Description:
Here are typical natural deduction (ND) rules in the style of Gentzen
and Jaśkowski, along with MPE translations of them. This also
shows the recommended theorems when you find yourself needing these
rules (the recommendations encourage a slightly different proof style
that works more naturally with set.mm). A decent list of the standard
rules of natural deduction can be found beginning with definition /\I in
[Pfenning] p. 18. For information about ND and Metamath, see the
page on Deduction Form and Natural Deduction
in Metamath Proof Explorer. Many more citations could be added.
Name | Natural Deduction Rule | Translation |
Recommendation | Comments |
IT |
Γ⊢ 𝜓 => Γ⊢ 𝜓 |
idi 1 |
nothing | Reiteration is always redundant in Metamath.
Definition "new rule" in [Pfenning] p. 18,
definition IT in [Clemente] p. 10. |
∧I |
Γ⊢ 𝜓 & Γ⊢ 𝜒 => Γ⊢ 𝜓 ∧ 𝜒 |
jca 511 |
jca 511, pm3.2i 470 |
Definition ∧I in [Pfenning] p. 18,
definition I∧m,n in [Clemente] p. 10, and
definition ∧I in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
∧EL |
Γ⊢ 𝜓 ∧ 𝜒 => Γ⊢ 𝜓 |
simpld 494 |
simpld 494, adantr 480 |
Definition ∧EL in [Pfenning] p. 18,
definition E∧(1) in [Clemente] p. 11, and
definition ∧E in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
∧ER |
Γ⊢ 𝜓 ∧ 𝜒 => Γ⊢ 𝜒 |
simprd 495 |
simpr 484, adantl 481 |
Definition ∧ER in [Pfenning] p. 18,
definition E∧(2) in [Clemente] p. 11, and
definition ∧E in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
→I |
Γ, 𝜓⊢ 𝜒 => Γ⊢ 𝜓 → 𝜒 |
ex 412 | ex 412 |
Definition →I in [Pfenning] p. 18,
definition I=>m,n in [Clemente] p. 11, and
definition →I in [Indrzejczak] p. 33. |
→E |
Γ⊢ 𝜓 → 𝜒 & Γ⊢ 𝜓 => Γ⊢ 𝜒 |
mpd 15 | ax-mp 5, mpd 15, mpdan 686, imp 406 |
Definition →E in [Pfenning] p. 18,
definition E=>m,n in [Clemente] p. 11, and
definition →E in [Indrzejczak] p. 33. |
∨IL | Γ⊢ 𝜓 =>
Γ⊢ 𝜓 ∨ 𝜒 |
olcd 873 |
olc 867, olci 865, olcd 873 |
Definition ∨I in [Pfenning] p. 18,
definition I∨n(1) in [Clemente] p. 12 |
∨IR | Γ⊢ 𝜒 =>
Γ⊢ 𝜓 ∨ 𝜒 |
orcd 872 |
orc 866, orci 864, orcd 872 |
Definition ∨IR in [Pfenning] p. 18,
definition I∨n(2) in [Clemente] p. 12. |
∨E | Γ⊢ 𝜓 ∨ 𝜒 & Γ, 𝜓⊢ 𝜃 &
Γ, 𝜒⊢ 𝜃 => Γ⊢ 𝜃 |
mpjaodan 959 |
mpjaodan 959, jaodan 958, jaod 858 |
Definition ∨E in [Pfenning] p. 18,
definition E∨m,n,p in [Clemente] p. 12. |
¬I | Γ, 𝜓⊢ ⊥ => Γ⊢ ¬ 𝜓 |
inegd 1557 | pm2.01d 190 |
|
¬I | Γ, 𝜓⊢ 𝜃 & Γ⊢ ¬ 𝜃 =>
Γ⊢ ¬ 𝜓 |
mtand 815 | mtand 815 |
definition I¬m,n,p in [Clemente] p. 13. |
¬I | Γ, 𝜓⊢ 𝜒 & Γ, 𝜓⊢ ¬ 𝜒 =>
Γ⊢ ¬ 𝜓 |
pm2.65da 816 | pm2.65da 816 |
Contradiction. |
¬I |
Γ, 𝜓⊢ ¬ 𝜓 => Γ⊢ ¬ 𝜓 |
pm2.01da 798 | pm2.01d 190, pm2.65da 816, pm2.65d 196 |
For an alternative falsum-free natural deduction ruleset |
¬E |
Γ⊢ 𝜓 & Γ⊢ ¬ 𝜓 => Γ⊢ ⊥ |
pm2.21fal 1559 |
pm2.21dd 195 | |
¬E |
Γ, ¬ 𝜓⊢ ⊥ => Γ⊢ 𝜓 |
|
pm2.21dd 195 |
definition →E in [Indrzejczak] p. 33. |
¬E |
Γ⊢ 𝜓 & Γ⊢ ¬ 𝜓 => Γ⊢ 𝜃 |
pm2.21dd 195 | pm2.21dd 195, pm2.21d 121, pm2.21 123 |
For an alternative falsum-free natural deduction ruleset.
