Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdifprioo Structured version   Visualization version   GIF version

Theorem iccdifprioo 40532
Description: An open interval is the closed interval without the bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iccdifprioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))

Proof of Theorem iccdifprioo
StepHypRef Expression
1 prunioo 12601 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
21eqcomd 2831 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
32difeq1d 3956 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}))
4 difun2 4273 . . . . 5 (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵})
5 iooinlbub 40516 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅
6 disj3 4247 . . . . . 6 (((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ ↔ (𝐴(,)𝐵) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵}))
75, 6mpbi 222 . . . . 5 (𝐴(,)𝐵) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵})
84, 7eqtr4i 2852 . . . 4 (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)
93, 8syl6eq 2877 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
1093expa 1151 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
11 difssd 3967 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ (𝐴[,]𝐵))
12 simpr 479 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ¬ 𝐴𝐵)
13 xrlenlt 10429 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
1413adantr 474 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
1512, 14mtbid 316 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ¬ ¬ 𝐵 < 𝐴)
1615notnotrd 131 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐵 < 𝐴)
17 icc0 12518 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
1817adantr 474 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
1916, 18mpbird 249 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → (𝐴[,]𝐵) = ∅)
2011, 19sseqtrd 3866 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ ∅)
21 ss0 4201 . . . 4 (((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ ∅ → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = ∅)
2220, 21syl 17 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = ∅)
23 simplr 785 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐵 ∈ ℝ*)
24 simpll 783 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐴 ∈ ℝ*)
2523, 24, 16xrltled 12276 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
26 ioo0 12495 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
2726adantr 474 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
2825, 27mpbird 249 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → (𝐴(,)𝐵) = ∅)
2922, 28eqtr4d 2864 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
3010, 29pm2.61dan 847 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  cdif 3795  cun 3796  cin 3797  wss 3798  c0 4146  {cpr 4401   class class class wbr 4875  (class class class)co 6910  *cxr 10397   < clt 10398  cle 10399  (,)cioo 12470  [,]cicc 12473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-ioo 12474  df-ico 12476  df-icc 12477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator