Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdifprioo Structured version   Visualization version   GIF version

Theorem iccdifprioo 40381
Description: An open interval is the closed interval without the bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iccdifprioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))

Proof of Theorem iccdifprioo
StepHypRef Expression
1 prunioo 12508 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
21eqcomd 2771 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
32difeq1d 3889 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}))
4 difun2 4208 . . . . 5 (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵})
5 iooinlbub 40365 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅
6 disj3 4182 . . . . . 6 (((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ ↔ (𝐴(,)𝐵) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵}))
75, 6mpbi 221 . . . . 5 (𝐴(,)𝐵) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵})
84, 7eqtr4i 2790 . . . 4 (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)
93, 8syl6eq 2815 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
1093expa 1147 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
11 difssd 3900 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ (𝐴[,]𝐵))
12 simpr 477 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ¬ 𝐴𝐵)
13 xrlenlt 10357 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
1413adantr 472 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
1512, 14mtbid 315 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ¬ ¬ 𝐵 < 𝐴)
1615notnotrd 130 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐵 < 𝐴)
17 icc0 12425 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
1817adantr 472 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
1916, 18mpbird 248 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → (𝐴[,]𝐵) = ∅)
2011, 19sseqtrd 3801 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ ∅)
21 ss0 4136 . . . 4 (((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ ∅ → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = ∅)
2220, 21syl 17 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = ∅)
23 simplr 785 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐵 ∈ ℝ*)
24 simpll 783 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐴 ∈ ℝ*)
2523, 24, 16xrltled 12183 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
26 ioo0 12402 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
2726adantr 472 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
2825, 27mpbird 248 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → (𝐴(,)𝐵) = ∅)
2922, 28eqtr4d 2802 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
3010, 29pm2.61dan 847 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  cdif 3729  cun 3730  cin 3731  wss 3732  c0 4079  {cpr 4336   class class class wbr 4809  (class class class)co 6842  *cxr 10327   < clt 10328  cle 10329  (,)cioo 12377  [,]cicc 12380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-ioo 12381  df-ico 12383  df-icc 12384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator