MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natded Structured version   Visualization version   GIF version

Theorem natded 28167
Description: Here are typical natural deduction (ND) rules in the style of Gentzen and Jaśkowski, along with MPE translations of them. This also shows the recommended theorems when you find yourself needing these rules (the recommendations encourage a slightly different proof style that works more naturally with set.mm). A decent list of the standard rules of natural deduction can be found beginning with definition /\I in [Pfenning] p. 18. For information about ND and Metamath, see the page on Deduction Form and Natural Deduction in Metamath Proof Explorer. Many more citations could be added.

NameNatural Deduction RuleTranslation RecommendationComments
IT Γ𝜓 => Γ𝜓 idi 1 nothing Reiteration is always redundant in Metamath. Definition "new rule" in [Pfenning] p. 18, definition IT in [Clemente] p. 10.
I Γ𝜓 & Γ𝜒 => Γ𝜓𝜒 jca 515 jca 515, pm3.2i 474 Definition I in [Pfenning] p. 18, definition Im,n in [Clemente] p. 10, and definition I in [Indrzejczak] p. 34 (representing both Gentzen's system NK and Jaśkowski)
EL Γ𝜓𝜒 => Γ𝜓 simpld 498 simpld 498, adantr 484 Definition EL in [Pfenning] p. 18, definition E(1) in [Clemente] p. 11, and definition E in [Indrzejczak] p. 34 (representing both Gentzen's system NK and Jaśkowski)
ER Γ𝜓𝜒 => Γ𝜒 simprd 499 simpr 488, adantl 485 Definition ER in [Pfenning] p. 18, definition E(2) in [Clemente] p. 11, and definition E in [Indrzejczak] p. 34 (representing both Gentzen's system NK and Jaśkowski)
I Γ, 𝜓𝜒 => Γ𝜓𝜒 ex 416 ex 416 Definition I in [Pfenning] p. 18, definition I=>m,n in [Clemente] p. 11, and definition I in [Indrzejczak] p. 33.
E Γ𝜓𝜒 & Γ𝜓 => Γ𝜒 mpd 15 ax-mp 5, mpd 15, mpdan 686, imp 410 Definition E in [Pfenning] p. 18, definition E=>m,n in [Clemente] p. 11, and definition E in [Indrzejczak] p. 33.
IL Γ𝜓 => Γ𝜓𝜒 olcd 871 olc 865, olci 863, olcd 871 Definition I in [Pfenning] p. 18, definition In(1) in [Clemente] p. 12
IR Γ𝜒 => Γ𝜓𝜒 orcd 870 orc 864, orci 862, orcd 870 Definition IR in [Pfenning] p. 18, definition In(2) in [Clemente] p. 12.
E Γ𝜓𝜒 & Γ, 𝜓𝜃 & Γ, 𝜒𝜃 => Γ𝜃 mpjaodan 956 mpjaodan 956, jaodan 955, jaod 856 Definition E in [Pfenning] p. 18, definition Em,n,p in [Clemente] p. 12.
¬I Γ, 𝜓 => Γ¬ 𝜓 inegd 1558 pm2.01d 193
¬I Γ, 𝜓𝜃 & Γ¬ 𝜃 => Γ¬ 𝜓 mtand 815 mtand 815 definition I¬m,n,p in [Clemente] p. 13.
¬I Γ, 𝜓𝜒 & Γ, 𝜓¬ 𝜒 => Γ¬ 𝜓 pm2.65da 816 pm2.65da 816 Contradiction.
¬I Γ, 𝜓¬ 𝜓 => Γ¬ 𝜓 pm2.01da 798 pm2.01d 193, pm2.65da 816, pm2.65d 199 For an alternative falsum-free natural deduction ruleset
¬E Γ𝜓 & Γ¬ 𝜓 => Γ pm2.21fal 1560 pm2.21dd 198
¬E Γ, ¬ 𝜓 => Γ𝜓 pm2.21dd 198 definition E in [Indrzejczak] p. 33.
