Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nlmlmod | Structured version Visualization version GIF version |
Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nlmlmod | ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2736 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
3 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
6 | eqid 2736 | . . . 4 ⊢ (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊)) | |
7 | 1, 2, 3, 4, 5, 6 | isnlm 23946 | . . 3 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠 ‘𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))) |
8 | 7 | simplbi 498 | . 2 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing)) |
9 | 8 | simp2d 1142 | 1 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ‘cfv 6480 (class class class)co 7338 · cmul 10978 Basecbs 17010 Scalarcsca 17063 ·𝑠 cvsca 17064 LModclmod 20230 normcnm 23839 NrmGrpcngp 23840 NrmRingcnrg 23842 NrmModcnlm 23843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5251 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-iota 6432 df-fv 6488 df-ov 7341 df-nlm 23849 |
This theorem is referenced by: nlmdsdi 23952 nlmdsdir 23953 nlmmul0or 23954 nlmvscnlem2 23956 nlmvscn 23958 nlmtlm 23965 nvclmod 23969 isnvc2 23970 lssnlm 23972 ngpocelbl 23975 idnmhm 24025 0nmhm 24026 nmhmplusg 24028 nmhmcn 24390 cphlmod 24445 bnlmod 24614 nmmulg 32216 |
Copyright terms: Public domain | W3C validator |