MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmlmod Structured version   Visualization version   GIF version

Theorem nlmlmod 23949
Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nlmlmod (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)

Proof of Theorem nlmlmod
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2736 . . . 4 (norm‘𝑊) = (norm‘𝑊)
3 eqid 2736 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 eqid 2736 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2736 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2736 . . . 4 (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊))
71, 2, 3, 4, 5, 6isnlm 23946 . . 3 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦))))
87simplbi 498 . 2 (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing))
98simp2d 1142 1 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  wral 3061  cfv 6480  (class class class)co 7338   · cmul 10978  Basecbs 17010  Scalarcsca 17063   ·𝑠 cvsca 17064  LModclmod 20230  normcnm 23839  NrmGrpcngp 23840  NrmRingcnrg 23842  NrmModcnlm 23843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-nul 5251
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-iota 6432  df-fv 6488  df-ov 7341  df-nlm 23849
This theorem is referenced by:  nlmdsdi  23952  nlmdsdir  23953  nlmmul0or  23954  nlmvscnlem2  23956  nlmvscn  23958  nlmtlm  23965  nvclmod  23969  isnvc2  23970  lssnlm  23972  ngpocelbl  23975  idnmhm  24025  0nmhm  24026  nmhmplusg  24028  nmhmcn  24390  cphlmod  24445  bnlmod  24614  nmmulg  32216
  Copyright terms: Public domain W3C validator