![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supxrleubrnmptf | Structured version Visualization version GIF version |
Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
supxrleubrnmptf.x | ⊢ Ⅎ𝑥𝜑 |
supxrleubrnmptf.a | ⊢ Ⅎ𝑥𝐴 |
supxrleubrnmptf.n | ⊢ Ⅎ𝑥𝐶 |
supxrleubrnmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
supxrleubrnmptf.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
Ref | Expression |
---|---|
supxrleubrnmptf | ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supxrleubrnmptf.a | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
3 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
4 | nfcsb1v 3881 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | csbeq1a 3870 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
6 | 1, 2, 3, 4, 5 | cbvmptf 5215 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
7 | 6 | rneqi 5893 | . . . . 5 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
8 | 7 | supeq1i 9388 | . . . 4 ⊢ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) |
9 | 8 | breq1i 5113 | . . 3 ⊢ (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶) |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶)) |
11 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
12 | supxrleubrnmptf.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
13 | 1 | nfcri 2891 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
14 | 12, 13 | nfan 1903 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
15 | 4 | nfel1 2920 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ* |
16 | 14, 15 | nfim 1900 | . . . 4 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*) |
17 | eleq1w 2817 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | 17 | anbi2d 630 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
19 | 5 | eleq1d 2819 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ ℝ* ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*)) |
20 | 18, 19 | imbi12d 345 | . . . 4 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*))) |
21 | supxrleubrnmptf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
22 | 16, 20, 21 | chvarfv 2234 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*) |
23 | supxrleubrnmptf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
24 | 11, 22, 23 | supxrleubrnmpt 43727 | . 2 ⊢ (𝜑 → (sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶)) |
25 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥 ≤ | |
26 | supxrleubrnmptf.n | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
27 | 4, 25, 26 | nfbr 5153 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 |
28 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑦 𝐵 ≤ 𝐶 | |
29 | eqcom 2740 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
30 | 29 | imbi1i 350 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵)) |
31 | eqcom 2740 | . . . . . . . 8 ⊢ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) | |
32 | 31 | imbi2i 336 | . . . . . . 7 ⊢ ((𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
33 | 30, 32 | bitri 275 | . . . . . 6 ⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
34 | 5, 33 | mpbi 229 | . . . . 5 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
35 | 34 | breq1d 5116 | . . . 4 ⊢ (𝑦 = 𝑥 → (⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶)) |
36 | 2, 1, 27, 28, 35 | cbvralfw 3286 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
38 | 10, 24, 37 | 3bitrd 305 | 1 ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 ∀wral 3061 ⦋csb 3856 class class class wbr 5106 ↦ cmpt 5189 ran crn 5635 supcsup 9381 ℝ*cxr 11193 < clt 11194 ≤ cle 11195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-sup 9383 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 |
This theorem is referenced by: liminflelimsuplem 44102 |
Copyright terms: Public domain | W3C validator |