| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > supxrleubrnmptf | Structured version Visualization version GIF version | ||
| Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| supxrleubrnmptf.x | ⊢ Ⅎ𝑥𝜑 |
| supxrleubrnmptf.a | ⊢ Ⅎ𝑥𝐴 |
| supxrleubrnmptf.n | ⊢ Ⅎ𝑥𝐶 |
| supxrleubrnmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| supxrleubrnmptf.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| supxrleubrnmptf | ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrleubrnmptf.a | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfcsb1v 3869 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 5 | csbeq1a 3859 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 6 | 1, 2, 3, 4, 5 | cbvmptf 5189 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 7 | 6 | rneqi 5876 | . . . . 5 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 8 | 7 | supeq1i 9331 | . . . 4 ⊢ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) |
| 9 | 8 | breq1i 5096 | . . 3 ⊢ (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶) |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶)) |
| 11 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 12 | supxrleubrnmptf.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 13 | 1 | nfcri 2886 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 14 | 12, 13 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
| 15 | 4 | nfel1 2911 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ* |
| 16 | 14, 15 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*) |
| 17 | eleq1w 2814 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 18 | 17 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
| 19 | 5 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ ℝ* ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*)) |
| 20 | 18, 19 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*))) |
| 21 | supxrleubrnmptf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
| 22 | 16, 20, 21 | chvarfv 2243 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*) |
| 23 | supxrleubrnmptf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 24 | 11, 22, 23 | supxrleubrnmpt 45452 | . 2 ⊢ (𝜑 → (sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶)) |
| 25 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥 ≤ | |
| 26 | supxrleubrnmptf.n | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 27 | 4, 25, 26 | nfbr 5136 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 |
| 28 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑦 𝐵 ≤ 𝐶 | |
| 29 | eqcom 2738 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 30 | 29 | imbi1i 349 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵)) |
| 31 | eqcom 2738 | . . . . . . . 8 ⊢ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) | |
| 32 | 31 | imbi2i 336 | . . . . . . 7 ⊢ ((𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
| 33 | 30, 32 | bitri 275 | . . . . . 6 ⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
| 34 | 5, 33 | mpbi 230 | . . . . 5 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
| 35 | 34 | breq1d 5099 | . . . 4 ⊢ (𝑦 = 𝑥 → (⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶)) |
| 36 | 2, 1, 27, 28, 35 | cbvralfw 3272 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
| 37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
| 38 | 10, 24, 37 | 3bitrd 305 | 1 ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 ⦋csb 3845 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 supcsup 9324 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 |
| This theorem is referenced by: liminflelimsuplem 45821 |
| Copyright terms: Public domain | W3C validator |