Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nlmnrg | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nlmnrg.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
nlmnrg | ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2738 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
3 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | nlmnrg.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | eqid 2738 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2738 | . . . 4 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isnlm 23839 | . . 3 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠 ‘𝑊)𝑦)) = (((norm‘𝐹)‘𝑥) · ((norm‘𝑊)‘𝑦)))) |
8 | 7 | simplbi 498 | . 2 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing)) |
9 | 8 | simp3d 1143 | 1 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 · cmul 10876 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 LModclmod 20123 normcnm 23732 NrmGrpcngp 23733 NrmRingcnrg 23735 NrmModcnlm 23736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-nlm 23742 |
This theorem is referenced by: nlmngp2 23844 nlmtlm 23858 nvctvc 23864 lssnlm 23865 |
Copyright terms: Public domain | W3C validator |