¬E Γ𝜓 & Γ¬ 𝜓 => Γ𝜃 pm2.21dd 198 pm2.21dd 198, pm2.21d 121, pm2.21 123 For an alternative falsum-free natural deduction ruleset. Definition ¬E in [Pfenning] p. 18.
I Γ trud 1548 tru 1542, trud 1548, mptru 1545 Definition I in [Pfenning] p. 18.
E Γ, ⊥𝜃 falimd 1556 falim 1555 Definition E in [Pfenning] p. 18.
I Γ[𝑎 / 𝑥]𝜓 => Γ𝑥𝜓 alrimiv 1929 alrimiv 1929, ralrimiva 3170 Definition Ia in [Pfenning] p. 18, definition In in [Clemente] p. 32.
E Γ𝑥𝜓 => Γ[𝑡 / 𝑥]𝜓 spsbcd 3763 spcv 3583, rspcv 3595 Definition E in [Pfenning] p. 18, definition En,t in [Clemente] p. 32.
I Γ[𝑡 / 𝑥]𝜓 => Γ𝑥𝜓 spesbcd 3841 spcev 3584, rspcev 3600 Definition I in [Pfenning] p. 18, definition In,t in [Clemente] p. 32.
E Γ𝑥𝜓 & Γ, [𝑎 / 𝑥]𝜓𝜃 => Γ𝜃 exlimddv 1937 exlimddv 1937, exlimdd 2221, exlimdv 1935, rexlimdva 3270 Definition Ea,u in [Pfenning] p. 18, definition Em,n,p,a in [Clemente] p. 32.
C Γ, ¬ 𝜓 => Γ𝜓 efald 1559 efald 1559 Proof by contradiction (classical logic), definition C in [Pfenning] p. 17.
C Γ, ¬ 𝜓𝜓 => Γ𝜓 pm2.18da 799 pm2.18da 799, pm2.18d 127, pm2.18 128 For an alternative falsum-free natural deduction ruleset
¬ ¬C Γ¬ ¬ 𝜓 => Γ𝜓 notnotrd 135 notnotrd 135, notnotr 132 Double negation rule (classical logic), definition NNC in [Pfenning] p. 17, definition E¬n in [Clemente] p. 14.
EM Γ𝜓 ∨ ¬ 𝜓 exmidd 893 exmid 892 Excluded middle (classical logic), definition XM in [Pfenning] p. 17, proof 5.11 in [Clemente] p. 14.
=I Γ𝐴 = 𝐴 eqidd 2822 eqid 2821, eqidd 2822 Introduce equality, definition =I in [Pfenning] p. 127.
=E Γ𝐴 = 𝐵 & Γ[𝐴 / 𝑥]𝜓 => Γ[𝐵 / 𝑥]𝜓 sbceq1dd 3755 sbceq1d 3754, equality theorems Eliminate equality, definition =E in [Pfenning] p. 127. (Both E1 and E2.)

Note that MPE uses classical logic, not intuitionist logic. As is conventional, the "I" rules are introduction rules, "E" rules are elimination rules, the "C" rules are conversion rules, and Γ represents the set of (current) hypotheses. We use wff variable names beginning with 𝜓 to provide a closer representation of the Metamath equivalents (which typically use the antedent 𝜑 to represent the context Γ).

Most of this information was developed by Mario Carneiro and posted on 3-Feb-2017. For more information, see the page on Deduction Form and Natural Deduction in Metamath Proof Explorer.

For annotated examples where some traditional ND rules are directly applied in MPE, see ex-natded5.2 28168, ex-natded5.3 28171, ex-natded5.5 28174, ex-natded5.7 28175, ex-natded5.8 28177, ex-natded5.13 28179, ex-natded9.20 28181, and ex-natded9.26 28183.

(Contributed by DAW, 4-Feb-2017.) (New usage is discouraged.)

Hypothesis
Ref Expression
natded.1 𝜑
Assertion
Ref Expression
natded 𝜑

Proof of Theorem natded
StepHypRef Expression
1 natded.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator