Description:
Here are typical natural deduction (ND) rules in the style of Gentzen
and Jaśkowski, along with MPE translations of them. This also
shows the recommended theorems when you find yourself needing these
rules (the recommendations encourage a slightly different proof style
that works more naturally with set.mm). A decent list of the standard
rules of natural deduction can be found beginning with definition /\I in
[Pfenning] p. 18. For information about ND and Metamath, see the
page on Deduction Form and Natural Deduction
in Metamath Proof Explorer. Many more citations could be added.
Name | Natural Deduction Rule | Translation |
Recommendation | Comments |
IT |
Γ⊢ 𝜓 => Γ⊢ 𝜓 |
idi 2 |
nothing | Reiteration is always redundant in Metamath.
Definition "new rule" in [Pfenning] p. 18,
definition IT in [Clemente] p. 10. |
∧I |
Γ⊢ 𝜓 & Γ⊢ 𝜒 => Γ⊢ 𝜓 ∧ 𝜒 |
jca 507 |
jca 507, pm3.2i 464 |
Definition ∧I in [Pfenning] p. 18,
definition I∧m,n in [Clemente] p. 10, and
definition ∧I in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
∧EL |
Γ⊢ 𝜓 ∧ 𝜒 => Γ⊢ 𝜓 |
simpld 490 |
simpld 490, adantr 474 |
Definition ∧EL in [Pfenning] p. 18,
definition E∧(1) in [Clemente] p. 11, and
definition ∧E in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
∧ER |
Γ⊢ 𝜓 ∧ 𝜒 => Γ⊢ 𝜒 |
simprd 491 |
simpr 479, adantl 475 |
Definition ∧ER in [Pfenning] p. 18,
definition E∧(2) in [Clemente] p. 11, and
definition ∧E in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
→I |
Γ, 𝜓⊢ 𝜒 => Γ⊢ 𝜓 → 𝜒 |
ex 403 | ex 403 |
Definition →I in [Pfenning] p. 18,
definition I=>m,n in [Clemente] p. 11, and
definition →I in [Indrzejczak] p. 33. |
→E |
Γ⊢ 𝜓 → 𝜒 & Γ⊢ 𝜓 => Γ⊢ 𝜒 |
mpd 15 | ax-mp 5, mpd 15, mpdan 677, imp 397 |
Definition →E in [Pfenning] p. 18,
definition E=>m,n in [Clemente] p. 11, and
definition →E in [Indrzejczak] p. 33. |
∨IL | Γ⊢ 𝜓 =>
Γ⊢ 𝜓 ∨ 𝜒 |
olcd 863 |
olc 857, olci 855, olcd 863 |
Definition ∨I in [Pfenning] p. 18,
definition I∨n(1) in [Clemente] p. 12 |
∨IR | Γ⊢ 𝜒 =>
Γ⊢ 𝜓 ∨ 𝜒 |
orcd 862 |
orc 856, orci 854, orcd 862 |
Definition ∨IR in [Pfenning] p. 18,
definition I∨n(2) in [Clemente] p. 12. |
∨E | Γ⊢ 𝜓 ∨ 𝜒 & Γ, 𝜓⊢ 𝜃 &
Γ, 𝜒⊢ 𝜃 => Γ⊢ 𝜃 |
mpjaodan 944 |
mpjaodan 944, jaodan 943, jaod 848 |
Definition ∨E in [Pfenning] p. 18,
definition E∨m,n,p in [Clemente] p. 12. |
¬I | Γ, 𝜓⊢ ⊥ => Γ⊢ ¬ 𝜓 |
inegd 1622 | pm2.01d 182 |
|
¬I | Γ, 𝜓⊢ 𝜃 & Γ⊢ ¬ 𝜃 =>
Γ⊢ ¬ 𝜓 |
mtand 806 | mtand 806 |
definition I¬m,n,p in [Clemente] p. 13. |
¬I | Γ, 𝜓⊢ 𝜒 & Γ, 𝜓⊢ ¬ 𝜒 =>
Γ⊢ ¬ 𝜓 |
pm2.65da 807 | pm2.65da 807 |
Contradiction. |
¬I |
Γ, 𝜓⊢ ¬ 𝜓 => Γ⊢ ¬ 𝜓 |
pm2.01da 789 | pm2.01d 182, pm2.65da 807, pm2.65d 188 |
For an alternative falsum-free natural deduction ruleset |
¬E |
Γ⊢ 𝜓 & Γ⊢ ¬ 𝜓 => Γ⊢ ⊥ |
pm2.21fal 1624 |
pm2.21dd 187 | |
¬E |
Γ, ¬ 𝜓⊢ ⊥ => Γ⊢ 𝜓 |
|
pm2.21dd 187 |
definition →E in [Indrzejczak] p. 33. |
¬E |
Γ⊢ 𝜓 & Γ⊢ ¬ 𝜓 => Γ⊢ 𝜃 |
pm2.21dd 187 | pm2.21dd 187, pm2.21d 119, pm2.21 121 |
For an alternative falsum-free natural deduction ruleset.
