Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrgere Structured version   Visualization version   GIF version

Theorem supxrgere 44528
Description: If a real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrgere.xph 𝑥𝜑
supxrgere.a (𝜑𝐴 ⊆ ℝ*)
supxrgere.b (𝜑𝐵 ∈ ℝ)
supxrgere.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦)
Assertion
Ref Expression
supxrgere (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrgere
StepHypRef Expression
1 supxrgere.b . . . . 5 (𝜑𝐵 ∈ ℝ)
2 rexr 11257 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 pnfxr 11265 . . . . . . 7 +∞ ∈ ℝ*
43a1i 11 . . . . . 6 (𝐵 ∈ ℝ → +∞ ∈ ℝ*)
5 ltpnf 13097 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 < +∞)
62, 4, 5xrltled 13126 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ≤ +∞)
71, 6syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
87adantr 480 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ +∞)
9 id 22 . . . . 5 (sup(𝐴, ℝ*, < ) = +∞ → sup(𝐴, ℝ*, < ) = +∞)
109eqcomd 2730 . . . 4 (sup(𝐴, ℝ*, < ) = +∞ → +∞ = sup(𝐴, ℝ*, < ))
1110adantl 481 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = sup(𝐴, ℝ*, < ))
128, 11breqtrd 5164 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13 simpl 482 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
14 1rp 12975 . . . . . . . 8 1 ∈ ℝ+
15 nfcv 2895 . . . . . . . . . 10 𝑥1
16 supxrgere.xph . . . . . . . . . . . 12 𝑥𝜑
17 nfv 1909 . . . . . . . . . . . 12 𝑥1 ∈ ℝ+
1816, 17nfan 1894 . . . . . . . . . . 11 𝑥(𝜑 ∧ 1 ∈ ℝ+)
19 nfv 1909 . . . . . . . . . . 11 𝑥𝑦𝐴 (𝐵 − 1) < 𝑦
2018, 19nfim 1891 . . . . . . . . . 10 𝑥((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
21 eleq1 2813 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
2221anbi2d 628 . . . . . . . . . . 11 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
23 oveq2 7409 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝐵𝑥) = (𝐵 − 1))
2423breq1d 5148 . . . . . . . . . . . 12 (𝑥 = 1 → ((𝐵𝑥) < 𝑦 ↔ (𝐵 − 1) < 𝑦))
2524rexbidv 3170 . . . . . . . . . . 11 (𝑥 = 1 → (∃𝑦𝐴 (𝐵𝑥) < 𝑦 ↔ ∃𝑦𝐴 (𝐵 − 1) < 𝑦))
2622, 25imbi12d 344 . . . . . . . . . 10 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)))
27 supxrgere.y . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦)
2815, 20, 26, 27vtoclgf 3550 . . . . . . . . 9 (1 ∈ ℝ+ → ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦))
2914, 28ax-mp 5 . . . . . . . 8 ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
3014, 29mpan2 688 . . . . . . 7 (𝜑 → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
3130adantr 480 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
32 mnfxr 11268 . . . . . . . . . . 11 -∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ ∈ ℝ*)
34 supxrgere.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
3534sselda 3974 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
36353adant3 1129 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → 𝑦 ∈ ℝ*)
37 supxrcl 13291 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
3834, 37syl 17 . . . . . . . . . . 11 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
39383ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
40 peano2rem 11524 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
411, 40syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 − 1) ∈ ℝ)
4241rexrd 11261 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 − 1) ∈ ℝ*)
4342adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) ∈ ℝ*)
44433ad2antl1 1182 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) ∈ ℝ*)
4536adantr 480 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
4632a1i 11 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
47 simpl3 1190 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) < 𝑦)
48 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
4935adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
5032a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
51 xrlenlt 11276 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦))
5249, 50, 51syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦))
5348, 52mpbird 257 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ≤ -∞)
54533adantl3 1165 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → 𝑦 ≤ -∞)
5544, 45, 46, 47, 54xrltletrd 13137 . . . . . . . . . . 11 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) < -∞)
56 nltmnf 13106 . . . . . . . . . . . . . 14 ((𝐵 − 1) ∈ ℝ* → ¬ (𝐵 − 1) < -∞)
5742, 56syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ (𝐵 − 1) < -∞)
5857adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ -∞ < 𝑦) → ¬ (𝐵 − 1) < -∞)
59583ad2antl1 1182 . . . . . . . . . . 11 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → ¬ (𝐵 − 1) < -∞)
6055, 59condan 815 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ < 𝑦)
6134adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
62 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
63 supxrub 13300 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6461, 62, 63syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
65643adant3 1129 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6633, 36, 39, 60, 65xrltletrd 13137 . . . . . . . . 9 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ < sup(𝐴, ℝ*, < ))
67663exp 1116 . . . . . . . 8 (𝜑 → (𝑦𝐴 → ((𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < ))))
6867adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (𝑦𝐴 → ((𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < ))))
6968rexlimdv 3145 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (∃𝑦𝐴 (𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < )))
7031, 69mpd 15 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → -∞ < sup(𝐴, ℝ*, < ))
71 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
72 nltpnft 13140 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7338, 72syl 17 . . . . . . . 8 (𝜑 → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7473adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7571, 74mtbid 324 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
