MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqcoprm Structured version   Visualization version   GIF version

Theorem 2sqcoprm 27381
Description: If the sum of two squares is prime, the two original numbers are coprime. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Hypotheses
Ref Expression
2sqcoprm.1 (𝜑𝑃 ∈ ℙ)
2sqcoprm.2 (𝜑𝐴 ∈ ℤ)
2sqcoprm.3 (𝜑𝐵 ∈ ℤ)
2sqcoprm.4 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃)
Assertion
Ref Expression
2sqcoprm (𝜑 → (𝐴 gcd 𝐵) = 1)

Proof of Theorem 2sqcoprm
StepHypRef Expression
1 2sqcoprm.1 . . 3 (𝜑𝑃 ∈ ℙ)
2 2sqcoprm.2 . . 3 (𝜑𝐴 ∈ ℤ)
3 2sqcoprm.3 . . 3 (𝜑𝐵 ∈ ℤ)
4 2sqcoprm.4 . . 3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃)
51, 2, 3, 42sqn0 27380 . 2 (𝜑𝐴 ≠ 0)
62, 3gcdcld 16483 . . . 4 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ0)
76adantr 480 . . 3 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ0)
82adantr 480 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℤ)
93adantr 480 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 𝐵 ∈ ℤ)
10 simpr 484 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 𝐴 ≠ 0)
1110neneqd 2942 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ¬ 𝐴 = 0)
1211intnanrd 489 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
13 gcdn0cl 16477 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
148, 9, 12, 13syl21anc 837 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
1514nnsqcld 14239 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((𝐴 gcd 𝐵)↑2) ∈ ℕ)
166nn0zd 12615 . . . . . . . . . . 11 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
17 sqnprm 16673 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℤ → ¬ ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
1816, 17syl 17 . . . . . . . . . 10 (𝜑 → ¬ ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
19 zsqcl 14126 . . . . . . . . . . . . . . . 16 ((𝐴 gcd 𝐵) ∈ ℤ → ((𝐴 gcd 𝐵)↑2) ∈ ℤ)
2016, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℤ)
21 zsqcl 14126 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
222, 21syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴↑2) ∈ ℤ)
23 zsqcl 14126 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
243, 23syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵↑2) ∈ ℤ)
25 gcddvds 16478 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
262, 3, 25syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
2726simpld 494 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴)
28 dvdssqim 16530 . . . . . . . . . . . . . . . . 17 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2)))
2928imp 406 . . . . . . . . . . . . . . . 16 ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐴) → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2))
3016, 2, 27, 29syl21anc 837 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2))
3126simprd 495 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵)
32 dvdssqim 16530 . . . . . . . . . . . . . . . . 17 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)))
3332imp 406 . . . . . . . . . . . . . . . 16 ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))
3416, 3, 31, 33syl21anc 837 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))
3520, 22, 24, 30, 34dvds2addd 16269 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
3635, 4breqtrd 5174 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ 𝑃)
3736adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∥ 𝑃)
38 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2))
391adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → 𝑃 ∈ ℙ)
40 dvdsprm 16674 . . . . . . . . . . . . 13 ((((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (((𝐴 gcd 𝐵)↑2) ∥ 𝑃 ↔ ((𝐴 gcd 𝐵)↑2) = 𝑃))
4138, 39, 40syl2anc 583 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → (((𝐴 gcd 𝐵)↑2) ∥ 𝑃 ↔ ((𝐴 gcd 𝐵)↑2) = 𝑃))
4237, 41mpbid 231 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) = 𝑃)
4342, 39eqeltrd 2829 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
4418, 43mtand 815 . . . . . . . . 9 (𝜑 → ¬ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2))
45 eluz2b3 12937 . . . . . . . . 9 (((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2) ↔ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
4644, 45sylnib 328 . . . . . . . 8 (𝜑 → ¬ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
47 imnan 399 . . . . . . . 8 ((((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1) ↔ ¬ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
4846, 47sylibr 233 . . . . . . 7 (𝜑 → (((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1))
4948adantr 480 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1))
5015, 49mpd 15 . . . . 5 ((𝜑𝐴 ≠ 0) → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1)
51 df-ne 2938 . . . . 5 (((𝐴 gcd 𝐵)↑2) ≠ 1 ↔ ¬ ((𝐴 gcd 𝐵)↑2) = 1)
5250, 51sylnib 328 . . . 4 ((𝜑𝐴 ≠ 0) → ¬ ¬ ((𝐴 gcd 𝐵)↑2) = 1)
5352notnotrd 133 . . 3 ((𝜑𝐴 ≠ 0) → ((𝐴 gcd 𝐵)↑2) = 1)
54 nn0sqeq1 15256 . . 3 (((𝐴 gcd 𝐵) ∈ ℕ0 ∧ ((𝐴 gcd 𝐵)↑2) = 1) → (𝐴 gcd 𝐵) = 1)
557, 53, 54syl2anc 583 . 2 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) = 1)
565, 55mpdan 686 1 (𝜑 → (𝐴 gcd 𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2937   class class class wbr 5148  cfv 6548  (class class class)co 7420  0cc0 11139  1c1 11140   + caddc 11142  cn 12243  2c2 12298  0cn0 12503  cz 12589  cuz 12853  cexp 14059  cdvds 16231   gcd cgcd 16469  cprime 16642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-dvds 16232  df-gcd 16470  df-prm 16643
This theorem is referenced by:  2sqmod  27382
  Copyright terms: Public domain W3C validator