MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmlmod Structured version   Visualization version   GIF version

Theorem nlmlmod 24542
Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nlmlmod (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)

Proof of Theorem nlmlmod
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . . 4 (norm‘𝑊) = (norm‘𝑊)
3 eqid 2729 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 eqid 2729 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2729 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2729 . . . 4 (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊))
71, 2, 3, 4, 5, 6isnlm 24539 . . 3 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦))))
87simplbi 497 . 2 (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing))
98simp2d 1143 1 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cfv 6499  (class class class)co 7369   · cmul 11049  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  LModclmod 20742  normcnm 24440  NrmGrpcngp 24441  NrmRingcnrg 24443  NrmModcnlm 24444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-nlm 24450
This theorem is referenced by:  nlmdsdi  24545  nlmdsdir  24546  nlmmul0or  24547  nlmvscnlem2  24549  nlmvscn  24551  nlmtlm  24558  nvclmod  24562  isnvc2  24563  lssnlm  24565  ngpocelbl  24568  idnmhm  24618  0nmhm  24619  nmhmplusg  24621  nmhmcn  24996  cphlmod  25050  bnlmod  25219  nmmulg  33929
  Copyright terms: Public domain W3C validator