![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supxrleubrnmptf | Structured version Visualization version GIF version |
Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
supxrleubrnmptf.x | ⊢ Ⅎ𝑥𝜑 |
supxrleubrnmptf.a | ⊢ Ⅎ𝑥𝐴 |
supxrleubrnmptf.n | ⊢ Ⅎ𝑥𝐶 |
supxrleubrnmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
supxrleubrnmptf.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
Ref | Expression |
---|---|
supxrleubrnmptf | ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supxrleubrnmptf.a | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
3 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
4 | nfcsb1v 3933 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | csbeq1a 3922 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
6 | 1, 2, 3, 4, 5 | cbvmptf 5257 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
7 | 6 | rneqi 5951 | . . . . 5 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
8 | 7 | supeq1i 9485 | . . . 4 ⊢ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) |
9 | 8 | breq1i 5155 | . . 3 ⊢ (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶) |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶)) |
11 | nfv 1912 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
12 | supxrleubrnmptf.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
13 | 1 | nfcri 2895 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
14 | 12, 13 | nfan 1897 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
15 | 4 | nfel1 2920 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ* |
16 | 14, 15 | nfim 1894 | . . . 4 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*) |
17 | eleq1w 2822 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | 17 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
19 | 5 | eleq1d 2824 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ ℝ* ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*)) |
20 | 18, 19 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*))) |
21 | supxrleubrnmptf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
22 | 16, 20, 21 | chvarfv 2238 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*) |
23 | supxrleubrnmptf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
24 | 11, 22, 23 | supxrleubrnmpt 45356 | . 2 ⊢ (𝜑 → (sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶)) |
25 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥 ≤ | |
26 | supxrleubrnmptf.n | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
27 | 4, 25, 26 | nfbr 5195 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 |
28 | nfv 1912 | . . . 4 ⊢ Ⅎ𝑦 𝐵 ≤ 𝐶 | |
29 | eqcom 2742 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
30 | 29 | imbi1i 349 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵)) |
31 | eqcom 2742 | . . . . . . . 8 ⊢ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) | |
32 | 31 | imbi2i 336 | . . . . . . 7 ⊢ ((𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
33 | 30, 32 | bitri 275 | . . . . . 6 ⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
34 | 5, 33 | mpbi 230 | . . . . 5 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
35 | 34 | breq1d 5158 | . . . 4 ⊢ (𝑦 = 𝑥 → (⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶)) |
36 | 2, 1, 27, 28, 35 | cbvralfw 3302 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
38 | 10, 24, 37 | 3bitrd 305 | 1 ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1780 ∈ wcel 2106 Ⅎwnfc 2888 ∀wral 3059 ⦋csb 3908 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 supcsup 9478 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 |
This theorem is referenced by: liminflelimsuplem 45731 |
Copyright terms: Public domain | W3C validator |