| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlmlmod | Structured version Visualization version GIF version | ||
| Description: A normed module is a left module. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nlmlmod | ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2730 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 3 | eqid 2730 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2730 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | eqid 2730 | . . . 4 ⊢ (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊)) | |
| 7 | 1, 2, 3, 4, 5, 6 | isnlm 24570 | . . 3 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠 ‘𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))) |
| 8 | 7 | simplbi 497 | . 2 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing)) |
| 9 | 8 | simp2d 1143 | 1 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 · cmul 11080 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 LModclmod 20773 normcnm 24471 NrmGrpcngp 24472 NrmRingcnrg 24474 NrmModcnlm 24475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-nlm 24481 |
| This theorem is referenced by: nlmdsdi 24576 nlmdsdir 24577 nlmmul0or 24578 nlmvscnlem2 24580 nlmvscn 24582 nlmtlm 24589 nvclmod 24593 isnvc2 24594 lssnlm 24596 ngpocelbl 24599 idnmhm 24649 0nmhm 24650 nmhmplusg 24652 nmhmcn 25027 cphlmod 25081 bnlmod 25250 nmmulg 33963 |
| Copyright terms: Public domain | W3C validator |