Description:
Here are typical natural deduction (ND) rules in the style of Gentzen
and Jaśkowski, along with MPE translations of them. This also
shows the recommended theorems when you find yourself needing these
rules (the recommendations encourage a slightly different proof style
that works more naturally with set.mm). A decent list of the standard
rules of natural deduction can be found beginning with definition /\I in
[Pfenning] p. 18. For information about ND and Metamath, see the
page on Deduction Form and Natural Deduction
in Metamath Proof Explorer. Many more citations could be added.
Name | Natural Deduction Rule | Translation |
Recommendation | Comments |
IT |
Γ⊢ 𝜓 => Γ⊢ 𝜓 |
idi 1 |
nothing | Reiteration is always redundant in Metamath.
Definition "new rule" in [Pfenning] p. 18,
definition IT in [Clemente] p. 10. |
∧I |
Γ⊢ 𝜓 & Γ⊢ 𝜒 => Γ⊢ 𝜓 ∧ 𝜒 |
jca 511 |
jca 511, pm3.2i 470 |
Definition ∧I in [Pfenning] p. 18,
definition I∧m,n in [Clemente] p. 10, and
definition ∧I in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
∧EL |
Γ⊢ 𝜓 ∧ 𝜒 => Γ⊢ 𝜓 |
simpld 494 |
simpld 494, adantr 480 |
Definition ∧EL in [Pfenning] p. 18,
definition E∧(1) in [Clemente] p. 11, and
definition ∧E in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
∧ER |
Γ⊢ 𝜓 ∧ 𝜒 => Γ⊢ 𝜒 |
simprd 495 |
simpr 484, adantl 481 |
Definition ∧ER in [Pfenning] p. 18,
definition E∧(2) in [Clemente] p. 11, and
definition ∧E in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
→I |
Γ, 𝜓⊢ 𝜒 => Γ⊢ 𝜓 → 𝜒 |
ex 412 | ex 412 |
Definition →I in [Pfenning] p. 18,
definition I=>m,n in [Clemente] p. 11, and
definition →I in [Indrzejczak] p. 33. |
→E |
Γ⊢ 𝜓 → 𝜒 & Γ⊢ 𝜓 => Γ⊢ 𝜒 |
mpd 15 | ax-mp 5, mpd 15, mpdan 683, imp 406 |
Definition →E in [Pfenning] p. 18,
definition E=>m,n in [Clemente] p. 11, and
definition →E in [Indrzejczak] p. 33. |
∨IL | Γ⊢ 𝜓 =>
Γ⊢ 𝜓 ∨ 𝜒 |
olcd 870 |
olc 864, olci 862, olcd 870 |
Definition ∨I in [Pfenning] p. 18,
definition I∨n(1) in [Clemente] p. 12 |
∨IR | Γ⊢ 𝜒 =>
Γ⊢ 𝜓 ∨ 𝜒 |
orcd 869 |
orc 863, orci 861, orcd 869 |
Definition ∨IR in [Pfenning] p. 18,
definition I∨n(2) in [Clemente] p. 12. |
∨E | Γ⊢ 𝜓 ∨ 𝜒 & Γ, 𝜓⊢ 𝜃 &
Γ, 𝜒⊢ 𝜃 => Γ⊢ 𝜃 |
mpjaodan 955 |
mpjaodan 955, jaodan 954, jaod 855 |
Definition ∨E in [Pfenning] p. 18,
definition E∨m,n,p in [Clemente] p. 12. |
¬I | Γ, 𝜓⊢ ⊥ => Γ⊢ ¬ 𝜓 |
inegd 1559 | pm2.01d 189 |
|
¬I | Γ, 𝜓⊢ 𝜃 & Γ⊢ ¬ 𝜃 =>
Γ⊢ ¬ 𝜓 |
mtand 812 | mtand 812 |
definition I¬m,n,p in [Clemente] p. 13. |
¬I | Γ, 𝜓⊢ 𝜒 & Γ, 𝜓⊢ ¬ 𝜒 =>
Γ⊢ ¬ 𝜓 |
pm2.65da 813 | pm2.65da 813 |
Contradiction. |
¬I |
Γ, 𝜓⊢ ¬ 𝜓 => Γ⊢ ¬ 𝜓 |
pm2.01da 795 | pm2.01d 189, pm2.65da 813, pm2.65d 195 |
For an alternative falsum-free natural deduction ruleset |
¬E |
Γ⊢ 𝜓 & Γ⊢ ¬ 𝜓 => Γ⊢ ⊥ |
pm2.21fal 1561 |
pm2.21dd 194 | |
¬E |
Γ, ¬ 𝜓⊢ ⊥ => Γ⊢ 𝜓 |
|
pm2.21dd 194 |
definition →E in [Indrzejczak] p. 33. |
¬E |
Γ⊢ 𝜓 & Γ⊢ ¬ 𝜓 => Γ⊢ 𝜃 |
pm2.21dd 194 | pm2.21dd 194, pm2.21d 121, pm2.21 123 |
For an alternative falsum-free natural deduction ruleset.
