑛, 0, 1) ∈ {0, 1}
76a1i 11 . . . 4 ((𝜑𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈ {0, 1})
87ralrimiva 3125 . . 3 (𝜑 → ∀𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))if(2 ∥ 𝑛, 0, 1) ∈ {0, 1})
9 nfv 1914 . . . 4 𝑛𝜑
101, 4ifex 4535 . . . . 5 if(2 ∥ 𝑛, 0, 1) ∈ V
1110a1i 11 . . . 4 ((𝜑𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))) → if(2 ∥ 𝑛, 0, 1) ∈ V)
12 limsup10exlem.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
139, 11, 12imassmpt 45229 . . 3 (𝜑 → ((𝐹 “ (𝐾[,)+∞)) ⊆ {0, 1} ↔ ∀𝑛 ∈ (ℕ ∩ (𝐾[,)+∞))if(2 ∥ 𝑛, 0, 1) ∈ {0, 1}))
148, 13mpbird 257 . 2 (𝜑 → (𝐹 “ (𝐾[,)+∞)) ⊆ {0, 1})
15 limsup10exlem.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
1615ceilcld 13781 . . . . . . . . 9 (𝜑 → (⌈‘𝐾) ∈ ℤ)
17 1zzd 12540 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
1816, 17ifcld 4531 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
1918adantr 480 . . . . . . 7 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
20 simpr 484 . . . . . . 7 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
21 2teven 16301 . . . . . . 7 ((if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ ∧ 𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 2 ∥ 𝑛)
2219, 20, 21syl2anc 584 . . . . . 6 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → 2 ∥ 𝑛)
2322iftrued 4492 . . . . 5 ((𝜑𝑛 = (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) → if(2 ∥ 𝑛, 0, 1) = 0)
24 2nn 12235 . . . . . . 7 2 ∈ ℕ
2524a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
26 eqid 2729 . . . . . . . 8 (ℤ‘1) = (ℤ‘1)
273a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ∈ ℝ)
2815adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
2916zred 12614 . . . . . . . . . . . 12 (𝜑 → (⌈‘𝐾) ∈ ℝ)
3029adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → (⌈‘𝐾) ∈ ℝ)
31 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ 𝐾)
3215ceilged 13784 . . . . . . . . . . . 12 (𝜑𝐾 ≤ (⌈‘𝐾))
3332adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ (⌈‘𝐾))
3427, 28, 30, 31, 33letrd 11307 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ (⌈‘𝐾))
35 iftrue 4490 . . . . . . . . . . 11 (1 ≤ 𝐾 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾))
3635adantl 481 . . . . . . . . . 10 ((𝜑 ∧ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = (⌈‘𝐾))
3734, 36breqtrrd 5130 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
383leidi 11688 . . . . . . . . . . 11 1 ≤ 1
3938a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤ 1)
40 iffalse 4493 . . . . . . . . . . 11 (¬ 1 ≤ 𝐾 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = 1)
4140adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) = 1)
4239, 41breqtrrd 5130 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
4337, 42pm2.61dan 812 . . . . . . . 8 (𝜑 → 1 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
4426, 17, 18, 43eluzd 45378 . . . . . . 7 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ (ℤ‘1))
45 nnuz 12812 . . . . . . 7 ℕ = (ℤ‘1)
4644, 45eleqtrrdi 2839 . . . . . 6 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℕ)
4725, 46nnmulcld 12215 . . . . 5 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℕ)
481a1i 11 . . . . 5 (𝜑 → 0 ∈ V)
4912, 23, 47, 48fvmptd2 6958 . . . 4 (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) = 0)
5010, 12fnmpti 6643 . . . . . 6 𝐹 Fn ℕ
5150a1i 11 . . . . 5 (𝜑𝐹 Fn ℕ)
5215rexrd 11200 . . . . . 6 (𝜑𝐾 ∈ ℝ*)
53 pnfxr 11204 . . . . . . 7 +∞ ∈ ℝ*
5453a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
5547nnxrd 45245 . . . . . 6 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℝ*)
5647nnred 12177 . . . . . . 7 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ ℝ)
5746nnred 12177 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ)
5833, 36breqtrrd 5130 . . . . . . . . 9 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
5915adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
