Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrgere Structured version   Visualization version   GIF version

Theorem supxrgere 40211
Description: If a real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrgere.xph 𝑥𝜑
supxrgere.a (𝜑𝐴 ⊆ ℝ*)
supxrgere.b (𝜑𝐵 ∈ ℝ)
supxrgere.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦)
Assertion
Ref Expression
supxrgere (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrgere
StepHypRef Expression
1 supxrgere.b . . . . 5 (𝜑𝐵 ∈ ℝ)
2 rexr 10343 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 pnfxr 10350 . . . . . . 7 +∞ ∈ ℝ*
43a1i 11 . . . . . 6 (𝐵 ∈ ℝ → +∞ ∈ ℝ*)
5 ltpnf 12159 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 < +∞)
62, 4, 5xrltled 12188 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ≤ +∞)
71, 6syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
87adantr 472 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ +∞)
9 id 22 . . . . 5 (sup(𝐴, ℝ*, < ) = +∞ → sup(𝐴, ℝ*, < ) = +∞)
109eqcomd 2771 . . . 4 (sup(𝐴, ℝ*, < ) = +∞ → +∞ = sup(𝐴, ℝ*, < ))
1110adantl 473 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = sup(𝐴, ℝ*, < ))
128, 11breqtrd 4837 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13 simpl 474 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
14 1rp 12037 . . . . . . . 8 1 ∈ ℝ+
15 nfcv 2907 . . . . . . . . . 10 𝑥1
16 supxrgere.xph . . . . . . . . . . . 12 𝑥𝜑
17 nfv 2009 . . . . . . . . . . . 12 𝑥1 ∈ ℝ+
1816, 17nfan 1998 . . . . . . . . . . 11 𝑥(𝜑 ∧ 1 ∈ ℝ+)
19 nfv 2009 . . . . . . . . . . 11 𝑥𝑦𝐴 (𝐵 − 1) < 𝑦
2018, 19nfim 1995 . . . . . . . . . 10 𝑥((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
21 eleq1 2832 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
2221anbi2d 622 . . . . . . . . . . 11 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
23 oveq2 6854 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝐵𝑥) = (𝐵 − 1))
2423breq1d 4821 . . . . . . . . . . . 12 (𝑥 = 1 → ((𝐵𝑥) < 𝑦 ↔ (𝐵 − 1) < 𝑦))
2524rexbidv 3199 . . . . . . . . . . 11 (𝑥 = 1 → (∃𝑦𝐴 (𝐵𝑥) < 𝑦 ↔ ∃𝑦𝐴 (𝐵 − 1) < 𝑦))
2622, 25imbi12d 335 . . . . . . . . . 10 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)))
27 supxrgere.y . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦)
2815, 20, 26, 27vtoclgf 3416 . . . . . . . . 9 (1 ∈ ℝ+ → ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦))
2914, 28ax-mp 5 . . . . . . . 8 ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
3014, 29mpan2 682 . . . . . . 7 (𝜑 → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
3130adantr 472 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
32 mnfxr 10354 . . . . . . . . . . 11 -∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ ∈ ℝ*)
34 supxrgere.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
3534sselda 3763 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
36353adant3 1162 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → 𝑦 ∈ ℝ*)
37 supxrcl 12352 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
3834, 37syl 17 . . . . . . . . . . 11 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
39383ad2ant1 1163 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
40 peano2rem 10606 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
411, 40syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 − 1) ∈ ℝ)
4241rexrd 10347 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 − 1) ∈ ℝ*)
4342adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) ∈ ℝ*)
44433ad2antl1 1236 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) ∈ ℝ*)
4536adantr 472 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
4632a1i 11 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
47 simpl3 1246 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) < 𝑦)
48 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
4935adantr 472 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
5032a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
51 xrlenlt 10361 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦))
5249, 50, 51syl2anc 579 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦))
5348, 52mpbird 248 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ≤ -∞)
54533adantl3 1209 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → 𝑦 ≤ -∞)
5544, 45, 46, 47, 54xrltletrd 12199 . . . . . . . . . . 11 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) < -∞)
56 nltmnf 12168 . . . . . . . . . . . . . 14 ((𝐵 − 1) ∈ ℝ* → ¬ (𝐵 − 1) < -∞)
5742, 56syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ (𝐵 − 1) < -∞)
5857adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ -∞ < 𝑦) → ¬ (𝐵 − 1) < -∞)
59583ad2antl1 1236 . . . . . . . . . . 11 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → ¬ (𝐵 − 1) < -∞)
6055, 59condan 852 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ < 𝑦)
6134adantr 472 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
62 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
63 supxrub 12361 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6461, 62, 63syl2anc 579 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
65643adant3 1162 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6633, 36, 39, 60, 65xrltletrd 12199 . . . . . . . . 9 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ < sup(𝐴, ℝ*, < ))
67663exp 1148 . . . . . . . 8 (𝜑 → (𝑦𝐴 → ((𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < ))))
6867adantr 472 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (𝑦𝐴 → ((𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < ))))
6968rexlimdv 3177 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (∃𝑦𝐴 (𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < )))
7031, 69mpd 15 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → -∞ < sup(𝐴, ℝ*, < ))
71 simpr 477 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
72 nltpnft 12202 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7338, 72syl 17 . . . . . . . 8 (𝜑 → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7473adantr 472 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7571, 74mtbid 315 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
7675notnotrd 130 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