7675notnotrd 133 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
7770, 76jca 511 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
7838adantr 480 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
79 xrrebnd 13144 . . . . 5 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
8078, 79syl 17 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
8177, 80mpbird 257 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
82 simpl 482 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ))
83 simpr 484 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ 𝐵 ≤ sup(𝐴, ℝ*, < ))
8482simprd 495 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ∈ ℝ)
851ad2antrr 723 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → 𝐵 ∈ ℝ)
8684, 85ltnled 11358 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8783, 86mpbird 257 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) < 𝐵)
88 simpll 764 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝜑)
891adantr 480 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ)
90 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
9189, 90resubcld 11639 . . . . . . . . 9 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
9291adantr 480 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
93 simpr 484 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) < 𝐵)
9490adantr 480 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ)
9588, 1syl 17 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
9694, 95posdifd 11798 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ 0 < (𝐵 − sup(𝐴, ℝ*, < ))))
9793, 96mpbid 231 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 0 < (𝐵 − sup(𝐴, ℝ*, < )))
9892, 97elrpd 13010 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
99 ovex 7434 . . . . . . . 8 (𝐵 − sup(𝐴, ℝ*, < )) ∈ V
100 nfcv 2895 . . . . . . . . 9 𝑥(𝐵 − sup(𝐴, ℝ*, < ))
101 nfv 1909 . . . . . . . . . . 11 𝑥(𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+
10216, 101nfan 1894 . . . . . . . . . 10 𝑥(𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
103 nfv 1909 . . . . . . . . . 10 𝑥𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦
104102, 103nfim 1891 . . . . . . . . 9 𝑥((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
105 eleq1 2813 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑥 ∈ ℝ+ ↔ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+))
106105anbi2d 628 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)))
107 oveq2 7409 . . . . . . . . . . . 12 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝐵𝑥) = (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))))
108107breq1d 5148 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝐵𝑥) < 𝑦 ↔ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
109108rexbidv 3170 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (∃𝑦𝐴 (𝐵𝑥) < 𝑦 ↔ ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
110106, 109imbi12d 344 . . . . . . . . 9 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦) ↔ ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)))
111100, 104, 110, 27vtoclgf 3550 . . . . . . . 8 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ V → ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
11299, 111ax-mp 5 . . . . . . 7 ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
11388, 98, 112syl2anc 583 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
1141recnd 11239 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
115114ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → 𝐵 ∈ ℂ)
11690recnd 11239 . . . . . . . . . . . . 13 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
117116ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) ∈ ℂ)
118115, 117nncand 11573 . . . . . . . . . . 11 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) = sup(𝐴, ℝ*, < ))
119118eqcomd 2730 . . . . . . . . . 10 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) = (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))))
120 simpr 484 . . . . . . . . . 10 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
121119, 120eqbrtrd 5160 . . . . . . . . 9 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) < 𝑦)
122121ex 412 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ((𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → sup(𝐴, ℝ*, < ) < 𝑦))
123122adantr 480 . . . . . . 7 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) → ((𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → sup(𝐴, ℝ*, < ) < 𝑦))
124123reximdva 3160 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦))
125113, 124mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
12682, 87, 125syl2anc 583 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
12761, 37syl 17 . . . . . . . . 9 ((𝜑𝑦𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
12835, 127xrlenltd 11277 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑦 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝑦))
12964, 128mpbid 231 . . . . . . 7 ((𝜑𝑦𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝑦)
130129ralrimiva 3138 . . . . . 6 (𝜑 → ∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦)
131 ralnex 3064 . . . . . 6 (∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦 ↔ ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
132130, 131sylib 217 . . . . 5 (𝜑 → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
133132ad2antrr 723 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
134126, 133condan 815 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13513, 81, 134syl2anc 583 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13612, 135pm2.61dan 810 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wnf 1777  wcel 2098  wral 3053  wrex 3062  Vcvv 3466  wss 3940   class class class wbr 5138  (class class class)co 7401  supcsup 9431  cc 11104  cr 11105  0cc0 11106  1c1 11107  +∞cpnf 11242  -∞cmnf 11243  *cxr 11244   < clt 11245  cle 11246  cmin 11441  +crp 12971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-rp 12972
This theorem is referenced by:  suplesup  44534
  Copyright terms: Public domain W3C validator