Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdifprioo Structured version   Visualization version   GIF version

Theorem iccdifprioo 42944
Description: An open interval is the closed interval without the bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iccdifprioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))

Proof of Theorem iccdifprioo
StepHypRef Expression
1 prunioo 13142 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
21eqcomd 2744 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
32difeq1d 4052 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}))
4 difun2 4411 . . . . 5 (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵})
5 iooinlbub 42929 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅
6 disj3 4384 . . . . . 6 (((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ ↔ (𝐴(,)𝐵) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵}))
75, 6mpbi 229 . . . . 5 (𝐴(,)𝐵) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵})
84, 7eqtr4i 2769 . . . 4 (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)
93, 8eqtrdi 2795 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
1093expa 1116 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
11 difssd 4063 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ (𝐴[,]𝐵))
12 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ¬ 𝐴𝐵)
13 xrlenlt 10971 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
1413adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
1512, 14mtbid 323 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ¬ ¬ 𝐵 < 𝐴)
1615notnotrd 133 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐵 < 𝐴)
17 icc0 13056 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
1817adantr 480 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
1916, 18mpbird 256 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → (𝐴[,]𝐵) = ∅)
2011, 19sseqtrd 3957 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ ∅)
21 ss0 4329 . . . 4 (((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ ∅ → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = ∅)
2220, 21syl 17 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = ∅)
23 simplr 765 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐵 ∈ ℝ*)
24 simpll 763 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐴 ∈ ℝ*)
2523, 24, 16xrltled 12813 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
26 ioo0 13033 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
2726adantr 480 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
2825, 27mpbird 256 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → (𝐴(,)𝐵) = ∅)
2922, 28eqtr4d 2781 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
3010, 29pm2.61dan 809 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {cpr 4560   class class class wbr 5070  (class class class)co 7255  *cxr 10939   < clt 10940  cle 10941  (,)cioo 13008  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-ioo 13012  df-ico 13014  df-icc 13015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator