Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrgere Structured version   Visualization version   GIF version

Theorem supxrgere 45248
Description: If a real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrgere.xph 𝑥𝜑
supxrgere.a (𝜑𝐴 ⊆ ℝ*)
supxrgere.b (𝜑𝐵 ∈ ℝ)
supxrgere.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦)
Assertion
Ref Expression
supxrgere (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrgere
StepHypRef Expression
1 supxrgere.b . . . . 5 (𝜑𝐵 ∈ ℝ)
2 rexr 11336 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 pnfxr 11344 . . . . . . 7 +∞ ∈ ℝ*
43a1i 11 . . . . . 6 (𝐵 ∈ ℝ → +∞ ∈ ℝ*)
5 ltpnf 13183 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 < +∞)
62, 4, 5xrltled 13212 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ≤ +∞)
71, 6syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
87adantr 480 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ +∞)
9 id 22 . . . . 5 (sup(𝐴, ℝ*, < ) = +∞ → sup(𝐴, ℝ*, < ) = +∞)
109eqcomd 2746 . . . 4 (sup(𝐴, ℝ*, < ) = +∞ → +∞ = sup(𝐴, ℝ*, < ))
1110adantl 481 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = sup(𝐴, ℝ*, < ))
128, 11breqtrd 5192 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13 simpl 482 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
14 1rp 13061 . . . . . . . 8 1 ∈ ℝ+
15 nfcv 2908 . . . . . . . . . 10 𝑥1
16 supxrgere.xph . . . . . . . . . . . 12 𝑥𝜑
17 nfv 1913 . . . . . . . . . . . 12 𝑥1 ∈ ℝ+
1816, 17nfan 1898 . . . . . . . . . . 11 𝑥(𝜑 ∧ 1 ∈ ℝ+)
19 nfv 1913 . . . . . . . . . . 11 𝑥𝑦𝐴 (𝐵 − 1) < 𝑦
2018, 19nfim 1895 . . . . . . . . . 10 𝑥((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
21 eleq1 2832 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
2221anbi2d 629 . . . . . . . . . . 11 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
23 oveq2 7456 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝐵𝑥) = (𝐵 − 1))
2423breq1d 5176 . . . . . . . . . . . 12 (𝑥 = 1 → ((𝐵𝑥) < 𝑦 ↔ (𝐵 − 1) < 𝑦))
2524rexbidv 3185 . . . . . . . . . . 11 (𝑥 = 1 → (∃𝑦𝐴 (𝐵𝑥) < 𝑦 ↔ ∃𝑦𝐴 (𝐵 − 1) < 𝑦))
2622, 25imbi12d 344 . . . . . . . . . 10 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)))
27 supxrgere.y . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦)
2815, 20, 26, 27vtoclgf 3581 . . . . . . . . 9 (1 ∈ ℝ+ → ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦))
2914, 28ax-mp 5 . . . . . . . 8 ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
3014, 29mpan2 690 . . . . . . 7 (𝜑 → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
3130adantr 480 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
32 mnfxr 11347 . . . . . . . . . . 11 -∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ ∈ ℝ*)
34 supxrgere.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
3534sselda 4008 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
36353adant3 1132 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → 𝑦 ∈ ℝ*)
37 supxrcl 13377 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
3834, 37syl 17 . . . . . . . . . . 11 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
39383ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
40 peano2rem 11603 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
411, 40syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 − 1) ∈ ℝ)
4241rexrd 11340 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 − 1) ∈ ℝ*)
4342adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) ∈ ℝ*)
44433ad2antl1 1185 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) ∈ ℝ*)
4536adantr 480 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
4632a1i 11 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
47 simpl3 1193 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) < 𝑦)
48 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
4935adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
5032a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
51 xrlenlt 11355 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦))
5249, 50, 51syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦))
5348, 52mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ≤ -∞)
54533adantl3 1168 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → 𝑦 ≤ -∞)
5544, 45, 46, 47, 54xrltletrd 13223 . . . . . . . . . . 11 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) < -∞)
56 nltmnf 13192 . . . . . . . . . . . . . 14 ((𝐵 − 1) ∈ ℝ* → ¬ (𝐵 − 1) < -∞)
5742, 56syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ (𝐵 − 1) < -∞)
5857adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ -∞ < 𝑦) → ¬ (𝐵 − 1) < -∞)
59583ad2antl1 1185 . . . . . . . . . . 11 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → ¬ (𝐵 − 1) < -∞)
6055, 59condan 817 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ < 𝑦)
6134adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
62 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
63 supxrub 13386 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6461, 62, 63syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
65643adant3 1132 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6633, 36, 39, 60, 65xrltletrd 13223 . . . . . . . . 9 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ < sup(𝐴, ℝ*, < ))
67663exp 1119 . . . . . . . 8 (𝜑 → (𝑦𝐴 → ((𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < ))))
6867adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (𝑦𝐴 → ((𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < ))))
6968rexlimdv 3159 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (∃𝑦𝐴 (𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < )))
7031, 69mpd 15 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → -∞ < sup(𝐴, ℝ*, < ))
71 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
72 nltpnft 13226 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7338, 72syl 17 . . . . . . . 8 (𝜑 → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7473adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7571, 74mtbid 324 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
