MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmlmod Structured version   Visualization version   GIF version

Theorem nlmlmod 23842
Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nlmlmod (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)

Proof of Theorem nlmlmod
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2738 . . . 4 (norm‘𝑊) = (norm‘𝑊)
3 eqid 2738 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 eqid 2738 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2738 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2738 . . . 4 (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊))
71, 2, 3, 4, 5, 6isnlm 23839 . . 3 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦))))
87simplbi 498 . 2 (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing))
98simp2d 1142 1 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cfv 6433  (class class class)co 7275   · cmul 10876  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  LModclmod 20123  normcnm 23732  NrmGrpcngp 23733  NrmRingcnrg 23735  NrmModcnlm 23736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-nlm 23742
This theorem is referenced by:  nlmdsdi  23845  nlmdsdir  23846  nlmmul0or  23847  nlmvscnlem2  23849  nlmvscn  23851  nlmtlm  23858  nvclmod  23862  isnvc2  23863  lssnlm  23865  ngpocelbl  23868  idnmhm  23918  0nmhm  23919  nmhmplusg  23921  nmhmcn  24283  cphlmod  24338  bnlmod  24507  nmmulg  31918
  Copyright terms: Public domain W3C validator