Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrgere Structured version   Visualization version   GIF version

Theorem supxrgere 45313
Description: If a real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrgere.xph 𝑥𝜑
supxrgere.a (𝜑𝐴 ⊆ ℝ*)
supxrgere.b (𝜑𝐵 ∈ ℝ)
supxrgere.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦)
Assertion
Ref Expression
supxrgere (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrgere
StepHypRef Expression
1 supxrgere.b . . . . 5 (𝜑𝐵 ∈ ℝ)
2 rexr 11161 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 pnfxr 11169 . . . . . . 7 +∞ ∈ ℝ*
43a1i 11 . . . . . 6 (𝐵 ∈ ℝ → +∞ ∈ ℝ*)
5 ltpnf 13022 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 < +∞)
62, 4, 5xrltled 13052 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ≤ +∞)
71, 6syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
87adantr 480 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ +∞)
9 id 22 . . . . 5 (sup(𝐴, ℝ*, < ) = +∞ → sup(𝐴, ℝ*, < ) = +∞)
109eqcomd 2735 . . . 4 (sup(𝐴, ℝ*, < ) = +∞ → +∞ = sup(𝐴, ℝ*, < ))
1110adantl 481 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = sup(𝐴, ℝ*, < ))
128, 11breqtrd 5118 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13 simpl 482 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
14 1rp 12897 . . . . . . . 8 1 ∈ ℝ+
15 nfcv 2891 . . . . . . . . . 10 𝑥1
16 supxrgere.xph . . . . . . . . . . . 12 𝑥𝜑
17 nfv 1914 . . . . . . . . . . . 12 𝑥1 ∈ ℝ+
1816, 17nfan 1899 . . . . . . . . . . 11 𝑥(𝜑 ∧ 1 ∈ ℝ+)
19 nfv 1914 . . . . . . . . . . 11 𝑥𝑦𝐴 (𝐵 − 1) < 𝑦
2018, 19nfim 1896 . . . . . . . . . 10 𝑥((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
21 eleq1 2816 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
2221anbi2d 630 . . . . . . . . . . 11 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
23 oveq2 7357 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝐵𝑥) = (𝐵 − 1))
2423breq1d 5102 . . . . . . . . . . . 12 (𝑥 = 1 → ((𝐵𝑥) < 𝑦 ↔ (𝐵 − 1) < 𝑦))
2524rexbidv 3153 . . . . . . . . . . 11 (𝑥 = 1 → (∃𝑦𝐴 (𝐵𝑥) < 𝑦 ↔ ∃𝑦𝐴 (𝐵 − 1) < 𝑦))
2622, 25imbi12d 344 . . . . . . . . . 10 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)))
27 supxrgere.y . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦)
2815, 20, 26, 27vtoclgf 3524 . . . . . . . . 9 (1 ∈ ℝ+ → ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦))
2914, 28ax-mp 5 . . . . . . . 8 ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
3014, 29mpan2 691 . . . . . . 7 (𝜑 → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
3130adantr 480 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
32 mnfxr 11172 . . . . . . . . . . 11 -∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ ∈ ℝ*)
34 supxrgere.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
3534sselda 3935 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
36353adant3 1132 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → 𝑦 ∈ ℝ*)
37 supxrcl 13217 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
3834, 37syl 17 . . . . . . . . . . 11 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
39383ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
40 peano2rem 11431 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
411, 40syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 − 1) ∈ ℝ)
4241rexrd 11165 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 − 1) ∈ ℝ*)
4342adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) ∈ ℝ*)
44433ad2antl1 1186 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) ∈ ℝ*)
4536adantr 480 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
4632a1i 11 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
47 simpl3 1194 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) < 𝑦)
48 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
4935adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
5032a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
51 xrlenlt 11180 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦))
5249, 50, 51syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦))
5348, 52mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ≤ -∞)
54533adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → 𝑦 ≤ -∞)
5544, 45, 46, 47, 54xrltletrd 13063 . . . . . . . . . . 11 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) < -∞)
56 nltmnf 13031 . . . . . . . . . . . . . 14 ((𝐵 − 1) ∈ ℝ* → ¬ (𝐵 − 1) < -∞)
5742, 56syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ (𝐵 − 1) < -∞)
5857adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ -∞ < 𝑦) → ¬ (𝐵 − 1) < -∞)
59583ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → ¬ (𝐵 − 1) < -∞)
6055, 59condan 817 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ < 𝑦)
6134adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
62 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
63 supxrub 13226 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6461, 62, 63syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
65643adant3 1132 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6633, 36, 39, 60, 65xrltletrd 13063 . . . . . . . . 9 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ < sup(𝐴, ℝ*, < ))
67663exp 1119 . . . . . . . 8 (𝜑 → (𝑦𝐴 → ((𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < ))))
6867adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (𝑦𝐴 → ((𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < ))))
6968rexlimdv 3128 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (∃𝑦𝐴 (𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < )))
7031, 69mpd 15 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → -∞ < sup(𝐴, ℝ*, < ))
71 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
72 nltpnft 13066 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7338, 72syl 17 . . . . . . . 8 (𝜑 → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7473adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7571, 74mtbid 324 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
