MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmlmod Structured version   Visualization version   GIF version

Theorem nlmlmod 24699
Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nlmlmod (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)

Proof of Theorem nlmlmod
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2737 . . . 4 (norm‘𝑊) = (norm‘𝑊)
3 eqid 2737 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 eqid 2737 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2737 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2737 . . . 4 (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊))
71, 2, 3, 4, 5, 6isnlm 24696 . . 3 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦))))
87simplbi 497 . 2 (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing))
98simp2d 1144 1 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cfv 6561  (class class class)co 7431   · cmul 11160  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  LModclmod 20858  normcnm 24589  NrmGrpcngp 24590  NrmRingcnrg 24592  NrmModcnlm 24593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-nlm 24599
This theorem is referenced by:  nlmdsdi  24702  nlmdsdir  24703  nlmmul0or  24704  nlmvscnlem2  24706  nlmvscn  24708  nlmtlm  24715  nvclmod  24719  isnvc2  24720  lssnlm  24722  ngpocelbl  24725  idnmhm  24775  0nmhm  24776  nmhmplusg  24778  nmhmcn  25153  cphlmod  25208  bnlmod  25377  nmmulg  33967
  Copyright terms: Public domain W3C validator