| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > supxrleubrnmptf | Structured version Visualization version GIF version | ||
| Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| supxrleubrnmptf.x | ⊢ Ⅎ𝑥𝜑 |
| supxrleubrnmptf.a | ⊢ Ⅎ𝑥𝐴 |
| supxrleubrnmptf.n | ⊢ Ⅎ𝑥𝐶 |
| supxrleubrnmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| supxrleubrnmptf.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| supxrleubrnmptf | ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrleubrnmptf.a | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfcsb1v 3922 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 5 | csbeq1a 3912 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 6 | 1, 2, 3, 4, 5 | cbvmptf 5250 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 7 | 6 | rneqi 5947 | . . . . 5 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 8 | 7 | supeq1i 9488 | . . . 4 ⊢ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) |
| 9 | 8 | breq1i 5149 | . . 3 ⊢ (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶) |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶)) |
| 11 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 12 | supxrleubrnmptf.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 13 | 1 | nfcri 2896 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 14 | 12, 13 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
| 15 | 4 | nfel1 2921 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ* |
| 16 | 14, 15 | nfim 1895 | . . . 4 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*) |
| 17 | eleq1w 2823 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 18 | 17 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
| 19 | 5 | eleq1d 2825 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ ℝ* ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*)) |
| 20 | 18, 19 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*))) |
| 21 | supxrleubrnmptf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
| 22 | 16, 20, 21 | chvarfv 2239 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*) |
| 23 | supxrleubrnmptf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 24 | 11, 22, 23 | supxrleubrnmpt 45422 | . 2 ⊢ (𝜑 → (sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶)) |
| 25 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥 ≤ | |
| 26 | supxrleubrnmptf.n | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 27 | 4, 25, 26 | nfbr 5189 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 |
| 28 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑦 𝐵 ≤ 𝐶 | |
| 29 | eqcom 2743 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 30 | 29 | imbi1i 349 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵)) |
| 31 | eqcom 2743 | . . . . . . . 8 ⊢ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) | |
| 32 | 31 | imbi2i 336 | . . . . . . 7 ⊢ ((𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
| 33 | 30, 32 | bitri 275 | . . . . . 6 ⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
| 34 | 5, 33 | mpbi 230 | . . . . 5 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
| 35 | 34 | breq1d 5152 | . . . 4 ⊢ (𝑦 = 𝑥 → (⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶)) |
| 36 | 2, 1, 27, 28, 35 | cbvralfw 3303 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
| 37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
| 38 | 10, 24, 37 | 3bitrd 305 | 1 ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2889 ∀wral 3060 ⦋csb 3898 class class class wbr 5142 ↦ cmpt 5224 ran crn 5685 supcsup 9481 ℝ*cxr 11295 < clt 11296 ≤ cle 11297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 |
| This theorem is referenced by: liminflelimsuplem 45795 |
| Copyright terms: Public domain | W3C validator |