Description:
Here are typical natural deduction (ND) rules in the style of Gentzen
and Jaśkowski, along with MPE translations of them. This also
shows the recommended theorems when you find yourself needing these
rules (the recommendations encourage a slightly different proof style
that works more naturally with set.mm). A decent list of the standard
rules of natural deduction can be found beginning with definition /\I in
[Pfenning] p. 18. For information about ND and Metamath, see the
page on Deduction Form and Natural Deduction
in Metamath Proof Explorer. Many more citations could be added.
Name | Natural Deduction Rule | Translation |
Recommendation | Comments |
IT |
Γ⊢ 𝜓 => Γ⊢ 𝜓 |
idi 1 |
nothing | Reiteration is always redundant in Metamath.
Definition "new rule" in [Pfenning] p. 18,
definition IT in [Clemente] p. 10. |
∧I |
Γ⊢ 𝜓 & Γ⊢ 𝜒 => Γ⊢ 𝜓 ∧ 𝜒 |
jca 512 |
jca 512, pm3.2i 471 |
Definition ∧I in [Pfenning] p. 18,
definition I∧m,n in [Clemente] p. 10, and
definition ∧I in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
∧EL |
Γ⊢ 𝜓 ∧ 𝜒 => Γ⊢ 𝜓 |
simpld 495 |
simpld 495, adantr 481 |
Definition ∧EL in [Pfenning] p. 18,
definition E∧(1) in [Clemente] p. 11, and
definition ∧E in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
∧ER |
Γ⊢ 𝜓 ∧ 𝜒 => Γ⊢ 𝜒 |
simprd 496 |
simpr 485, adantl 482 |
Definition ∧ER in [Pfenning] p. 18,
definition E∧(2) in [Clemente] p. 11, and
definition ∧E in [Indrzejczak] p. 34
(representing both Gentzen's system NK and Jaśkowski) |
→I |
Γ, 𝜓⊢ 𝜒 => Γ⊢ 𝜓 → 𝜒 |
ex 413 | ex 413 |
Definition →I in [Pfenning] p. 18,
definition I=>m,n in [Clemente] p. 11, and
definition →I in [Indrzejczak] p. 33. |
→E |
Γ⊢ 𝜓 → 𝜒 & Γ⊢ 𝜓 => Γ⊢ 𝜒 |
mpd 15 | ax-mp 5, mpd 15, mpdan 685, imp 407 |
Definition →E in [Pfenning] p. 18,
definition E=>m,n in [Clemente] p. 11, and
definition →E in [Indrzejczak] p. 33. |
∨IL | Γ⊢ 𝜓 =>
Γ⊢ 𝜓 ∨ 𝜒 |
olcd 872 |
olc 866, olci 864, olcd 872 |
Definition ∨I in [Pfenning] p. 18,
definition I∨n(1) in [Clemente] p. 12 |
∨IR | Γ⊢ 𝜒 =>
Γ⊢ 𝜓 ∨ 𝜒 |
orcd 871 |
orc 865, orci 863, orcd 871 |
Definition ∨IR in [Pfenning] p. 18,
definition I∨n(2) in [Clemente] p. 12. |
∨E | Γ⊢ 𝜓 ∨ 𝜒 & Γ, 𝜓⊢ 𝜃 &
Γ, 𝜒⊢ 𝜃 => Γ⊢ 𝜃 |
mpjaodan 957 |
mpjaodan 957, jaodan 956, jaod 857 |
Definition ∨E in [Pfenning] p. 18,
definition E∨m,n,p in [Clemente] p. 12. |
¬I | Γ, 𝜓⊢ ⊥ => Γ⊢ ¬ 𝜓 |
inegd 1561 | pm2.01d 189 |
|
¬I | Γ, 𝜓⊢ 𝜃 & Γ⊢ ¬ 𝜃 =>
Γ⊢ ¬ 𝜓 |
mtand 814 | mtand 814 |
definition I¬m,n,p in [Clemente] p. 13. |
¬I | Γ, 𝜓⊢ 𝜒 & Γ, 𝜓⊢ ¬ 𝜒 =>
Γ⊢ ¬ 𝜓 |
pm2.65da 815 | pm2.65da 815 |
Contradiction. |
¬I |
Γ, 𝜓⊢ ¬ 𝜓 => Γ⊢ ¬ 𝜓 |
pm2.01da 797 | pm2.01d 189, pm2.65da 815, pm2.65d 195 |
For an alternative falsum-free natural deduction ruleset |
¬E |
Γ⊢ 𝜓 & Γ⊢ ¬ 𝜓 => Γ⊢ ⊥ |
pm2.21fal 1563 |
pm2.21dd 194 | |
¬E |
Γ, ¬ 𝜓⊢ ⊥ => Γ⊢ 𝜓 |
|
pm2.21dd 194 |
definition →E in [Indrzejczak] p. 33. |
¬E |
Γ⊢ 𝜓 & Γ⊢ ¬ 𝜓 => Γ⊢ 𝜃 |
pm2.21dd 194 | pm2.21dd 194, pm2.21d 121, pm2.21 123 |
For an alternative falsum-free natural deduction ruleset.
