Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrleubrnmptf Structured version   Visualization version   GIF version

Theorem supxrleubrnmptf 44147
Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supxrleubrnmptf.x 𝑥𝜑
supxrleubrnmptf.a 𝑥𝐴
supxrleubrnmptf.n 𝑥𝐶
supxrleubrnmptf.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
supxrleubrnmptf.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
supxrleubrnmptf (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))

Proof of Theorem supxrleubrnmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 supxrleubrnmptf.a . . . . . . 7 𝑥𝐴
2 nfcv 2903 . . . . . . 7 𝑦𝐴
3 nfcv 2903 . . . . . . 7 𝑦𝐵
4 nfcsb1v 3917 . . . . . . 7 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3906 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
61, 2, 3, 4, 5cbvmptf 5256 . . . . . 6 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
76rneqi 5934 . . . . 5 ran (𝑥𝐴𝐵) = ran (𝑦𝐴𝑦 / 𝑥𝐵)
87supeq1i 9438 . . . 4 sup(ran (𝑥𝐴𝐵), ℝ*, < ) = sup(ran (𝑦𝐴𝑦 / 𝑥𝐵), ℝ*, < )
98breq1i 5154 . . 3 (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦𝐴𝑦 / 𝑥𝐵), ℝ*, < ) ≤ 𝐶)
109a1i 11 . 2 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦𝐴𝑦 / 𝑥𝐵), ℝ*, < ) ≤ 𝐶))
11 nfv 1917 . . 3 𝑦𝜑
12 supxrleubrnmptf.x . . . . . 6 𝑥𝜑
131nfcri 2890 . . . . . 6 𝑥 𝑦𝐴
1412, 13nfan 1902 . . . . 5 𝑥(𝜑𝑦𝐴)
154nfel1 2919 . . . . 5 𝑥𝑦 / 𝑥𝐵 ∈ ℝ*
1614, 15nfim 1899 . . . 4 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℝ*)
17 eleq1w 2816 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817anbi2d 629 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
195eleq1d 2818 . . . . 5 (𝑥 = 𝑦 → (𝐵 ∈ ℝ*𝑦 / 𝑥𝐵 ∈ ℝ*))
2018, 19imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℝ*)))
21 supxrleubrnmptf.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
2216, 20, 21chvarfv 2233 . . 3 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℝ*)
23 supxrleubrnmptf.c . . 3 (𝜑𝐶 ∈ ℝ*)
2411, 22, 23supxrleubrnmpt 44102 . 2 (𝜑 → (sup(ran (𝑦𝐴𝑦 / 𝑥𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐵𝐶))
25 nfcv 2903 . . . . 5 𝑥
26 supxrleubrnmptf.n . . . . 5 𝑥𝐶
274, 25, 26nfbr 5194 . . . 4 𝑥𝑦 / 𝑥𝐵𝐶
28 nfv 1917 . . . 4 𝑦 𝐵𝐶
29 eqcom 2739 . . . . . . . 8 (𝑥 = 𝑦𝑦 = 𝑥)
3029imbi1i 349 . . . . . . 7 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵))
31 eqcom 2739 . . . . . . . 8 (𝐵 = 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵 = 𝐵)
3231imbi2i 335 . . . . . . 7 ((𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
3330, 32bitri 274 . . . . . 6 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
345, 33mpbi 229 . . . . 5 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
3534breq1d 5157 . . . 4 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵𝐶𝐵𝐶))
362, 1, 27, 28, 35cbvralfw 3301 . . 3 (∀𝑦𝐴 𝑦 / 𝑥𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
3736a1i 11 . 2 (𝜑 → (∀𝑦𝐴 𝑦 / 𝑥𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
3810, 24, 373bitrd 304 1 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wnfc 2883  wral 3061  csb 3892   class class class wbr 5147  cmpt 5230  ran crn 5676  supcsup 9431  *cxr 11243   < clt 11244  cle 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443
This theorem is referenced by:  liminflelimsuplem  44477
  Copyright terms: Public domain W3C validator