7770, 76jca 507 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
7838adantr 472 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
79 xrrebnd 12206 . . . . 5 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
8078, 79syl 17 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
8177, 80mpbird 248 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
82 simpl 474 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ))
83 simpr 477 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ 𝐵 ≤ sup(𝐴, ℝ*, < ))
8482simprd 489 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ∈ ℝ)
851ad2antrr 717 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → 𝐵 ∈ ℝ)
8684, 85ltnled 10442 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8783, 86mpbird 248 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) < 𝐵)
88 simpll 783 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝜑)
891adantr 472 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ)
90 simpr 477 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
9189, 90resubcld 10716 . . . . . . . . 9 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
9291adantr 472 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
93 simpr 477 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) < 𝐵)
9490adantr 472 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ)
9588, 1syl 17 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
9694, 95posdifd 10872 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ 0 < (𝐵 − sup(𝐴, ℝ*, < ))))
9793, 96mpbid 223 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 0 < (𝐵 − sup(𝐴, ℝ*, < )))
9892, 97elrpd 12072 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
99 ovex 6878 . . . . . . . 8 (𝐵 − sup(𝐴, ℝ*, < )) ∈ V
100 nfcv 2907 . . . . . . . . 9 𝑥(𝐵 − sup(𝐴, ℝ*, < ))
101 nfv 2009 . . . . . . . . . . 11 𝑥(𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+
10216, 101nfan 1998 . . . . . . . . . 10 𝑥(𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
103 nfv 2009 . . . . . . . . . 10 𝑥𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦
104102, 103nfim 1995 . . . . . . . . 9 𝑥((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
105 eleq1 2832 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑥 ∈ ℝ+ ↔ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+))
106105anbi2d 622 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)))
107 oveq2 6854 . . . . . . . . . . . 12 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝐵𝑥) = (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))))
108107breq1d 4821 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝐵𝑥) < 𝑦 ↔ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
109108rexbidv 3199 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (∃𝑦𝐴 (𝐵𝑥) < 𝑦 ↔ ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
110106, 109imbi12d 335 . . . . . . . . 9 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦) ↔ ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)))
111100, 104, 110, 27vtoclgf 3416 . . . . . . . 8 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ V → ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
11299, 111ax-mp 5 . . . . . . 7 ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
11388, 98, 112syl2anc 579 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
1141recnd 10326 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
115114ad3antrrr 721 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → 𝐵 ∈ ℂ)
11690recnd 10326 . . . . . . . . . . . . 13 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
117116ad2antrr 717 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) ∈ ℂ)
118115, 117nncand 10655 . . . . . . . . . . 11 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) = sup(𝐴, ℝ*, < ))
119118eqcomd 2771 . . . . . . . . . 10 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) = (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))))
120 simpr 477 . . . . . . . . . 10 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
121119, 120eqbrtrd 4833 . . . . . . . . 9 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) < 𝑦)
122121ex 401 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ((𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → sup(𝐴, ℝ*, < ) < 𝑦))
123122adantr 472 . . . . . . 7 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) → ((𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → sup(𝐴, ℝ*, < ) < 𝑦))
124123reximdva 3163 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦))
125113, 124mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
12682, 87, 125syl2anc 579 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
12761, 37syl 17 . . . . . . . . 9 ((𝜑𝑦𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
12835, 127xrlenltd 10362 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑦 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝑦))
12964, 128mpbid 223 . . . . . . 7 ((𝜑𝑦𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝑦)
130129ralrimiva 3113 . . . . . 6 (𝜑 → ∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦)
131 ralnex 3139 . . . . . 6 (∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦 ↔ ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
132130, 131sylib 209 . . . . 5 (𝜑 → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
133132ad2antrr 717 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
134126, 133condan 852 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13513, 81, 134syl2anc 579 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13612, 135pm2.61dan 847 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wnf 1878  wcel 2155  wral 3055  wrex 3056  Vcvv 3350  wss 3734   class class class wbr 4811  (class class class)co 6846  supcsup 8557  cc 10191  cr 10192  0cc0 10193  1c1 10194  +∞cpnf 10329  -∞cmnf 10330  *cxr 10331   < clt 10332  cle 10333  cmin 10524  +crp 12033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-po 5200  df-so 5201  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-sup 8559  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-rp 12034
This theorem is referenced by:  suplesup  40217
  Copyright terms: Public domain W3C validator