MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqcoprm Structured version   Visualization version   GIF version

Theorem 2sqcoprm 25927
Description: If the sum of two squares is prime, the two original numbers are coprime. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Hypotheses
Ref Expression
2sqcoprm.1 (𝜑𝑃 ∈ ℙ)
2sqcoprm.2 (𝜑𝐴 ∈ ℤ)
2sqcoprm.3 (𝜑𝐵 ∈ ℤ)
2sqcoprm.4 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃)
Assertion
Ref Expression
2sqcoprm (𝜑 → (𝐴 gcd 𝐵) = 1)

Proof of Theorem 2sqcoprm
StepHypRef Expression
1 2sqcoprm.1 . . 3 (𝜑𝑃 ∈ ℙ)
2 2sqcoprm.2 . . 3 (𝜑𝐴 ∈ ℤ)
3 2sqcoprm.3 . . 3 (𝜑𝐵 ∈ ℤ)
4 2sqcoprm.4 . . 3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃)
51, 2, 3, 42sqn0 25926 . 2 (𝜑𝐴 ≠ 0)
62, 3gcdcld 15849 . . . 4 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ0)
76adantr 481 . . 3 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ0)
82adantr 481 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℤ)
93adantr 481 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → 𝐵 ∈ ℤ)
10 simpr 485 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 𝐴 ≠ 0)
1110neneqd 3025 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ¬ 𝐴 = 0)
1211intnanrd 490 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
13 gcdn0cl 15843 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
148, 9, 12, 13syl21anc 835 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
1514nnsqcld 13598 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((𝐴 gcd 𝐵)↑2) ∈ ℕ)
166nn0zd 12077 . . . . . . . . . . 11 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
17 sqnprm 16038 . . . . . . . . . . 11 ((𝐴 gcd 𝐵) ∈ ℤ → ¬ ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
1816, 17syl 17 . . . . . . . . . 10 (𝜑 → ¬ ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
19 zsqcl 13487 . . . . . . . . . . . . . . . 16 ((𝐴 gcd 𝐵) ∈ ℤ → ((𝐴 gcd 𝐵)↑2) ∈ ℤ)
2016, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∈ ℤ)
21 zsqcl 13487 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
222, 21syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴↑2) ∈ ℤ)
23 zsqcl 13487 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
243, 23syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵↑2) ∈ ℤ)
25 gcddvds 15844 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
262, 3, 25syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
2726simpld 495 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴)
28 dvdssqim 15896 . . . . . . . . . . . . . . . . 17 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2)))
2928imp 407 . . . . . . . . . . . . . . . 16 ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐴) → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2))
3016, 2, 27, 29syl21anc 835 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2))
3126simprd 496 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵)
32 dvdssqim 15896 . . . . . . . . . . . . . . . . 17 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)))
3332imp 407 . . . . . . . . . . . . . . . 16 ((((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))
3416, 3, 31, 33syl21anc 835 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))
35 dvds2add 15635 . . . . . . . . . . . . . . . 16 ((((𝐴 gcd 𝐵)↑2) ∈ ℤ ∧ (𝐴↑2) ∈ ℤ ∧ (𝐵↑2) ∈ ℤ) → ((((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2) ∧ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)) → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2))))
3635imp 407 . . . . . . . . . . . . . . 15 (((((𝐴 gcd 𝐵)↑2) ∈ ℤ ∧ (𝐴↑2) ∈ ℤ ∧ (𝐵↑2) ∈ ℤ) ∧ (((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2) ∧ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))) → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
3720, 22, 24, 30, 34, 36syl32anc 1372 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2)))
3837, 4breqtrd 5088 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 gcd 𝐵)↑2) ∥ 𝑃)
3938adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∥ 𝑃)
40 simpr 485 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2))
411adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → 𝑃 ∈ ℙ)
42 dvdsprm 16039 . . . . . . . . . . . . 13 ((((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (((𝐴 gcd 𝐵)↑2) ∥ 𝑃 ↔ ((𝐴 gcd 𝐵)↑2) = 𝑃))
4340, 41, 42syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → (((𝐴 gcd 𝐵)↑2) ∥ 𝑃 ↔ ((𝐴 gcd 𝐵)↑2) = 𝑃))
4439, 43mpbid 233 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) = 𝑃)
4544, 41eqeltrd 2917 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2)) → ((𝐴 gcd 𝐵)↑2) ∈ ℙ)
4618, 45mtand 812 . . . . . . . . 9 (𝜑 → ¬ ((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2))
47 eluz2b3 12314 . . . . . . . . 9 (((𝐴 gcd 𝐵)↑2) ∈ (ℤ‘2) ↔ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
4846, 47sylnib 329 . . . . . . . 8 (𝜑 → ¬ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
49 imnan 400 . . . . . . . 8 ((((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1) ↔ ¬ (((𝐴 gcd 𝐵)↑2) ∈ ℕ ∧ ((𝐴 gcd 𝐵)↑2) ≠ 1))
5048, 49sylibr 235 . . . . . . 7 (𝜑 → (((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1))
5150adantr 481 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((𝐴 gcd 𝐵)↑2) ∈ ℕ → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1))
5215, 51mpd 15 . . . . 5 ((𝜑𝐴 ≠ 0) → ¬ ((𝐴 gcd 𝐵)↑2) ≠ 1)
53 df-ne 3021 . . . . 5 (((𝐴 gcd 𝐵)↑2) ≠ 1 ↔ ¬ ((𝐴 gcd 𝐵)↑2) = 1)
5452, 53sylnib 329 . . . 4 ((𝜑𝐴 ≠ 0) → ¬ ¬ ((𝐴 gcd 𝐵)↑2) = 1)
5554notnotrd 135 . . 3 ((𝜑𝐴 ≠ 0) → ((𝐴 gcd 𝐵)↑2) = 1)
56 nn0sqeq1 14629 . . 3 (((𝐴 gcd 𝐵) ∈ ℕ0 ∧ ((𝐴 gcd 𝐵)↑2) = 1) → (𝐴 gcd 𝐵) = 1)
577, 55, 56syl2anc 584 . 2 ((𝜑𝐴 ≠ 0) → (𝐴 gcd 𝐵) = 1)
585, 57mpdan 683 1 (𝜑 → (𝐴 gcd 𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020   class class class wbr 5062  cfv 6351  (class class class)co 7151  0cc0 10529  1c1 10530   + caddc 10532  cn 11630  2c2 11684  0cn0 11889  cz 11973  cuz 12235  cexp 13422  cdvds 15599   gcd cgcd 15835  cprime 16007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-dvds 15600  df-gcd 15836  df-prm 16008
This theorem is referenced by:  2sqmod  25928
  Copyright terms: Public domain W3C validator