![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supxrleubrnmptf | Structured version Visualization version GIF version |
Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
supxrleubrnmptf.x | ⊢ Ⅎ𝑥𝜑 |
supxrleubrnmptf.a | ⊢ Ⅎ𝑥𝐴 |
supxrleubrnmptf.n | ⊢ Ⅎ𝑥𝐶 |
supxrleubrnmptf.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
supxrleubrnmptf.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
Ref | Expression |
---|---|
supxrleubrnmptf | ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supxrleubrnmptf.a | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
3 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
4 | nfcsb1v 3915 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | csbeq1a 3904 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
6 | 1, 2, 3, 4, 5 | cbvmptf 5257 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
7 | 6 | rneqi 5938 | . . . . 5 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
8 | 7 | supeq1i 9470 | . . . 4 ⊢ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) |
9 | 8 | breq1i 5155 | . . 3 ⊢ (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶) |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶)) |
11 | nfv 1909 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
12 | supxrleubrnmptf.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
13 | 1 | nfcri 2882 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
14 | 12, 13 | nfan 1894 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
15 | 4 | nfel1 2909 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ* |
16 | 14, 15 | nfim 1891 | . . . 4 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*) |
17 | eleq1w 2808 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | 17 | anbi2d 628 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
19 | 5 | eleq1d 2810 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ ℝ* ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*)) |
20 | 18, 19 | imbi12d 343 | . . . 4 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*))) |
21 | supxrleubrnmptf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
22 | 16, 20, 21 | chvarfv 2228 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℝ*) |
23 | supxrleubrnmptf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
24 | 11, 22, 23 | supxrleubrnmpt 44851 | . 2 ⊢ (𝜑 → (sup(ran (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶)) |
25 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥 ≤ | |
26 | supxrleubrnmptf.n | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
27 | 4, 25, 26 | nfbr 5195 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 |
28 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑦 𝐵 ≤ 𝐶 | |
29 | eqcom 2732 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
30 | 29 | imbi1i 348 | . . . . . . 7 ⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵)) |
31 | eqcom 2732 | . . . . . . . 8 ⊢ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) | |
32 | 31 | imbi2i 335 | . . . . . . 7 ⊢ ((𝑦 = 𝑥 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
33 | 30, 32 | bitri 274 | . . . . . 6 ⊢ ((𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) ↔ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵)) |
34 | 5, 33 | mpbi 229 | . . . . 5 ⊢ (𝑦 = 𝑥 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐵) |
35 | 34 | breq1d 5158 | . . . 4 ⊢ (𝑦 = 𝑥 → (⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶)) |
36 | 2, 1, 27, 28, 35 | cbvralfw 3292 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
37 | 36 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
38 | 10, 24, 37 | 3bitrd 304 | 1 ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2875 ∀wral 3051 ⦋csb 3890 class class class wbr 5148 ↦ cmpt 5231 ran crn 5678 supcsup 9463 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 |
This theorem is referenced by: liminflelimsuplem 45226 |
Copyright terms: Public domain | W3C validator |