Definition ¬E in [Pfenning] p. 18. |
⊤I | Γ⊢ ⊤ |
trud 1547 | tru 1541, trud 1547, mptru 1544 |
Definition ⊤I in [Pfenning] p. 18. |
⊥E | Γ, ⊥⊢ 𝜃 |
falimd 1555 | falim 1554 |
Definition ⊥E in [Pfenning] p. 18. |
∀I |
Γ⊢ [𝑎 / 𝑥]𝜓 => Γ⊢ ∀𝑥𝜓 |
alrimiv 1926 | alrimiv 1926, ralrimiva 3152 |
Definition ∀Ia in [Pfenning] p. 18,
definition I∀n in [Clemente] p. 32. |
∀E |
Γ⊢ ∀𝑥𝜓 => Γ⊢ [𝑡 / 𝑥]𝜓 |
spsbcd 3818 | spcv 3618, rspcv 3631 |
Definition ∀E in [Pfenning] p. 18,
definition E∀n,t in [Clemente] p. 32. |
∃I |
Γ⊢ [𝑡 / 𝑥]𝜓 => Γ⊢ ∃𝑥𝜓 |
spesbcd 3905 | spcev 3619, rspcev 3635 |
Definition ∃I in [Pfenning] p. 18,
definition I∃n,t in [Clemente] p. 32. |
∃E |
Γ⊢ ∃𝑥𝜓 & Γ, [𝑎 / 𝑥]𝜓⊢ 𝜃 =>
Γ⊢ 𝜃 |
exlimddv 1934 | exlimddv 1934, exlimdd 2221,
exlimdv 1932, rexlimdva 3161 |
Definition ∃Ea,u in [Pfenning] p. 18,
definition E∃m,n,p,a in [Clemente] p. 32. |
⊥C |
Γ, ¬ 𝜓⊢ ⊥ => Γ⊢ 𝜓 |
efald 1558 | efald 1558 |
Proof by contradiction (classical logic),
definition ⊥C in [Pfenning] p. 17. |
⊥C |
Γ, ¬ 𝜓⊢ 𝜓 => Γ⊢ 𝜓 |
pm2.18da 799 | pm2.18da 799, pm2.18d 127, pm2.18 128 |
For an alternative falsum-free natural deduction ruleset |
¬ ¬C |
Γ⊢ ¬ ¬ 𝜓 => Γ⊢ 𝜓 |
notnotrd 133 | notnotrd 133, notnotr 130 |
Double negation rule (classical logic),
definition NNC in [Pfenning] p. 17,
definition E¬n in [Clemente] p. 14. |
EM | Γ⊢ 𝜓 ∨ ¬ 𝜓 |
exmidd 894 | exmid 893 |
Excluded middle (classical logic),
definition XM in [Pfenning] p. 17,
proof 5.11 in [Clemente] p. 14. |
=I | Γ⊢ 𝐴 = 𝐴 |
eqidd 2741 | eqid 2740, eqidd 2741 |
Introduce equality,
definition =I in [Pfenning] p. 127. |
=E | Γ⊢ 𝐴 = 𝐵 & Γ[𝐴 / 𝑥]𝜓 =>
Γ⊢ [𝐵 / 𝑥]𝜓 |
sbceq1dd 3810 | sbceq1d 3809, equality theorems |
Eliminate equality,
definition =E in [Pfenning] p. 127. (Both E1 and E2.) |
Note that MPE uses classical logic, not intuitionist logic. As is
conventional, the "I" rules are introduction rules, "E" rules are
elimination rules, the "C" rules are conversion rules, and Γ
represents the set of (current) hypotheses. We use wff variable names
beginning with 𝜓 to provide a closer representation
of the Metamath
equivalents (which typically use the antecedent 𝜑 to represent the
context Γ).
Most of this information was developed by Mario Carneiro and posted on
3-Feb-2017. For more information, see the
page on Deduction Form and Natural Deduction
in Metamath Proof Explorer.
For annotated examples where some traditional ND rules
are directly applied in MPE, see ex-natded5.2 30428, ex-natded5.3 30431,
ex-natded5.5 30434, ex-natded5.7 30435, ex-natded5.8 30437, ex-natded5.13 30439,
ex-natded9.20 30441, and ex-natded9.26 30443.
(Contributed by DAW, 4-Feb-2017.) (New usage is
discouraged.) |