603a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 ∈ ℝ)
61 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → ¬ 1 ≤ 𝐾)
6259, 60, 61nleltd 45421 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 < 1)
6359, 60, 62ltled 11298 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ 1)
6441eqcomd 2735 . . . . . . . . . 10 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 1 = if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6563, 64breqtrd 5128 . . . . . . . . 9 ((𝜑 ∧ ¬ 1 ≤ 𝐾) → 𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6658, 65pm2.61dan 812 . . . . . . . 8 (𝜑𝐾 ≤ if(1 ≤ 𝐾, (⌈‘𝐾), 1))
6746nnrpd 12969 . . . . . . . . 9 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ+)
68 2timesgt 45259 . . . . . . . . 9 (if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℝ+ → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
6967, 68syl 17 . . . . . . . 8 (𝜑 → if(1 ≤ 𝐾, (⌈‘𝐾), 1) < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7015, 57, 56, 66, 69lelttrd 11308 . . . . . . 7 (𝜑𝐾 < (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7115, 56, 70ltled 11298 . . . . . 6 (𝜑𝐾 ≤ (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)))
7256ltpnfd 13057 . . . . . 6 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) < +∞)
7352, 54, 55, 71, 72elicod 13332 . . . . 5 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) ∈ (𝐾[,)+∞))
7451, 47, 73fnfvimad 7190 . . . 4 (𝜑 → (𝐹‘(2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1))) ∈ (𝐹 “ (𝐾[,)+∞)))
7549, 74eqeltrrd 2829 . . 3 (𝜑 → 0 ∈ (𝐹 “ (𝐾[,)+∞)))
7618adantr 480 . . . . . . 7 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ)
77 simpr 484 . . . . . . 7 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
78 2tp1odd 16298 . . . . . . 7 ((if(1 ≤ 𝐾, (⌈‘𝐾), 1) ∈ ℤ ∧ 𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → ¬ 2 ∥ 𝑛)
7976, 77, 78syl2anc 584 . . . . . 6 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → ¬ 2 ∥ 𝑛)
8079iffalsed 4495 . . . . 5 ((𝜑𝑛 = ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) → if(2 ∥ 𝑛, 0, 1) = 1)
8147peano2nnd 12179 . . . . 5 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℕ)
82 1xr 11209 . . . . . 6 1 ∈ ℝ*
8382a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ*)
8412, 80, 81, 83fvmptd2 6958 . . . 4 (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) = 1)
8581nnxrd 45245 . . . . . 6 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℝ*)
8681nnred 12177 . . . . . . 7 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ ℝ)
8756ltp1d 12089 . . . . . . . 8 (𝜑 → (2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) < ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
8815, 56, 86, 70, 87lttrd 11311 . . . . . . 7 (𝜑𝐾 < ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
8915, 86, 88ltled 11298 . . . . . 6 (𝜑𝐾 ≤ ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1))
9086ltpnfd 13057 . . . . . 6 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) < +∞)
9152, 54, 85, 89, 90elicod 13332 . . . . 5 (𝜑 → ((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1) ∈ (𝐾[,)+∞))
9251, 81, 91fnfvimad 7190 . . . 4 (𝜑 → (𝐹‘((2 · if(1 ≤ 𝐾, (⌈‘𝐾), 1)) + 1)) ∈ (𝐹 “ (𝐾[,)+∞)))
9384, 92eqeltrrd 2829 . . 3 (𝜑 → 1 ∈ (𝐹 “ (𝐾[,)+∞)))
9475, 93prssd 4782 . 2 (𝜑 → {0, 1} ⊆ (𝐹 “ (𝐾[,)+∞)))
9514, 94eqssd 3961 1 (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cin 3910  wss 3911  ifcif 4484  {cpr 4587   class class class wbr 5102  cmpt 5183  cima 5634   Fn wfn 6494  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cn 12162  2c2 12217  cz 12505  cuz 12769  +crp 12927  [,)cico 13284  cceil 13729  cdvds 16198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fl 13730  df-ceil 13731  df-dvds 16199
This theorem is referenced by:  limsup10ex  45744  liminf10ex  45745
  Copyright terms: Public domain W3C validator