MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqcoprm Structured version   Visualization version   GIF version

Theorem 2sqcoprm 27344
Description: If the sum of two squares is prime, the two original numbers are coprime. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Hypotheses
Ref Expression
2sqcoprm.1 (𝜑𝑃 ∈ ℙ)
2sqcoprm.2 (𝜑𝐴 ∈ ℤ)
2sqcoprm.3 (𝜑𝐵 ∈ ℤ)
2sqcoprm.4 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃)
Assertion
Ref Expression
2sqcoprm (𝜑 → (𝐴 gcd 𝐵) = 1)

Proof of Theorem 2sqcoprm
StepHypRef Expression
1 2sqcoprm.1 . . 3 (𝜑𝑃 ∈ ℙ)
2 2sqcoprm.2 . . 3 (𝜑𝐴 ∈ ℤ)
3 2sqcoprm.3 . . 3 (𝜑𝐵 ∈ ℤ)
4 2sqcoprm.4 . . 3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃)
51, 2, 3, 42sqn0 27343 . 2 (𝜑𝐴 ≠ 0)
62, 3gcdcld 16419 . . . 4 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ0)
76adantr 480 . . 3 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ0)
82adantr 480 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℤ)
93adantr 480 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 𝐵 ∈ ℤ)
10 simpr 484 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 𝐴 ≠ 0)
1110neneqd 2930 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ¬ 𝐴 = 0)
1211intnanrd 489 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
13 gcdn0cl 16413 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
148, 9, 12, 13syl21anc 837 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
1514nnsqcld 14151 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((𝐴 gcd 𝐵)↑2) ∈ ℕ)
166nn0zd 12497 . . . . . . . . . . 11 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
17 sqnprm 16613 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℤ → ¬ ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
1816, 17syl 17 . . . . . . . . . 10 (𝜑 → ¬ ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
19 zsqcl 14036 . . . . . . . . . . . . . . . 16 ((𝐴 gcd 𝐵) ∈ ℤ → ((𝐴 gcd 𝐵)↑2) ∈ ℤ)
2016, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℤ)
21 zsqcl 14036 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
222, 21syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴↑2) ∈ ℤ)
23 zsqcl 14036 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
243, 23syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵↑2) ∈ ℤ)
25 gcddvds 16414 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
262, 3, 25syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
2726simpld 494 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴)
28 dvdssqim 16465 . . . . . . . . . . . . . . . . 17 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2)))
2928imp 406 . . . . . . . . . . . . . . . 16 ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐴) → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2))
3016, 2, 27, 29syl21anc 837 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2))
3126simprd 495 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵)
32 dvdssqim 16465 . . . . . . . . . . . . . . . . 17 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)))
3332imp 406 . . . . . . . . . . . . . . . 16 ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))
3416, 3, 31, 33syl21anc 837 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))
3520, 22, 24, 30, 34dvds2addd 16203 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
3635, 4breqtrd 5118 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ 𝑃)
3736adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∥ 𝑃)
38 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2))
391adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → 𝑃 ∈ ℙ)
40 dvdsprm 16614 . . . . . . . . . . . . 13 ((((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (((𝐴 gcd 𝐵)↑2) ∥ 𝑃 ↔ ((𝐴 gcd 𝐵)↑2) = 𝑃))
4138, 39, 40syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → (((𝐴 gcd 𝐵)↑2) ∥ 𝑃 ↔ ((𝐴 gcd 𝐵)↑2) = 𝑃))
4237, 41mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) = 𝑃)
4342, 39eqeltrd 2828 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
4418, 43mtand 815 . . . . . . . . 9 (𝜑 → ¬ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2))
45 eluz2b3 12823 . . . . . . . . 9 (((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2) ↔ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
4644, 45sylnib 328 . . . . . . . 8 (𝜑 → ¬ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
47 imnan 399 . . . . . . . 8 ((((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1) ↔ ¬ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
4846, 47sylibr 234 . . . . . . 7 (𝜑 → (((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1))
4948adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1))
5015, 49mpd 15 . . . . 5 ((𝜑𝐴 ≠ 0) → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1)
51 df-ne 2926 . . . . 5 (((𝐴 gcd 𝐵)↑2) ≠ 1 ↔ ¬ ((𝐴 gcd 𝐵)↑2) = 1)
5250, 51sylnib 328 . . . 4 ((𝜑𝐴 ≠ 0) → ¬ ¬ ((𝐴 gcd 𝐵)↑2) = 1)
5352notnotrd 133 . . 3 ((𝜑𝐴 ≠ 0) → ((𝐴 gcd 𝐵)↑2) = 1)
54 nn0sqeq1 15183 . . 3 (((𝐴 gcd 𝐵) ∈ ℕ0 ∧ ((𝐴 gcd 𝐵)↑2) = 1) → (𝐴 gcd 𝐵) = 1)
557, 53, 54syl2anc 584 . 2 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) = 1)
565, 55mpdan 687 1 (𝜑 → (𝐴 gcd 𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012  cn 12128  2c2 12183  0cn0 12384  cz 12471  cuz 12735  cexp 13968  cdvds 16163   gcd cgcd 16405  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583
This theorem is referenced by:  2sqmod  27345
  Copyright terms: Public domain W3C validator