MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmlmod Structured version   Visualization version   GIF version

Theorem nlmlmod 24714
Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nlmlmod (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)

Proof of Theorem nlmlmod
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2734 . . . 4 (norm‘𝑊) = (norm‘𝑊)
3 eqid 2734 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 eqid 2734 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2734 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2734 . . . 4 (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊))
71, 2, 3, 4, 5, 6isnlm 24711 . . 3 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦))))
87simplbi 497 . 2 (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing))
98simp2d 1142 1 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1536  wcel 2105  wral 3058  cfv 6562  (class class class)co 7430   · cmul 11157  Basecbs 17244  Scalarcsca 17300   ·𝑠 cvsca 17301  LModclmod 20874  normcnm 24604  NrmGrpcngp 24605  NrmRingcnrg 24607  NrmModcnlm 24608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-nul 5311
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-iota 6515  df-fv 6570  df-ov 7433  df-nlm 24614
This theorem is referenced by:  nlmdsdi  24717  nlmdsdir  24718  nlmmul0or  24719  nlmvscnlem2  24721  nlmvscn  24723  nlmtlm  24730  nvclmod  24734  isnvc2  24735  lssnlm  24737  ngpocelbl  24740  idnmhm  24790  0nmhm  24791  nmhmplusg  24793  nmhmcn  25166  cphlmod  25221  bnlmod  25390  nmmulg  33928
  Copyright terms: Public domain W3C validator