MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssnlm Structured version   Visualization version   GIF version

Theorem lssnlm 24709
Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
lssnlm.x 𝑋 = (𝑊s 𝑈)
lssnlm.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssnlm ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)

Proof of Theorem lssnlm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmngp 24685 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2 nlmlmod 24686 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
3 lssnlm.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
43lsssubg 20934 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
52, 4sylan 578 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
6 lssnlm.x . . . . 5 𝑋 = (𝑊s 𝑈)
76subgngp 24635 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp)
81, 5, 7syl2an2r 683 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
96, 3lsslmod 20937 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
102, 9sylan 578 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
11 eqid 2726 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
126, 11resssca 17357 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1312adantl 480 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋))
1411nlmnrg 24687 . . . . 5 (𝑊 ∈ NrmMod → (Scalar‘𝑊) ∈ NrmRing)
1514adantr 479 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ NrmRing)
1613, 15eqeltrrd 2827 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑋) ∈ NrmRing)
178, 10, 163jca 1125 . 2 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ (Scalar‘𝑋) ∈ NrmRing))
18 simpll 765 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑊 ∈ NrmMod)
19 simprl 769 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘(Scalar‘𝑋)))
2013adantr 479 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Scalar‘𝑊) = (Scalar‘𝑋))
2120fveq2d 6905 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
2219, 21eleqtrrd 2829 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
235adantr 479 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 ∈ (SubGrp‘𝑊))
24 eqid 2726 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2524subgss 19121 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
2623, 25syl 17 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 ⊆ (Base‘𝑊))
27 simprr 771 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑋))
286subgbas 19124 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
2923, 28syl 17 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 = (Base‘𝑋))
3027, 29eleqtrrd 2829 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦𝑈)
3126, 30sseldd 3980 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑊))
32 eqid 2726 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
33 eqid 2726 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
34 eqid 2726 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
35 eqid 2726 . . . . . 6 (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊))
3624, 32, 33, 11, 34, 35nmvs 24684 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
3718, 22, 31, 36syl3anc 1368 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
38 simplr 767 . . . . . . . 8 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈𝑆)
396, 33ressvsca 17358 . . . . . . . 8 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
4038, 39syl 17 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
4140oveqd 7441 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝑋)𝑦))
4241fveq2d 6905 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)))
432ad2antrr 724 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑊 ∈ LMod)
4411, 33, 34, 3lssvscl 20932 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑈)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈)
4543, 38, 22, 30, 44syl22anc 837 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈)
46 eqid 2726 . . . . . . 7 (norm‘𝑋) = (norm‘𝑋)
476, 32, 46subgnm2 24634 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
485, 45, 47syl2an2r 683 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
4942, 48eqtr3d 2768 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
5020eqcomd 2732 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Scalar‘𝑋) = (Scalar‘𝑊))
5150fveq2d 6905 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (norm‘(Scalar‘𝑋)) = (norm‘(Scalar‘𝑊)))
5251fveq1d 6903 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘(Scalar‘𝑋))‘𝑥) = ((norm‘(Scalar‘𝑊))‘𝑥))
536, 32, 46subgnm2 24634 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑦𝑈) → ((norm‘𝑋)‘𝑦) = ((norm‘𝑊)‘𝑦))
545, 30, 53syl2an2r 683 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘𝑦) = ((norm‘𝑊)‘𝑦))
5552, 54oveq12d 7442 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
5637, 49, 553eqtr4d 2776 . . 3 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)))
5756ralrimivva 3191 . 2 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → ∀𝑥 ∈ (Base‘(Scalar‘𝑋))∀𝑦 ∈ (Base‘𝑋)((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)))
58 eqid 2726 . . 3 (Base‘𝑋) = (Base‘𝑋)
59 eqid 2726 . . 3 ( ·𝑠𝑋) = ( ·𝑠𝑋)
60 eqid 2726 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
61 eqid 2726 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
62 eqid 2726 . . 3 (norm‘(Scalar‘𝑋)) = (norm‘(Scalar‘𝑋))
6358, 46, 59, 60, 61, 62isnlm 24683 . 2 (𝑋 ∈ NrmMod ↔ ((𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ (Scalar‘𝑋) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑋))∀𝑦 ∈ (Base‘𝑋)((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦))))
6417, 57, 63sylanbrc 581 1 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wss 3947  cfv 6554  (class class class)co 7424   · cmul 11163  Basecbs 17213  s cress 17242  Scalarcsca 17269   ·𝑠 cvsca 17270  SubGrpcsubg 19114  LModclmod 20836  LSubSpclss 20908  normcnm 24576  NrmGrpcngp 24577  NrmRingcnrg 24579  NrmModcnlm 24580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-sca 17282  df-vsca 17283  df-tset 17285  df-ds 17288  df-rest 17437  df-topn 17438  df-0g 17456  df-topgen 17458  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-sbg 18933  df-subg 19117  df-mgp 20118  df-ur 20165  df-ring 20218  df-lmod 20838  df-lss 20909  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-xms 24317  df-ms 24318  df-nm 24582  df-ngp 24583  df-nlm 24586
This theorem is referenced by:  lssnvc  24710  cphsscph  25270
  Copyright terms: Public domain W3C validator