![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmnrg | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nlmnrg.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
nlmnrg | ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2740 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
3 | eqid 2740 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | nlmnrg.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | eqid 2740 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2740 | . . . 4 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isnlm 24717 | . . 3 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠 ‘𝑊)𝑦)) = (((norm‘𝐹)‘𝑥) · ((norm‘𝑊)‘𝑦)))) |
8 | 7 | simplbi 497 | . 2 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing)) |
9 | 8 | simp3d 1144 | 1 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 · cmul 11189 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 LModclmod 20880 normcnm 24610 NrmGrpcngp 24611 NrmRingcnrg 24613 NrmModcnlm 24614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-nlm 24620 |
This theorem is referenced by: nlmngp2 24722 nlmtlm 24736 nvctvc 24742 lssnlm 24743 |
Copyright terms: Public domain | W3C validator |