| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlmnrg | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nlmnrg.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| nlmnrg | ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2730 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 3 | eqid 2730 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | nlmnrg.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | eqid 2730 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | eqid 2730 | . . . 4 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | isnlm 24570 | . . 3 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠 ‘𝑊)𝑦)) = (((norm‘𝐹)‘𝑥) · ((norm‘𝑊)‘𝑦)))) |
| 8 | 7 | simplbi 497 | . 2 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing)) |
| 9 | 8 | simp3d 1144 | 1 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 · cmul 11080 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 LModclmod 20773 normcnm 24471 NrmGrpcngp 24472 NrmRingcnrg 24474 NrmModcnlm 24475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-nlm 24481 |
| This theorem is referenced by: nlmngp2 24575 nlmtlm 24589 nvctvc 24595 lssnlm 24596 |
| Copyright terms: Public domain | W3C validator |