Definition ¬E in [Pfenning] p. 18. |
⊤I | Γ⊢ ⊤ |
trud 1551 | tru 1545, trud 1551, mptru 1548 |
Definition ⊤I in [Pfenning] p. 18. |
⊥E | Γ, ⊥⊢ 𝜃 |
falimd 1559 | falim 1558 |
Definition ⊥E in [Pfenning] p. 18. |
∀I |
Γ⊢ [𝑎 / 𝑥]𝜓 => Γ⊢ ∀𝑥𝜓 |
alrimiv 1930 | alrimiv 1930, ralrimiva 3146 |
Definition ∀Ia in [Pfenning] p. 18,
definition I∀n in [Clemente] p. 32. |
∀E |
Γ⊢ ∀𝑥𝜓 => Γ⊢ [𝑡 / 𝑥]𝜓 |
spsbcd 3790 | spcv 3595, rspcv 3608 |
Definition ∀E in [Pfenning] p. 18,
definition E∀n,t in [Clemente] p. 32. |
∃I |
Γ⊢ [𝑡 / 𝑥]𝜓 => Γ⊢ ∃𝑥𝜓 |
spesbcd 3876 | spcev 3596, rspcev 3612 |
Definition ∃I in [Pfenning] p. 18,
definition I∃n,t in [Clemente] p. 32. |
∃E |
Γ⊢ ∃𝑥𝜓 & Γ, [𝑎 / 𝑥]𝜓⊢ 𝜃 =>
Γ⊢ 𝜃 |
exlimddv 1938 | exlimddv 1938, exlimdd 2213,
exlimdv 1936, rexlimdva 3155 |
Definition ∃Ea,u in [Pfenning] p. 18,
definition E∃m,n,p,a in [Clemente] p. 32. |
⊥C |
Γ, ¬ 𝜓⊢ ⊥ => Γ⊢ 𝜓 |
efald 1562 | efald 1562 |
Proof by contradiction (classical logic),
definition ⊥C in [Pfenning] p. 17. |
⊥C |
Γ, ¬ 𝜓⊢ 𝜓 => Γ⊢ 𝜓 |
pm2.18da 798 | pm2.18da 798, pm2.18d 127, pm2.18 128 |
For an alternative falsum-free natural deduction ruleset |
¬ ¬C |
Γ⊢ ¬ ¬ 𝜓 => Γ⊢ 𝜓 |
notnotrd 133 | notnotrd 133, notnotr 130 |
Double negation rule (classical logic),
definition NNC in [Pfenning] p. 17,
definition E¬n in [Clemente] p. 14. |
EM | Γ⊢ 𝜓 ∨ ¬ 𝜓 |
exmidd 894 | exmid 893 |
Excluded middle (classical logic),
definition XM in [Pfenning] p. 17,
proof 5.11 in [Clemente] p. 14. |
=I | Γ⊢ 𝐴 = 𝐴 |
eqidd 2733 | eqid 2732, eqidd 2733 |
Introduce equality,
definition =I in [Pfenning] p. 127. |
=E | Γ⊢ 𝐴 = 𝐵 & Γ[𝐴 / 𝑥]𝜓 =>
Γ⊢ [𝐵 / 𝑥]𝜓 |
sbceq1dd 3782 | sbceq1d 3781, equality theorems |
Eliminate equality,
definition =E in [Pfenning] p. 127. (Both E1 and E2.) |
Note that MPE uses classical logic, not intuitionist logic. As is
conventional, the "I" rules are introduction rules, "E" rules are
elimination rules, the "C" rules are conversion rules, and Γ
represents the set of (current) hypotheses. We use wff variable names
beginning with 𝜓 to provide a closer representation
of the Metamath
equivalents (which typically use the antedent 𝜑 to represent the
context Γ).
Most of this information was developed by Mario Carneiro and posted on
3-Feb-2017. For more information, see the
page on Deduction Form and Natural Deduction
in Metamath Proof Explorer.
For annotated examples where some traditional ND rules
are directly applied in MPE, see ex-natded5.2 29646, ex-natded5.3 29649,
ex-natded5.5 29652, ex-natded5.7 29653, ex-natded5.8 29655, ex-natded5.13 29657,
ex-natded9.20 29659, and ex-natded9.26 29661.
(Contributed by DAW, 4-Feb-2017.) (New usage is
discouraged.) |