MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssnlm Structured version   Visualization version   GIF version

Theorem lssnlm 23993
Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
lssnlm.x 𝑋 = (𝑊s 𝑈)
lssnlm.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssnlm ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)

Proof of Theorem lssnlm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmngp 23969 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2 nlmlmod 23970 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
3 lssnlm.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
43lsssubg 20347 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
52, 4sylan 581 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
6 lssnlm.x . . . . 5 𝑋 = (𝑊s 𝑈)
76subgngp 23919 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp)
81, 5, 7syl2an2r 684 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
96, 3lsslmod 20350 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
102, 9sylan 581 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
11 eqid 2738 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
126, 11resssca 17160 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1312adantl 483 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋))
1411nlmnrg 23971 . . . . 5 (𝑊 ∈ NrmMod → (Scalar‘𝑊) ∈ NrmRing)
1514adantr 482 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ NrmRing)
1613, 15eqeltrrd 2840 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑋) ∈ NrmRing)
178, 10, 163jca 1129 . 2 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ (Scalar‘𝑋) ∈ NrmRing))
18 simpll 766 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑊 ∈ NrmMod)
19 simprl 770 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘(Scalar‘𝑋)))
2013adantr 482 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Scalar‘𝑊) = (Scalar‘𝑋))
2120fveq2d 6842 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
2219, 21eleqtrrd 2842 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
235adantr 482 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 ∈ (SubGrp‘𝑊))
24 eqid 2738 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2524subgss 18864 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
2623, 25syl 17 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 ⊆ (Base‘𝑊))
27 simprr 772 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑋))
286subgbas 18867 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
2923, 28syl 17 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 = (Base‘𝑋))
3027, 29eleqtrrd 2842 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦𝑈)
3126, 30sseldd 3944 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑊))
32 eqid 2738 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
33 eqid 2738 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
34 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
35 eqid 2738 . . . . . 6 (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊))
3624, 32, 33, 11, 34, 35nmvs 23968 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
3718, 22, 31, 36syl3anc 1372 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
38 simplr 768 . . . . . . . 8 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈𝑆)
396, 33ressvsca 17161 . . . . . . . 8 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
4038, 39syl 17 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
4140oveqd 7367 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝑋)𝑦))
4241fveq2d 6842 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)))
432ad2antrr 725 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑊 ∈ LMod)
4411, 33, 34, 3lssvscl 20345 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑈)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈)
4543, 38, 22, 30, 44syl22anc 838 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈)
46 eqid 2738 . . . . . . 7 (norm‘𝑋) = (norm‘𝑋)
476, 32, 46subgnm2 23918 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
485, 45, 47syl2an2r 684 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
4942, 48eqtr3d 2780 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
5020eqcomd 2744 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Scalar‘𝑋) = (Scalar‘𝑊))
5150fveq2d 6842 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (norm‘(Scalar‘𝑋)) = (norm‘(Scalar‘𝑊)))
5251fveq1d 6840 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘(Scalar‘𝑋))‘𝑥) = ((norm‘(Scalar‘𝑊))‘𝑥))
536, 32, 46subgnm2 23918 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑦𝑈) → ((norm‘𝑋)‘𝑦) = ((norm‘𝑊)‘𝑦))
545, 30, 53syl2an2r 684 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘𝑦) = ((norm‘𝑊)‘𝑦))
5552, 54oveq12d 7368 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
5637, 49, 553eqtr4d 2788 . . 3 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)))
5756ralrimivva 3196 . 2 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → ∀𝑥 ∈ (Base‘(Scalar‘𝑋))∀𝑦 ∈ (Base‘𝑋)((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)))
58 eqid 2738 . . 3 (Base‘𝑋) = (Base‘𝑋)
59 eqid 2738 . . 3 ( ·𝑠𝑋) = ( ·𝑠𝑋)
60 eqid 2738 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
61 eqid 2738 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
62 eqid 2738 . . 3 (norm‘(Scalar‘𝑋)) = (norm‘(Scalar‘𝑋))
6358, 46, 59, 60, 61, 62isnlm 23967 . 2 (𝑋 ∈ NrmMod ↔ ((𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ (Scalar‘𝑋) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑋))∀𝑦 ∈ (Base‘𝑋)((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦))))
6417, 57, 63sylanbrc 584 1 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3063  wss 3909  cfv 6492  (class class class)co 7350   · cmul 10990  Basecbs 17019  s cress 17048  Scalarcsca 17072   ·𝑠 cvsca 17073  SubGrpcsubg 18857  LModclmod 20251  LSubSpclss 20321  normcnm 23860  NrmGrpcngp 23861  NrmRingcnrg 23863  NrmModcnlm 23864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-1st 7912  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-er 8582  df-map 8701  df-en 8818  df-dom 8819  df-sdom 8820  df-sup 9312  df-inf 9313  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-3 12151  df-4 12152  df-5 12153  df-6 12154  df-7 12155  df-8 12156  df-9 12157  df-n0 12348  df-z 12434  df-dec 12553  df-uz 12698  df-q 12804  df-rp 12846  df-xneg 12963  df-xadd 12964  df-xmul 12965  df-sets 16972  df-slot 16990  df-ndx 17002  df-base 17020  df-ress 17049  df-plusg 17082  df-sca 17085  df-vsca 17086  df-tset 17088  df-ds 17091  df-rest 17240  df-topn 17241  df-0g 17259  df-topgen 17261  df-mgm 18433  df-sgrp 18482  df-mnd 18493  df-grp 18687  df-minusg 18688  df-sbg 18689  df-subg 18860  df-mgp 19832  df-ur 19849  df-ring 19896  df-lmod 20253  df-lss 20322  df-psmet 20717  df-xmet 20718  df-met 20719  df-bl 20720  df-mopn 20721  df-top 22171  df-topon 22188  df-topsp 22210  df-bases 22224  df-xms 23601  df-ms 23602  df-nm 23866  df-ngp 23867  df-nlm 23870
This theorem is referenced by:  lssnvc  23994  cphsscph  24543
  Copyright terms: Public domain W3C validator