Definition ¬E in [Pfenning] p. 18. |
⊤I | Γ⊢ ⊤ |
trud 1549 | tru 1543, trud 1549, mptru 1546 |
Definition ⊤I in [Pfenning] p. 18. |
⊥E | Γ, ⊥⊢ 𝜃 |
falimd 1557 | falim 1556 |
Definition ⊥E in [Pfenning] p. 18. |
∀I |
Γ⊢ [𝑎 / 𝑥]𝜓 => Γ⊢ ∀𝑥𝜓 |
alrimiv 1931 | alrimiv 1931, ralrimiva 3107 |
Definition ∀Ia in [Pfenning] p. 18,
definition I∀n in [Clemente] p. 32. |
∀E |
Γ⊢ ∀𝑥𝜓 => Γ⊢ [𝑡 / 𝑥]𝜓 |
spsbcd 3725 | spcv 3534, rspcv 3547 |
Definition ∀E in [Pfenning] p. 18,
definition E∀n,t in [Clemente] p. 32. |
∃I |
Γ⊢ [𝑡 / 𝑥]𝜓 => Γ⊢ ∃𝑥𝜓 |
spesbcd 3812 | spcev 3535, rspcev 3552 |
Definition ∃I in [Pfenning] p. 18,
definition I∃n,t in [Clemente] p. 32. |
∃E |
Γ⊢ ∃𝑥𝜓 & Γ, [𝑎 / 𝑥]𝜓⊢ 𝜃 =>
Γ⊢ 𝜃 |
exlimddv 1939 | exlimddv 1939, exlimdd 2216,
exlimdv 1937, rexlimdva 3212 |
Definition ∃Ea,u in [Pfenning] p. 18,
definition E∃m,n,p,a in [Clemente] p. 32. |
⊥C |
Γ, ¬ 𝜓⊢ ⊥ => Γ⊢ 𝜓 |
efald 1560 | efald 1560 |
Proof by contradiction (classical logic),
definition ⊥C in [Pfenning] p. 17. |
⊥C |
Γ, ¬ 𝜓⊢ 𝜓 => Γ⊢ 𝜓 |
pm2.18da 796 | pm2.18da 796, pm2.18d 127, pm2.18 128 |
For an alternative falsum-free natural deduction ruleset |
¬ ¬C |
Γ⊢ ¬ ¬ 𝜓 => Γ⊢ 𝜓 |
notnotrd 133 | notnotrd 133, notnotr 130 |
Double negation rule (classical logic),
definition NNC in [Pfenning] p. 17,
definition E¬n in [Clemente] p. 14. |
EM | Γ⊢ 𝜓 ∨ ¬ 𝜓 |
exmidd 892 | exmid 891 |
Excluded middle (classical logic),
definition XM in [Pfenning] p. 17,
proof 5.11 in [Clemente] p. 14. |
=I | Γ⊢ 𝐴 = 𝐴 |
eqidd 2739 | eqid 2738, eqidd 2739 |
Introduce equality,
definition =I in [Pfenning] p. 127. |
=E | Γ⊢ 𝐴 = 𝐵 & Γ[𝐴 / 𝑥]𝜓 =>
Γ⊢ [𝐵 / 𝑥]𝜓 |
sbceq1dd 3717 | sbceq1d 3716, equality theorems |
Eliminate equality,
definition =E in [Pfenning] p. 127. (Both E1 and E2.) |
Note that MPE uses classical logic, not intuitionist logic. As is
conventional, the "I" rules are introduction rules, "E" rules are
elimination rules, the "C" rules are conversion rules, and Γ
represents the set of (current) hypotheses. We use wff variable names
beginning with 𝜓 to provide a closer representation
of the Metamath
equivalents (which typically use the antedent 𝜑 to represent the
context Γ).
Most of this information was developed by Mario Carneiro and posted on
3-Feb-2017. For more information, see the
page on Deduction Form and Natural Deduction
in Metamath Proof Explorer.
For annotated examples where some traditional ND rules
are directly applied in MPE, see ex-natded5.2 28669, ex-natded5.3 28672,
ex-natded5.5 28675, ex-natded5.7 28676, ex-natded5.8 28678, ex-natded5.13 28680,
ex-natded9.20 28682, and ex-natded9.26 28684.
(Contributed by DAW, 4-Feb-2017.) (New usage is
discouraged.) |