MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmngp2 Structured version   Visualization version   GIF version

Theorem nlmngp2 24619
Description: The scalar component of a left module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
nlmnrg.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
nlmngp2 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)

Proof of Theorem nlmngp2
StepHypRef Expression
1 nlmnrg.1 . . 3 𝐹 = (Scalar‘𝑊)
21nlmnrg 24618 . 2 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing)
3 nrgngp 24601 . 2 (𝐹 ∈ NrmRing → 𝐹 ∈ NrmGrp)
42, 3syl 17 1 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6531  Scalarcsca 17274  NrmGrpcngp 24516  NrmRingcnrg 24518  NrmModcnlm 24519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-nrg 24524  df-nlm 24525
This theorem is referenced by:  nlmdsdir  24621  nlmmul0or  24622  nlmvscnlem2  24624  nlmvscnlem1  24625  nlmvscn  24626
  Copyright terms: Public domain W3C validator