7675notnotrd 133 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
7770, 76jca 511 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
7838adantr 480 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
79 xrrebnd 13230 . . . . 5 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
8078, 79syl 17 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
8177, 80mpbird 257 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
82 simpl 482 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ))
83 simpr 484 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ 𝐵 ≤ sup(𝐴, ℝ*, < ))
8482simprd 495 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ∈ ℝ)
851ad2antrr 725 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → 𝐵 ∈ ℝ)
8684, 85ltnled 11437 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8783, 86mpbird 257 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) < 𝐵)
88 simpll 766 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝜑)
891adantr 480 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ)
90 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
9189, 90resubcld 11718 . . . . . . . . 9 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
9291adantr 480 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
93 simpr 484 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) < 𝐵)
9490adantr 480 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ)
9588, 1syl 17 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
9694, 95posdifd 11877 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ 0 < (𝐵 − sup(𝐴, ℝ*, < ))))
9793, 96mpbid 232 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 0 < (𝐵 − sup(𝐴, ℝ*, < )))
9892, 97elrpd 13096 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
99 ovex 7481 . . . . . . . 8 (𝐵 − sup(𝐴, ℝ*, < )) ∈ V
100 nfcv 2908 . . . . . . . . 9 𝑥(𝐵 − sup(𝐴, ℝ*, < ))
101 nfv 1913 . . . . . . . . . . 11 𝑥(𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+
10216, 101nfan 1898 . . . . . . . . . 10 𝑥(𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
103 nfv 1913 . . . . . . . . . 10 𝑥𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦
104102, 103nfim 1895 . . . . . . . . 9 𝑥((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
105 eleq1 2832 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑥 ∈ ℝ+ ↔ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+))
106105anbi2d 629 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)))
107 oveq2 7456 . . . . . . . . . . . 12 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝐵𝑥) = (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))))
108107breq1d 5176 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝐵𝑥) < 𝑦 ↔ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
109108rexbidv 3185 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (∃𝑦𝐴 (𝐵𝑥) < 𝑦 ↔ ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
110106, 109imbi12d 344 . . . . . . . . 9 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦) ↔ ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)))
111100, 104, 110, 27vtoclgf 3581 . . . . . . . 8 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ V → ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
11299, 111ax-mp 5 . . . . . . 7 ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
11388, 98, 112syl2anc 583 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
1141recnd 11318 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
115114ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → 𝐵 ∈ ℂ)
11690recnd 11318 . . . . . . . . . . . . 13 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
117116ad2antrr 725 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) ∈ ℂ)
118115, 117nncand 11652 . . . . . . . . . . 11 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) = sup(𝐴, ℝ*, < ))
119118eqcomd 2746 . . . . . . . . . 10 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) = (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))))
120 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
121119, 120eqbrtrd 5188 . . . . . . . . 9 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) < 𝑦)
122121ex 412 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ((𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → sup(𝐴, ℝ*, < ) < 𝑦))
123122adantr 480 . . . . . . 7 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) → ((𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → sup(𝐴, ℝ*, < ) < 𝑦))
124123reximdva 3174 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦))
125113, 124mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
12682, 87, 125syl2anc 583 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
12761, 37syl 17 . . . . . . . . 9 ((𝜑𝑦𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
12835, 127xrlenltd 11356 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑦 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝑦))
12964, 128mpbid 232 . . . . . . 7 ((𝜑𝑦𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝑦)
130129ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦)
131 ralnex 3078 . . . . . 6 (∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦 ↔ ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
132130, 131sylib 218 . . . . 5 (𝜑 → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
133132ad2antrr 725 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
134126, 133condan 817 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13513, 81, 134syl2anc 583 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13612, 135pm2.61dan 812 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  cmin 11520  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-rp 13058
This theorem is referenced by:  suplesup  45254
  Copyright terms: Public domain W3C validator