MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssnlm Structured version   Visualization version   GIF version

Theorem lssnlm 23310
Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
lssnlm.x 𝑋 = (𝑊s 𝑈)
lssnlm.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssnlm ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)

Proof of Theorem lssnlm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmngp 23286 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2 nlmlmod 23287 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
3 lssnlm.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
43lsssubg 19729 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
52, 4sylan 582 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
6 lssnlm.x . . . . 5 𝑋 = (𝑊s 𝑈)
76subgngp 23244 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp)
81, 5, 7syl2an2r 683 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
96, 3lsslmod 19732 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
102, 9sylan 582 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
11 eqid 2821 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
126, 11resssca 16650 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1312adantl 484 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋))
1411nlmnrg 23288 . . . . 5 (𝑊 ∈ NrmMod → (Scalar‘𝑊) ∈ NrmRing)
1514adantr 483 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ NrmRing)
1613, 15eqeltrrd 2914 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑋) ∈ NrmRing)
178, 10, 163jca 1124 . 2 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ (Scalar‘𝑋) ∈ NrmRing))
18 simpll 765 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑊 ∈ NrmMod)
19 simprl 769 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘(Scalar‘𝑋)))
2013adantr 483 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Scalar‘𝑊) = (Scalar‘𝑋))
2120fveq2d 6674 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
2219, 21eleqtrrd 2916 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
235adantr 483 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 ∈ (SubGrp‘𝑊))
24 eqid 2821 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2524subgss 18280 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
2623, 25syl 17 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 ⊆ (Base‘𝑊))
27 simprr 771 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑋))
286subgbas 18283 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
2923, 28syl 17 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 = (Base‘𝑋))
3027, 29eleqtrrd 2916 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦𝑈)
3126, 30sseldd 3968 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑊))
32 eqid 2821 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
33 eqid 2821 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
34 eqid 2821 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
35 eqid 2821 . . . . . 6 (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊))
3624, 32, 33, 11, 34, 35nmvs 23285 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
3718, 22, 31, 36syl3anc 1367 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
38 simplr 767 . . . . . . . 8 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈𝑆)
396, 33ressvsca 16651 . . . . . . . 8 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
4038, 39syl 17 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
4140oveqd 7173 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝑋)𝑦))
4241fveq2d 6674 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)))
432ad2antrr 724 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑊 ∈ LMod)
4411, 33, 34, 3lssvscl 19727 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑈)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈)
4543, 38, 22, 30, 44syl22anc 836 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈)
46 eqid 2821 . . . . . . 7 (norm‘𝑋) = (norm‘𝑋)
476, 32, 46subgnm2 23243 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
485, 45, 47syl2an2r 683 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
4942, 48eqtr3d 2858 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
5020eqcomd 2827 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Scalar‘𝑋) = (Scalar‘𝑊))
5150fveq2d 6674 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (norm‘(Scalar‘𝑋)) = (norm‘(Scalar‘𝑊)))
5251fveq1d 6672 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘(Scalar‘𝑋))‘𝑥) = ((norm‘(Scalar‘𝑊))‘𝑥))
536, 32, 46subgnm2 23243 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑦𝑈) → ((norm‘𝑋)‘𝑦) = ((norm‘𝑊)‘𝑦))
545, 30, 53syl2an2r 683 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘𝑦) = ((norm‘𝑊)‘𝑦))
5552, 54oveq12d 7174 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
5637, 49, 553eqtr4d 2866 . . 3 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)))
5756ralrimivva 3191 . 2 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → ∀𝑥 ∈ (Base‘(Scalar‘𝑋))∀𝑦 ∈ (Base‘𝑋)((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)))
58 eqid 2821 . . 3 (Base‘𝑋) = (Base‘𝑋)
59 eqid 2821 . . 3 ( ·𝑠𝑋) = ( ·𝑠𝑋)
60 eqid 2821 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
61 eqid 2821 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
62 eqid 2821 . . 3 (norm‘(Scalar‘𝑋)) = (norm‘(Scalar‘𝑋))
6358, 46, 59, 60, 61, 62isnlm 23284 . 2 (𝑋 ∈ NrmMod ↔ ((𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ (Scalar‘𝑋) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑋))∀𝑦 ∈ (Base‘𝑋)((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦))))
6417, 57, 63sylanbrc 585 1 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wss 3936  cfv 6355  (class class class)co 7156   · cmul 10542  Basecbs 16483  s cress 16484  Scalarcsca 16568   ·𝑠 cvsca 16569  SubGrpcsubg 18273  LModclmod 19634  LSubSpclss 19703  normcnm 23186  NrmGrpcngp 23187  NrmRingcnrg 23189  NrmModcnlm 23190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-sca 16581  df-vsca 16582  df-tset 16584  df-ds 16587  df-rest 16696  df-topn 16697  df-0g 16715  df-topgen 16717  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-mgp 19240  df-ur 19252  df-ring 19299  df-lmod 19636  df-lss 19704  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-nlm 23196
This theorem is referenced by:  lssnvc  23311  cphsscph  23854
  Copyright terms: Public domain W3C validator