MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmnrg Structured version   Visualization version   GIF version

Theorem nlmnrg 24600
Description: The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
nlmnrg.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
nlmnrg (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing)

Proof of Theorem nlmnrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . . 4 (norm‘𝑊) = (norm‘𝑊)
3 eqid 2729 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 nlmnrg.1 . . . 4 𝐹 = (Scalar‘𝑊)
5 eqid 2729 . . . 4 (Base‘𝐹) = (Base‘𝐹)
6 eqid 2729 . . . 4 (norm‘𝐹) = (norm‘𝐹)
71, 2, 3, 4, 5, 6isnlm 24596 . . 3 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘𝐹)‘𝑥) · ((norm‘𝑊)‘𝑦))))
87simplbi 497 . 2 (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing))
98simp3d 1144 1 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cfv 6499  (class class class)co 7369   · cmul 11049  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  LModclmod 20798  normcnm 24497  NrmGrpcngp 24498  NrmRingcnrg 24500  NrmModcnlm 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-nlm 24507
This theorem is referenced by:  nlmngp2  24601  nlmtlm  24615  nvctvc  24621  lssnlm  24622
  Copyright terms: Public domain W3C validator