MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqcoprm Structured version   Visualization version   GIF version

Theorem 2sqcoprm 26705
Description: If the sum of two squares is prime, the two original numbers are coprime. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Hypotheses
Ref Expression
2sqcoprm.1 (𝜑𝑃 ∈ ℙ)
2sqcoprm.2 (𝜑𝐴 ∈ ℤ)
2sqcoprm.3 (𝜑𝐵 ∈ ℤ)
2sqcoprm.4 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃)
Assertion
Ref Expression
2sqcoprm (𝜑 → (𝐴 gcd 𝐵) = 1)

Proof of Theorem 2sqcoprm
StepHypRef Expression
1 2sqcoprm.1 . . 3 (𝜑𝑃 ∈ ℙ)
2 2sqcoprm.2 . . 3 (𝜑𝐴 ∈ ℤ)
3 2sqcoprm.3 . . 3 (𝜑𝐵 ∈ ℤ)
4 2sqcoprm.4 . . 3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃)
51, 2, 3, 42sqn0 26704 . 2 (𝜑𝐴 ≠ 0)
62, 3gcdcld 16323 . . . 4 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ0)
76adantr 482 . . 3 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ0)
82adantr 482 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℤ)
93adantr 482 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 𝐵 ∈ ℤ)
10 simpr 486 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 𝐴 ≠ 0)
1110neneqd 2947 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ¬ 𝐴 = 0)
1211intnanrd 491 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
13 gcdn0cl 16317 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
148, 9, 12, 13syl21anc 837 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
1514nnsqcld 14073 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((𝐴 gcd 𝐵)↑2) ∈ ℕ)
166nn0zd 12538 . . . . . . . . . . 11 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
17 sqnprm 16513 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℤ → ¬ ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
1816, 17syl 17 . . . . . . . . . 10 (𝜑 → ¬ ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
19 zsqcl 13962 . . . . . . . . . . . . . . . 16 ((𝐴 gcd 𝐵) ∈ ℤ → ((𝐴 gcd 𝐵)↑2) ∈ ℤ)
2016, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℤ)
21 zsqcl 13962 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
222, 21syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴↑2) ∈ ℤ)
23 zsqcl 13962 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
243, 23syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵↑2) ∈ ℤ)
25 gcddvds 16318 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
262, 3, 25syl2anc 585 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
2726simpld 496 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴)
28 dvdssqim 16370 . . . . . . . . . . . . . . . . 17 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2)))
2928imp 408 . . . . . . . . . . . . . . . 16 ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐴) → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2))
3016, 2, 27, 29syl21anc 837 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2))
3126simprd 497 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵)
32 dvdssqim 16370 . . . . . . . . . . . . . . . . 17 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)))
3332imp 408 . . . . . . . . . . . . . . . 16 ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))
3416, 3, 31, 33syl21anc 837 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))
3520, 22, 24, 30, 34dvds2addd 16109 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
3635, 4breqtrd 5130 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ 𝑃)
3736adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∥ 𝑃)
38 simpr 486 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2))
391adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → 𝑃 ∈ ℙ)
40 dvdsprm 16514 . . . . . . . . . . . . 13 ((((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (((𝐴 gcd 𝐵)↑2) ∥ 𝑃 ↔ ((𝐴 gcd 𝐵)↑2) = 𝑃))
4138, 39, 40syl2anc 585 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → (((𝐴 gcd 𝐵)↑2) ∥ 𝑃 ↔ ((𝐴 gcd 𝐵)↑2) = 𝑃))
4237, 41mpbid 231 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) = 𝑃)
4342, 39eqeltrd 2839 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
4418, 43mtand 815 . . . . . . . . 9 (𝜑 → ¬ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2))
45 eluz2b3 12776 . . . . . . . . 9 (((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2) ↔ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
4644, 45sylnib 328 . . . . . . . 8 (𝜑 → ¬ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
47 imnan 401 . . . . . . . 8 ((((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1) ↔ ¬ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
4846, 47sylibr 233 . . . . . . 7 (𝜑 → (((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1))
4948adantr 482 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1))
5015, 49mpd 15 . . . . 5 ((𝜑𝐴 ≠ 0) → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1)
51 df-ne 2943 . . . . 5 (((𝐴 gcd 𝐵)↑2) ≠ 1 ↔ ¬ ((𝐴 gcd 𝐵)↑2) = 1)
5250, 51sylnib 328 . . . 4 ((𝜑𝐴 ≠ 0) → ¬ ¬ ((𝐴 gcd 𝐵)↑2) = 1)
5352notnotrd 133 . . 3 ((𝜑𝐴 ≠ 0) → ((𝐴 gcd 𝐵)↑2) = 1)
54 nn0sqeq1 15096 . . 3 (((𝐴 gcd 𝐵) ∈ ℕ0 ∧ ((𝐴 gcd 𝐵)↑2) = 1) → (𝐴 gcd 𝐵) = 1)
557, 53, 54syl2anc 585 . 2 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) = 1)
565, 55mpdan 686 1 (𝜑 → (𝐴 gcd 𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2942   class class class wbr 5104  cfv 6492  (class class class)co 7350  0cc0 10985  1c1 10986   + caddc 10988  cn 12087  2c2 12142  0cn0 12347  cz 12433  cuz 12696  cexp 13896  cdvds 16071   gcd cgcd 16309  cprime 16482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-sup 9312  df-inf 9313  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-3 12151  df-n0 12348  df-z 12434  df-uz 12697  df-rp 12845  df-seq 13836  df-exp 13897  df-cj 14918  df-re 14919  df-im 14920  df-sqrt 15054  df-abs 15055  df-dvds 16072  df-gcd 16310  df-prm 16483
This theorem is referenced by:  2sqmod  26706
  Copyright terms: Public domain W3C validator