Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrleubrnmptf Structured version   Visualization version   GIF version

Theorem supxrleubrnmptf 43772
Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supxrleubrnmptf.x 𝑥𝜑
supxrleubrnmptf.a 𝑥𝐴
supxrleubrnmptf.n 𝑥𝐶
supxrleubrnmptf.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
supxrleubrnmptf.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
supxrleubrnmptf (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))

Proof of Theorem supxrleubrnmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 supxrleubrnmptf.a . . . . . . 7 𝑥𝐴
2 nfcv 2904 . . . . . . 7 𝑦𝐴
3 nfcv 2904 . . . . . . 7 𝑦𝐵
4 nfcsb1v 3881 . . . . . . 7 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3870 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
61, 2, 3, 4, 5cbvmptf 5215 . . . . . 6 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
76rneqi 5893 . . . . 5 ran (𝑥𝐴𝐵) = ran (𝑦𝐴𝑦 / 𝑥𝐵)
87supeq1i 9388 . . . 4 sup(ran (𝑥𝐴𝐵), ℝ*, < ) = sup(ran (𝑦𝐴𝑦 / 𝑥𝐵), ℝ*, < )
98breq1i 5113 . . 3 (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦𝐴𝑦 / 𝑥𝐵), ℝ*, < ) ≤ 𝐶)
109a1i 11 . 2 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐶 ↔ sup(ran (𝑦𝐴𝑦 / 𝑥𝐵), ℝ*, < ) ≤ 𝐶))
11 nfv 1918 . . 3 𝑦𝜑
12 supxrleubrnmptf.x . . . . . 6 𝑥𝜑
131nfcri 2891 . . . . . 6 𝑥 𝑦𝐴
1412, 13nfan 1903 . . . . 5 𝑥(𝜑𝑦𝐴)
154nfel1 2920 . . . . 5 𝑥𝑦 / 𝑥𝐵 ∈ ℝ*
1614, 15nfim 1900 . . . 4 𝑥((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℝ*)
17 eleq1w 2817 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817anbi2d 630 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
195eleq1d 2819 . . . . 5 (𝑥 = 𝑦 → (𝐵 ∈ ℝ*𝑦 / 𝑥𝐵 ∈ ℝ*))
2018, 19imbi12d 345 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*) ↔ ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℝ*)))
21 supxrleubrnmptf.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
2216, 20, 21chvarfv 2234 . . 3 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℝ*)
23 supxrleubrnmptf.c . . 3 (𝜑𝐶 ∈ ℝ*)
2411, 22, 23supxrleubrnmpt 43727 . 2 (𝜑 → (sup(ran (𝑦𝐴𝑦 / 𝑥𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐵𝐶))
25 nfcv 2904 . . . . 5 𝑥
26 supxrleubrnmptf.n . . . . 5 𝑥𝐶
274, 25, 26nfbr 5153 . . . 4 𝑥𝑦 / 𝑥𝐵𝐶
28 nfv 1918 . . . 4 𝑦 𝐵𝐶
29 eqcom 2740 . . . . . . . 8 (𝑥 = 𝑦𝑦 = 𝑥)
3029imbi1i 350 . . . . . . 7 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵))
31 eqcom 2740 . . . . . . . 8 (𝐵 = 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵 = 𝐵)
3231imbi2i 336 . . . . . . 7 ((𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
3330, 32bitri 275 . . . . . 6 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
345, 33mpbi 229 . . . . 5 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
3534breq1d 5116 . . . 4 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵𝐶𝐵𝐶))
362, 1, 27, 28, 35cbvralfw 3286 . . 3 (∀𝑦𝐴 𝑦 / 𝑥𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
3736a1i 11 . 2 (𝜑 → (∀𝑦𝐴 𝑦 / 𝑥𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
3810, 24, 373bitrd 305 1 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wnf 1786  wcel 2107  wnfc 2884  wral 3061  csb 3856   class class class wbr 5106  cmpt 5189  ran crn 5635  supcsup 9381  *cxr 11193   < clt 11194  cle 11195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393
This theorem is referenced by:  liminflelimsuplem  44102
  Copyright terms: Public domain W3C validator