Definition ¬E in [Pfenning] p. 18. |
⊤I | Γ⊢ ⊤ |
trud 1612 | tru 1606, trud 1612, mptru 1609 |
Definition ⊤I in [Pfenning] p. 18. |
⊥E | Γ, ⊥⊢ 𝜃 |
falimd 1620 | falim 1619 |
Definition ⊥E in [Pfenning] p. 18. |
∀I |
Γ⊢ [𝑎 / 𝑥]𝜓 => Γ⊢ ∀𝑥𝜓 |
alrimiv 1970 | alrimiv 1970, ralrimiva 3148 |
Definition ∀Ia in [Pfenning] p. 18,
definition I∀n in [Clemente] p. 32. |
∀E |
Γ⊢ ∀𝑥𝜓 => Γ⊢ [𝑡 / 𝑥]𝜓 |
spsbcd 3666 | spcv 3501, rspcv 3507 |
Definition ∀E in [Pfenning] p. 18,
definition E∀n,t in [Clemente] p. 32. |
∃I |
Γ⊢ [𝑡 / 𝑥]𝜓 => Γ⊢ ∃𝑥𝜓 |
spesbcd 3739 | spcev 3502, rspcev 3511 |
Definition ∃I in [Pfenning] p. 18,
definition I∃n,t in [Clemente] p. 32. |
∃E |
Γ⊢ ∃𝑥𝜓 & Γ, [𝑎 / 𝑥]𝜓⊢ 𝜃 =>
Γ⊢ 𝜃 |
exlimddv 1978 | exlimddv 1978, exlimdd 2205,
exlimdv 1976, rexlimdva 3213 |
Definition ∃Ea,u in [Pfenning] p. 18,
definition E∃m,n,p,a in [Clemente] p. 32. |
⊥C |
Γ, ¬ 𝜓⊢ ⊥ => Γ⊢ 𝜓 |
efald 1623 | efald 1623 |
Proof by contradiction (classical logic),
definition ⊥C in [Pfenning] p. 17. |
⊥C |
Γ, ¬ 𝜓⊢ 𝜓 => Γ⊢ 𝜓 |
pm2.18da 790 | pm2.18da 790, pm2.18d 127, pm2.18 125 |
For an alternative falsum-free natural deduction ruleset |
¬ ¬C |
Γ⊢ ¬ ¬ 𝜓 => Γ⊢ 𝜓 |
notnotrd 131 | notnotrd 131, notnotr 128 |
Double negation rule (classical logic),
definition NNC in [Pfenning] p. 17,
definition E¬n in [Clemente] p. 14. |
EM | Γ⊢ 𝜓 ∨ ¬ 𝜓 |
exmidd 882 | exmid 881 |
Excluded middle (classical logic),
definition XM in [Pfenning] p. 17,
proof 5.11 in [Clemente] p. 14. |
=I | Γ⊢ 𝐴 = 𝐴 |
eqidd 2779 | eqid 2778, eqidd 2779 |
Introduce equality,
definition =I in [Pfenning] p. 127. |
=E | Γ⊢ 𝐴 = 𝐵 & Γ[𝐴 / 𝑥]𝜓 =>
Γ⊢ [𝐵 / 𝑥]𝜓 |
sbceq1dd 3658 | sbceq1d 3657, equality theorems |
Eliminate equality,
definition =E in [Pfenning] p. 127. (Both E1 and E2.) |
Note that MPE uses classical logic, not intuitionist logic. As is
conventional, the "I" rules are introduction rules, "E" rules are
elimination rules, the "C" rules are conversion rules, and Γ
represents the set of (current) hypotheses. We use wff variable names
beginning with 𝜓 to provide a closer representation
of the Metamath
equivalents (which typically use the antedent 𝜑 to represent the
context Γ).
Most of this information was developed by Mario Carneiro and posted on
3-Feb-2017. For more information, see the
page on Deduction Form and Natural Deduction
in Metamath Proof Explorer.
For annotated examples where some traditional ND rules
are directly applied in MPE, see ex-natded5.2 27836, ex-natded5.3 27839,
ex-natded5.5 27842, ex-natded5.7 27843, ex-natded5.8 27845, ex-natded5.13 27847,
ex-natded9.20 27849, and ex-natded9.26 27851.
(Contributed by DAW, 4-Feb-2017.) (New usage is
discouraged.) |