7675notnotrd 133 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
7770, 76jca 511 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
7838adantr 480 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
79 xrrebnd 13070 . . . . 5 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
8078, 79syl 17 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
8177, 80mpbird 257 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
82 simpl 482 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ))
83 simpr 484 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ 𝐵 ≤ sup(𝐴, ℝ*, < ))
8482simprd 495 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ∈ ℝ)
851ad2antrr 726 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → 𝐵 ∈ ℝ)
8684, 85ltnled 11263 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8783, 86mpbird 257 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) < 𝐵)
88 simpll 766 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝜑)
891adantr 480 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ)
90 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
9189, 90resubcld 11548 . . . . . . . . 9 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
9291adantr 480 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
93 simpr 484 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) < 𝐵)
9490adantr 480 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ)
9588, 1syl 17 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
9694, 95posdifd 11707 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ 0 < (𝐵 − sup(𝐴, ℝ*, < ))))
9793, 96mpbid 232 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 0 < (𝐵 − sup(𝐴, ℝ*, < )))
9892, 97elrpd 12934 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
99 ovex 7382 . . . . . . . 8 (𝐵 − sup(𝐴, ℝ*, < )) ∈ V
100 nfcv 2891 . . . . . . . . 9 𝑥(𝐵 − sup(𝐴, ℝ*, < ))
101 nfv 1914 . . . . . . . . . . 11 𝑥(𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+
10216, 101nfan 1899 . . . . . . . . . 10 𝑥(𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
103 nfv 1914 . . . . . . . . . 10 𝑥𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦
104102, 103nfim 1896 . . . . . . . . 9 𝑥((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
105 eleq1 2816 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑥 ∈ ℝ+ ↔ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+))
106105anbi2d 630 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)))
107 oveq2 7357 . . . . . . . . . . . 12 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝐵𝑥) = (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))))
108107breq1d 5102 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝐵𝑥) < 𝑦 ↔ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
109108rexbidv 3153 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (∃𝑦𝐴 (𝐵𝑥) < 𝑦 ↔ ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
110106, 109imbi12d 344 . . . . . . . . 9 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦) ↔ ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)))
111100, 104, 110, 27vtoclgf 3524 . . . . . . . 8 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ V → ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
11299, 111ax-mp 5 . . . . . . 7 ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
11388, 98, 112syl2anc 584 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
1141recnd 11143 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
115114ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → 𝐵 ∈ ℂ)
11690recnd 11143 . . . . . . . . . . . . 13 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
117116ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) ∈ ℂ)
118115, 117nncand 11480 . . . . . . . . . . 11 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) = sup(𝐴, ℝ*, < ))
119118eqcomd 2735 . . . . . . . . . 10 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) = (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))))
120 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
121119, 120eqbrtrd 5114 . . . . . . . . 9 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) < 𝑦)
122121ex 412 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ((𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → sup(𝐴, ℝ*, < ) < 𝑦))
123122adantr 480 . . . . . . 7 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) → ((𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → sup(𝐴, ℝ*, < ) < 𝑦))
124123reximdva 3142 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦))
125113, 124mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
12682, 87, 125syl2anc 584 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
12761, 37syl 17 . . . . . . . . 9 ((𝜑𝑦𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
12835, 127xrlenltd 11181 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑦 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝑦))
12964, 128mpbid 232 . . . . . . 7 ((𝜑𝑦𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝑦)
130129ralrimiva 3121 . . . . . 6 (𝜑 → ∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦)
131 ralnex 3055 . . . . . 6 (∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦 ↔ ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
132130, 131sylib 218 . . . . 5 (𝜑 → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
133132ad2antrr 726 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
134126, 133condan 817 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13513, 81, 134syl2anc 584 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13612, 135pm2.61dan 812 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  wss 3903   class class class wbr 5092  (class class class)co 7349  supcsup 9330  cc 11007  cr 11008  0cc0 11009  1c1 11010  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  cmin 11347  +crp 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-rp 12894
This theorem is referenced by:  suplesup  45319
  Copyright terms: Public domain W3C validator