MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmnrg Structured version   Visualization version   GIF version

Theorem nlmnrg 24594
Description: The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
nlmnrg.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
nlmnrg (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing)

Proof of Theorem nlmnrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2731 . . . 4 (norm‘𝑊) = (norm‘𝑊)
3 eqid 2731 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 nlmnrg.1 . . . 4 𝐹 = (Scalar‘𝑊)
5 eqid 2731 . . . 4 (Base‘𝐹) = (Base‘𝐹)
6 eqid 2731 . . . 4 (norm‘𝐹) = (norm‘𝐹)
71, 2, 3, 4, 5, 6isnlm 24590 . . 3 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘𝐹)‘𝑥) · ((norm‘𝑊)‘𝑦))))
87simplbi 497 . 2 (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing))
98simp3d 1144 1 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346   · cmul 11011  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  LModclmod 20793  normcnm 24491  NrmGrpcngp 24492  NrmRingcnrg 24494  NrmModcnlm 24495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-nlm 24501
This theorem is referenced by:  nlmngp2  24595  nlmtlm  24609  nvctvc  24615  lssnlm  24616
  Copyright terms: Public domain W3C validator