![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0repnf | Structured version Visualization version GIF version |
Description: The of nonnegative extended reals is a real number if and only if it is not +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0repnf.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
sge0repnf.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
Ref | Expression |
---|---|
sge0repnf | ⊢ (𝜑 → ((Σ^‘𝐹) ∈ ℝ ↔ ¬ (Σ^‘𝐹) = +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renepnf 11096 | . . . 4 ⊢ ((Σ^‘𝐹) ∈ ℝ → (Σ^‘𝐹) ≠ +∞) | |
2 | 1 | neneqd 2946 | . . 3 ⊢ ((Σ^‘𝐹) ∈ ℝ → ¬ (Σ^‘𝐹) = +∞) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ((Σ^‘𝐹) ∈ ℝ → ¬ (Σ^‘𝐹) = +∞)) |
4 | rge0ssre 13261 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ | |
5 | 0xr 11095 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → 0 ∈ ℝ*) |
7 | pnfxr 11102 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
8 | 7 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → +∞ ∈ ℝ*) |
9 | sge0repnf.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
10 | sge0repnf.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
11 | 9, 10 | sge0xrcl 44161 | . . . . . 6 ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ*) |
12 | 11 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → (Σ^‘𝐹) ∈ ℝ*) |
13 | 9, 10 | sge0ge0 44160 | . . . . . 6 ⊢ (𝜑 → 0 ≤ (Σ^‘𝐹)) |
14 | 13 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → 0 ≤ (Σ^‘𝐹)) |
15 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → ¬ (Σ^‘𝐹) = +∞) | |
16 | nltpnft 12971 | . . . . . . . . 9 ⊢ ((Σ^‘𝐹) ∈ ℝ* → ((Σ^‘𝐹) = +∞ ↔ ¬ (Σ^‘𝐹) < +∞)) | |
17 | 11, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((Σ^‘𝐹) = +∞ ↔ ¬ (Σ^‘𝐹) < +∞)) |
18 | 17 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → ((Σ^‘𝐹) = +∞ ↔ ¬ (Σ^‘𝐹) < +∞)) |
19 | 15, 18 | mtbid 323 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → ¬ ¬ (Σ^‘𝐹) < +∞) |
20 | 19 | notnotrd 133 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → (Σ^‘𝐹) < +∞) |
21 | 6, 8, 12, 14, 20 | elicod 13202 | . . . 4 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → (Σ^‘𝐹) ∈ (0[,)+∞)) |
22 | 4, 21 | sselid 3929 | . . 3 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → (Σ^‘𝐹) ∈ ℝ) |
23 | 22 | ex 413 | . 2 ⊢ (𝜑 → (¬ (Σ^‘𝐹) = +∞ → (Σ^‘𝐹) ∈ ℝ)) |
24 | 3, 23 | impbid 211 | 1 ⊢ (𝜑 → ((Σ^‘𝐹) ∈ ℝ ↔ ¬ (Σ^‘𝐹) = +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5087 ⟶wf 6461 ‘cfv 6465 (class class class)co 7315 ℝcr 10943 0cc0 10944 +∞cpnf 11079 ℝ*cxr 11081 < clt 11082 ≤ cle 11083 [,)cico 13154 [,]cicc 13155 Σ^csumge0 44138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-inf2 9470 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-sup 9271 df-oi 9339 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-n0 12307 df-z 12393 df-uz 12656 df-rp 12804 df-ico 13158 df-icc 13159 df-fz 13313 df-fzo 13456 df-seq 13795 df-exp 13856 df-hash 14118 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-clim 15269 df-sum 15470 df-sumge0 44139 |
This theorem is referenced by: sge0rern 44164 sge0supre 44165 sge0less 44168 sge0le 44183 sge0split 44185 sge0iunmpt 44194 sge0rpcpnf 44197 sge0xadd 44211 sge0repnfmpt 44215 sge0gtfsumgt 44219 omeiunltfirp 44295 hoidmv1lelem1 44367 hoidmv1lelem2 44368 hoidmv1lelem3 44369 hoidmv1le 44370 hoidmvlelem3 44373 hoidmvlelem5 44375 |
Copyright terms: Public domain | W3C validator |