Description:
Here are typical natural deduction (ND) rules in the style of Gentzen
and Jaśkowski, along with MPE translations of them. This also
shows the recommended theorems when you find yourself needing these
rules (the recommendations encourage a slightly different proof style
that works more naturally with set.mm). A decent list of the standard
rules of natural deduction can be found beginning with definition /\I in
[Pfenning] p. 18. For information about ND and Metamath, see the
page on Deduction Form and Natural Deduction
in Metamath Proof Explorer. Many more citations could be added.
Name | Natural Deduction Rule | Translation |
Recommendation | Comments |
IT |
Γ⊢ 𝜓 => Γ⊢ 𝜓 |
idi 1 |
nothing | Reiteration is always redundant in Metamath.
Definition "new rule" in [Pfenning] p. 18,
definition IT in [Clemente] p. 10. |
∧I |
Γ⊢ 𝜓 & Γ⊢ 𝜒 => Γ⊢ 𝜓 ∧ 𝜒 |
jca 512 |
jca 512, pm3.2i 471 |
Definition ∧I in [Pfenning] p. 18,
definition I∧m,n in [Clemente] p. 10, and
definition ∧I in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
∧EL |
Γ⊢ 𝜓 ∧ 𝜒 => Γ⊢ 𝜓 |
simpld 495 |
simpld 495, adantr 481 |
Definition ∧EL in [Pfenning] p. 18,
definition E∧(1) in [Clemente] p. 11, and
definition ∧E in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
∧ER |
Γ⊢ 𝜓 ∧ 𝜒 => Γ⊢ 𝜒 |
simprd 496 |
simpr 485, adantl 482 |
Definition ∧ER in [Pfenning] p. 18,
definition E∧(2) in [Clemente] p. 11, and
definition ∧E in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
→I |
Γ, 𝜓⊢ 𝜒 => Γ⊢ 𝜓 → 𝜒 |
ex 413 | ex 413 |
Definition →I in [Pfenning] p. 18,
definition I=>m,n in [Clemente] p. 11, and
definition →I in [Indrzejczak] p. 33. |
→E |
Γ⊢ 𝜓 → 𝜒 & Γ⊢ 𝜓 => Γ⊢ 𝜒 |
mpd 15 | ax-mp 5, mpd 15, mpdan 684, imp 407 |
Definition →E in [Pfenning] p. 18,
definition E=>m,n in [Clemente] p. 11, and
definition →E in [Indrzejczak] p. 33. |
∨IL | Γ⊢ 𝜓 =>
Γ⊢ 𝜓 ∨ 𝜒 |
olcd 871 |
olc 865, olci 863, olcd 871 |
Definition ∨I in [Pfenning] p. 18,
definition I∨n(1) in [Clemente] p. 12 |
∨IR | Γ⊢ 𝜒 =>
Γ⊢ 𝜓 ∨ 𝜒 |
orcd 870 |
orc 864, orci 862, orcd 870 |
Definition ∨IR in [Pfenning] p. 18,
definition I∨n(2) in [Clemente] p. 12. |
∨E | Γ⊢ 𝜓 ∨ 𝜒 & Γ, 𝜓⊢ 𝜃 &
Γ, 𝜒⊢ 𝜃 => Γ⊢ 𝜃 |
mpjaodan 956 |
mpjaodan 956, jaodan 955, jaod 856 |
Definition ∨E in [Pfenning] p. 18,
definition E∨m,n,p in [Clemente] p. 12. |
¬I | Γ, 𝜓⊢ ⊥ => Γ⊢ ¬ 𝜓 |
inegd 1559 | pm2.01d 189 |
|
¬I | Γ, 𝜓⊢ 𝜃 & Γ⊢ ¬ 𝜃 =>
Γ⊢ ¬ 𝜓 |
mtand 813 | mtand 813 |
definition I¬m,n,p in [Clemente] p. 13. |
¬I | Γ, 𝜓⊢ 𝜒 & Γ, 𝜓⊢ ¬ 𝜒 =>
Γ⊢ ¬ 𝜓 |
pm2.65da 814 | pm2.65da 814 |
Contradiction. |
¬I |
Γ, 𝜓⊢ ¬ 𝜓 => Γ⊢ ¬ 𝜓 |
pm2.01da 796 | pm2.01d 189, pm2.65da 814, pm2.65d 195 |
For an alternative falsum-free natural deduction ruleset |
¬E |
Γ⊢ 𝜓 & Γ⊢ ¬ 𝜓 => Γ⊢ ⊥ |
pm2.21fal 1561 |
pm2.21dd 194 | |
¬E |
Γ, ¬ 𝜓⊢ ⊥ => Γ⊢ 𝜓 |
|
pm2.21dd 194 |
definition →E in [Indrzejczak] p. 33. |
¬E |
Γ⊢ 𝜓 & Γ⊢ ¬ 𝜓 => Γ⊢ 𝜃 |
pm2.21dd 194 | pm2.21dd 194, pm2.21d 121, pm2.21 123 |
For an alternative falsum-free natural deduction ruleset.
