| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlmlmod | Structured version Visualization version GIF version | ||
| Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nlmlmod | ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | eqid 2729 | . . . 4 ⊢ (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊)) | |
| 7 | 1, 2, 3, 4, 5, 6 | isnlm 24539 | . . 3 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠 ‘𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))) |
| 8 | 7 | simplbi 497 | . 2 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing)) |
| 9 | 8 | simp2d 1143 | 1 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6499 (class class class)co 7369 · cmul 11049 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 LModclmod 20742 normcnm 24440 NrmGrpcngp 24441 NrmRingcnrg 24443 NrmModcnlm 24444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-nlm 24450 |
| This theorem is referenced by: nlmdsdi 24545 nlmdsdir 24546 nlmmul0or 24547 nlmvscnlem2 24549 nlmvscn 24551 nlmtlm 24558 nvclmod 24562 isnvc2 24563 lssnlm 24565 ngpocelbl 24568 idnmhm 24618 0nmhm 24619 nmhmplusg 24621 nmhmcn 24996 cphlmod 25050 bnlmod 25219 nmmulg 33929 |
| Copyright terms: Public domain | W3C validator |