| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlmlmod | Structured version Visualization version GIF version | ||
| Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nlmlmod | ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2731 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 3 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | eqid 2731 | . . . 4 ⊢ (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊)) | |
| 7 | 1, 2, 3, 4, 5, 6 | isnlm 24590 | . . 3 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠 ‘𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))) |
| 8 | 7 | simplbi 497 | . 2 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing)) |
| 9 | 8 | simp2d 1143 | 1 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 · cmul 11011 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 LModclmod 20793 normcnm 24491 NrmGrpcngp 24492 NrmRingcnrg 24494 NrmModcnlm 24495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-nlm 24501 |
| This theorem is referenced by: nlmdsdi 24596 nlmdsdir 24597 nlmmul0or 24598 nlmvscnlem2 24600 nlmvscn 24602 nlmtlm 24609 nvclmod 24613 isnvc2 24614 lssnlm 24616 ngpocelbl 24619 idnmhm 24669 0nmhm 24670 nmhmplusg 24672 nmhmcn 25047 cphlmod 25101 bnlmod 25270 nmmulg 33979 |
| Copyright terms: Public domain | W3C validator |