Definition ¬E in [Pfenning] p. 18. |
⊤I | Γ⊢ ⊤ |
trud 1549 | tru 1543, trud 1549, mptru 1546 |
Definition ⊤I in [Pfenning] p. 18. |
⊥E | Γ, ⊥⊢ 𝜃 |
falimd 1557 | falim 1556 |
Definition ⊥E in [Pfenning] p. 18. |
∀I |
Γ⊢ [𝑎 / 𝑥]𝜓 => Γ⊢ ∀𝑥𝜓 |
alrimiv 1930 | alrimiv 1930, ralrimiva 3103 |
Definition ∀Ia in [Pfenning] p. 18,
definition I∀n in [Clemente] p. 32. |
∀E |
Γ⊢ ∀𝑥𝜓 => Γ⊢ [𝑡 / 𝑥]𝜓 |
spsbcd 3730 | spcv 3544, rspcv 3557 |
Definition ∀E in [Pfenning] p. 18,
definition E∀n,t in [Clemente] p. 32. |
∃I |
Γ⊢ [𝑡 / 𝑥]𝜓 => Γ⊢ ∃𝑥𝜓 |
spesbcd 3816 | spcev 3545, rspcev 3561 |
Definition ∃I in [Pfenning] p. 18,
definition I∃n,t in [Clemente] p. 32. |
∃E |
Γ⊢ ∃𝑥𝜓 & Γ, [𝑎 / 𝑥]𝜓⊢ 𝜃 =>
Γ⊢ 𝜃 |
exlimddv 1938 | exlimddv 1938, exlimdd 2213,
exlimdv 1936, rexlimdva 3213 |
Definition ∃Ea,u in [Pfenning] p. 18,
definition E∃m,n,p,a in [Clemente] p. 32. |
⊥C |
Γ, ¬ 𝜓⊢ ⊥ => Γ⊢ 𝜓 |
efald 1560 | efald 1560 |
Proof by contradiction (classical logic),
definition ⊥C in [Pfenning] p. 17. |
⊥C |
Γ, ¬ 𝜓⊢ 𝜓 => Γ⊢ 𝜓 |
pm2.18da 797 | pm2.18da 797, pm2.18d 127, pm2.18 128 |
For an alternative falsum-free natural deduction ruleset |
¬ ¬C |
Γ⊢ ¬ ¬ 𝜓 => Γ⊢ 𝜓 |
notnotrd 133 | notnotrd 133, notnotr 130 |
Double negation rule (classical logic),
definition NNC in [Pfenning] p. 17,
definition E¬n in [Clemente] p. 14. |
EM | Γ⊢ 𝜓 ∨ ¬ 𝜓 |
exmidd 893 | exmid 892 |
Excluded middle (classical logic),
definition XM in [Pfenning] p. 17,
proof 5.11 in [Clemente] p. 14. |
=I | Γ⊢ 𝐴 = 𝐴 |
eqidd 2739 | eqid 2738, eqidd 2739 |
Introduce equality,
definition =I in [Pfenning] p. 127. |
=E | Γ⊢ 𝐴 = 𝐵 & Γ[𝐴 / 𝑥]𝜓 =>
Γ⊢ [𝐵 / 𝑥]𝜓 |
sbceq1dd 3722 | sbceq1d 3721, equality theorems |
Eliminate equality,
definition =E in [Pfenning] p. 127. (Both E1 and E2.) |
Note that MPE uses classical logic, not intuitionist logic. As is
conventional, the "I" rules are introduction rules, "E" rules are
elimination rules, the "C" rules are conversion rules, and Γ
represents the set of (current) hypotheses. We use wff variable names
beginning with 𝜓 to provide a closer representation
of the Metamath
equivalents (which typically use the antedent 𝜑 to represent the
context Γ).
Most of this information was developed by Mario Carneiro and posted on
3-Feb-2017. For more information, see the
page on Deduction Form and Natural Deduction
in Metamath Proof Explorer.
For annotated examples where some traditional ND rules
are directly applied in MPE, see ex-natded5.2 28768, ex-natded5.3 28771,
ex-natded5.5 28774, ex-natded5.7 28775, ex-natded5.8 28777, ex-natded5.13 28779,
ex-natded9.20 28781, and ex-natded9.26 28783.
(Contributed by DAW, 4-Feb-2017.) (New usage is
discouraged.) |