MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmlmod Structured version   Visualization version   GIF version

Theorem nlmlmod 24593
Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nlmlmod (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)

Proof of Theorem nlmlmod
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2731 . . . 4 (norm‘𝑊) = (norm‘𝑊)
3 eqid 2731 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 eqid 2731 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2731 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2731 . . . 4 (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊))
71, 2, 3, 4, 5, 6isnlm 24590 . . 3 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦))))
87simplbi 497 . 2 (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing))
98simp2d 1143 1 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346   · cmul 11011  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  LModclmod 20793  normcnm 24491  NrmGrpcngp 24492  NrmRingcnrg 24494  NrmModcnlm 24495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-nlm 24501
This theorem is referenced by:  nlmdsdi  24596  nlmdsdir  24597  nlmmul0or  24598  nlmvscnlem2  24600  nlmvscn  24602  nlmtlm  24609  nvclmod  24613  isnvc2  24614  lssnlm  24616  ngpocelbl  24619  idnmhm  24669  0nmhm  24670  nmhmplusg  24672  nmhmcn  25047  cphlmod  25101  bnlmod  25270  nmmulg  33979
  Copyright terms: Public domain W3C validator