![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccdifprioo | Structured version Visualization version GIF version |
Description: An open interval is the closed interval without the bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iccdifprioo | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prunioo 13454 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) | |
2 | 1 | eqcomd 2738 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) |
3 | 2 | difeq1d 4120 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵})) |
4 | difun2 4479 | . . . . 5 ⊢ (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵}) | |
5 | iooinlbub 44200 | . . . . . 6 ⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ | |
6 | disj3 4452 | . . . . . 6 ⊢ (((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ ↔ (𝐴(,)𝐵) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵})) | |
7 | 5, 6 | mpbi 229 | . . . . 5 ⊢ (𝐴(,)𝐵) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵}) |
8 | 4, 7 | eqtr4i 2763 | . . . 4 ⊢ (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵) |
9 | 3, 8 | eqtrdi 2788 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)) |
10 | 9 | 3expa 1118 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)) |
11 | difssd 4131 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ (𝐴[,]𝐵)) | |
12 | simpr 485 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ¬ 𝐴 ≤ 𝐵) | |
13 | xrlenlt 11275 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
14 | 13 | adantr 481 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
15 | 12, 14 | mtbid 323 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ¬ ¬ 𝐵 < 𝐴) |
16 | 15 | notnotrd 133 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 < 𝐴) |
17 | icc0 13368 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | |
18 | 17 | adantr 481 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
19 | 16, 18 | mpbird 256 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) = ∅) |
20 | 11, 19 | sseqtrd 4021 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ ∅) |
21 | ss0 4397 | . . . 4 ⊢ (((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ ∅ → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = ∅) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = ∅) |
23 | simplr 767 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
24 | simpll 765 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) | |
25 | 23, 24, 16 | xrltled 13125 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐴) |
26 | ioo0 13345 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
27 | 26 | adantr 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
28 | 25, 27 | mpbird 256 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → (𝐴(,)𝐵) = ∅) |
29 | 22, 28 | eqtr4d 2775 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)) |
30 | 10, 29 | pm2.61dan 811 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 {cpr 4629 class class class wbr 5147 (class class class)co 7405 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 (,)cioo 13320 [,]cicc 13323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-ioo 13324 df-ico 13326 df-icc 13327 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |