![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmnrg | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nlmnrg.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
nlmnrg | β’ (π β NrmMod β πΉ β NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2733 | . . . 4 β’ (normβπ) = (normβπ) | |
3 | eqid 2733 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | nlmnrg.1 | . . . 4 β’ πΉ = (Scalarβπ) | |
5 | eqid 2733 | . . . 4 β’ (BaseβπΉ) = (BaseβπΉ) | |
6 | eqid 2733 | . . . 4 β’ (normβπΉ) = (normβπΉ) | |
7 | 1, 2, 3, 4, 5, 6 | isnlm 24192 | . . 3 β’ (π β NrmMod β ((π β NrmGrp β§ π β LMod β§ πΉ β NrmRing) β§ βπ₯ β (BaseβπΉ)βπ¦ β (Baseβπ)((normβπ)β(π₯( Β·π βπ)π¦)) = (((normβπΉ)βπ₯) Β· ((normβπ)βπ¦)))) |
8 | 7 | simplbi 499 | . 2 β’ (π β NrmMod β (π β NrmGrp β§ π β LMod β§ πΉ β NrmRing)) |
9 | 8 | simp3d 1145 | 1 β’ (π β NrmMod β πΉ β NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 βcfv 6544 (class class class)co 7409 Β· cmul 11115 Basecbs 17144 Scalarcsca 17200 Β·π cvsca 17201 LModclmod 20471 normcnm 24085 NrmGrpcngp 24086 NrmRingcnrg 24088 NrmModcnlm 24089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-nlm 24095 |
This theorem is referenced by: nlmngp2 24197 nlmtlm 24211 nvctvc 24217 lssnlm 24218 |
Copyright terms: Public domain | W3C validator |