MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssnlm Structured version   Visualization version   GIF version

Theorem lssnlm 24622
Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
lssnlm.x 𝑋 = (𝑊s 𝑈)
lssnlm.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssnlm ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)

Proof of Theorem lssnlm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmngp 24598 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2 nlmlmod 24599 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
3 lssnlm.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
43lsssubg 20895 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
52, 4sylan 580 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
6 lssnlm.x . . . . 5 𝑋 = (𝑊s 𝑈)
76subgngp 24556 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp)
81, 5, 7syl2an2r 685 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
96, 3lsslmod 20898 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
102, 9sylan 580 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
11 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
126, 11resssca 17282 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1312adantl 481 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋))
1411nlmnrg 24600 . . . . 5 (𝑊 ∈ NrmMod → (Scalar‘𝑊) ∈ NrmRing)
1514adantr 480 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ NrmRing)
1613, 15eqeltrrd 2829 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑋) ∈ NrmRing)
178, 10, 163jca 1128 . 2 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ (Scalar‘𝑋) ∈ NrmRing))
18 simpll 766 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑊 ∈ NrmMod)
19 simprl 770 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘(Scalar‘𝑋)))
2013adantr 480 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Scalar‘𝑊) = (Scalar‘𝑋))
2120fveq2d 6844 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
2219, 21eleqtrrd 2831 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
235adantr 480 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 ∈ (SubGrp‘𝑊))
24 eqid 2729 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2524subgss 19041 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
2623, 25syl 17 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 ⊆ (Base‘𝑊))
27 simprr 772 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑋))
286subgbas 19044 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
2923, 28syl 17 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 = (Base‘𝑋))
3027, 29eleqtrrd 2831 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦𝑈)
3126, 30sseldd 3944 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑊))
32 eqid 2729 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
33 eqid 2729 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
34 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
35 eqid 2729 . . . . . 6 (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊))
3624, 32, 33, 11, 34, 35nmvs 24597 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
3718, 22, 31, 36syl3anc 1373 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
38 simplr 768 . . . . . . . 8 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈𝑆)
396, 33ressvsca 17283 . . . . . . . 8 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
4038, 39syl 17 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
4140oveqd 7386 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝑋)𝑦))
4241fveq2d 6844 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)))
432ad2antrr 726 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑊 ∈ LMod)
4411, 33, 34, 3lssvscl 20893 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑈)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈)
4543, 38, 22, 30, 44syl22anc 838 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈)
46 eqid 2729 . . . . . . 7 (norm‘𝑋) = (norm‘𝑋)
476, 32, 46subgnm2 24555 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
485, 45, 47syl2an2r 685 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
4942, 48eqtr3d 2766 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
5020eqcomd 2735 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Scalar‘𝑋) = (Scalar‘𝑊))
5150fveq2d 6844 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (norm‘(Scalar‘𝑋)) = (norm‘(Scalar‘𝑊)))
5251fveq1d 6842 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘(Scalar‘𝑋))‘𝑥) = ((norm‘(Scalar‘𝑊))‘𝑥))
536, 32, 46subgnm2 24555 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑦𝑈) → ((norm‘𝑋)‘𝑦) = ((norm‘𝑊)‘𝑦))
545, 30, 53syl2an2r 685 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘𝑦) = ((norm‘𝑊)‘𝑦))
5552, 54oveq12d 7387 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
5637, 49, 553eqtr4d 2774 . . 3 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)))
5756ralrimivva 3178 . 2 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → ∀𝑥 ∈ (Base‘(Scalar‘𝑋))∀𝑦 ∈ (Base‘𝑋)((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)))
58 eqid 2729 . . 3 (Base‘𝑋) = (Base‘𝑋)
59 eqid 2729 . . 3 ( ·𝑠𝑋) = ( ·𝑠𝑋)
60 eqid 2729 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
61 eqid 2729 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
62 eqid 2729 . . 3 (norm‘(Scalar‘𝑋)) = (norm‘(Scalar‘𝑋))
6358, 46, 59, 60, 61, 62isnlm 24596 . 2 (𝑋 ∈ NrmMod ↔ ((𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ (Scalar‘𝑋) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑋))∀𝑦 ∈ (Base‘𝑋)((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦))))
6417, 57, 63sylanbrc 583 1 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3911  cfv 6499  (class class class)co 7369   · cmul 11049  Basecbs 17155  s cress 17176  Scalarcsca 17199   ·𝑠 cvsca 17200  SubGrpcsubg 19034  LModclmod 20798  LSubSpclss 20869  normcnm 24497  NrmGrpcngp 24498  NrmRingcnrg 24500  NrmModcnlm 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-sca 17212  df-vsca 17213  df-tset 17215  df-ds 17218  df-rest 17361  df-topn 17362  df-0g 17380  df-topgen 17382  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20800  df-lss 20870  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-xms 24241  df-ms 24242  df-nm 24503  df-ngp 24504  df-nlm 24507
This theorem is referenced by:  lssnvc  24623  cphsscph  25184
  Copyright terms: Public domain W3C validator