| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlmngp2 | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nlmnrg.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| nlmngp2 | ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmnrg.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | nlmnrg 24700 | . 2 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing) |
| 3 | nrgngp 24683 | . 2 ⊢ (𝐹 ∈ NrmRing → 𝐹 ∈ NrmGrp) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 Scalarcsca 17300 NrmGrpcngp 24590 NrmRingcnrg 24592 NrmModcnlm 24593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-nrg 24598 df-nlm 24599 |
| This theorem is referenced by: nlmdsdir 24703 nlmmul0or 24704 nlmvscnlem2 24706 nlmvscnlem1 24707 nlmvscn 24708 |
| Copyright terms: Public domain | W3C validator |