Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrgere Structured version   Visualization version   GIF version

Theorem supxrgere 41601
Description: If a real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrgere.xph 𝑥𝜑
supxrgere.a (𝜑𝐴 ⊆ ℝ*)
supxrgere.b (𝜑𝐵 ∈ ℝ)
supxrgere.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦)
Assertion
Ref Expression
supxrgere (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrgere
StepHypRef Expression
1 supxrgere.b . . . . 5 (𝜑𝐵 ∈ ℝ)
2 rexr 10686 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 pnfxr 10694 . . . . . . 7 +∞ ∈ ℝ*
43a1i 11 . . . . . 6 (𝐵 ∈ ℝ → +∞ ∈ ℝ*)
5 ltpnf 12514 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 < +∞)
62, 4, 5xrltled 12542 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ≤ +∞)
71, 6syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
87adantr 483 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ +∞)
9 id 22 . . . . 5 (sup(𝐴, ℝ*, < ) = +∞ → sup(𝐴, ℝ*, < ) = +∞)
109eqcomd 2827 . . . 4 (sup(𝐴, ℝ*, < ) = +∞ → +∞ = sup(𝐴, ℝ*, < ))
1110adantl 484 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = sup(𝐴, ℝ*, < ))
128, 11breqtrd 5091 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13 simpl 485 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
14 1rp 12392 . . . . . . . 8 1 ∈ ℝ+
15 nfcv 2977 . . . . . . . . . 10 𝑥1
16 supxrgere.xph . . . . . . . . . . . 12 𝑥𝜑
17 nfv 1911 . . . . . . . . . . . 12 𝑥1 ∈ ℝ+
1816, 17nfan 1896 . . . . . . . . . . 11 𝑥(𝜑 ∧ 1 ∈ ℝ+)
19 nfv 1911 . . . . . . . . . . 11 𝑥𝑦𝐴 (𝐵 − 1) < 𝑦
2018, 19nfim 1893 . . . . . . . . . 10 𝑥((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
21 eleq1 2900 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
2221anbi2d 630 . . . . . . . . . . 11 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
23 oveq2 7163 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝐵𝑥) = (𝐵 − 1))
2423breq1d 5075 . . . . . . . . . . . 12 (𝑥 = 1 → ((𝐵𝑥) < 𝑦 ↔ (𝐵 − 1) < 𝑦))
2524rexbidv 3297 . . . . . . . . . . 11 (𝑥 = 1 → (∃𝑦𝐴 (𝐵𝑥) < 𝑦 ↔ ∃𝑦𝐴 (𝐵 − 1) < 𝑦))
2622, 25imbi12d 347 . . . . . . . . . 10 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)))
27 supxrgere.y . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦)
2815, 20, 26, 27vtoclgf 3565 . . . . . . . . 9 (1 ∈ ℝ+ → ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦))
2914, 28ax-mp 5 . . . . . . . 8 ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
3014, 29mpan2 689 . . . . . . 7 (𝜑 → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
3130adantr 483 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 (𝐵 − 1) < 𝑦)
32 mnfxr 10697 . . . . . . . . . . 11 -∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ ∈ ℝ*)
34 supxrgere.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
3534sselda 3966 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
36353adant3 1128 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → 𝑦 ∈ ℝ*)
37 supxrcl 12707 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
3834, 37syl 17 . . . . . . . . . . 11 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
39383ad2ant1 1129 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
40 peano2rem 10952 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
411, 40syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 − 1) ∈ ℝ)
4241rexrd 10690 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 − 1) ∈ ℝ*)
4342adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) ∈ ℝ*)
44433ad2antl1 1181 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) ∈ ℝ*)
4536adantr 483 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
4632a1i 11 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
47 simpl3 1189 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) < 𝑦)
48 simpr 487 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
4935adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
5032a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → -∞ ∈ ℝ*)
51 xrlenlt 10705 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦))
5249, 50, 51syl2anc 586 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 ≤ -∞ ↔ ¬ -∞ < 𝑦))
5348, 52mpbird 259 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ≤ -∞)
54533adantl3 1164 . . . . . . . . . . . 12 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → 𝑦 ≤ -∞)
5544, 45, 46, 47, 54xrltletrd 12553 . . . . . . . . . . 11 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → (𝐵 − 1) < -∞)
56 nltmnf 12523 . . . . . . . . . . . . . 14 ((𝐵 − 1) ∈ ℝ* → ¬ (𝐵 − 1) < -∞)
5742, 56syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ (𝐵 − 1) < -∞)
5857adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ -∞ < 𝑦) → ¬ (𝐵 − 1) < -∞)
59583ad2antl1 1181 . . . . . . . . . . 11 (((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) ∧ ¬ -∞ < 𝑦) → ¬ (𝐵 − 1) < -∞)
6055, 59condan 816 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ < 𝑦)
6134adantr 483 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
62 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
63 supxrub 12716 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6461, 62, 63syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
65643adant3 1128 . . . . . . . . . 10 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6633, 36, 39, 60, 65xrltletrd 12553 . . . . . . . . 9 ((𝜑𝑦𝐴 ∧ (𝐵 − 1) < 𝑦) → -∞ < sup(𝐴, ℝ*, < ))
67663exp 1115 . . . . . . . 8 (𝜑 → (𝑦𝐴 → ((𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < ))))
6867adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (𝑦𝐴 → ((𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < ))))
6968rexlimdv 3283 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (∃𝑦𝐴 (𝐵 − 1) < 𝑦 → -∞ < sup(𝐴, ℝ*, < )))
7031, 69mpd 15 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → -∞ < sup(𝐴, ℝ*, < ))
71 simpr 487 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
72 nltpnft 12556 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7338, 72syl 17 . . . . . . . 8 (𝜑 → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7473adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7571, 74mtbid 326 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
7675notnotrd 135 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
7770, 76jca 514 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
7838adantr 483 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
79 xrrebnd 12560 . . . . 5 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
8078, 79syl 17 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
8177, 80mpbird 259 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
82 simpl 485 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ))
83 simpr 487 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ 𝐵 ≤ sup(𝐴, ℝ*, < ))
8482simprd 498 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ∈ ℝ)
851ad2antrr 724 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → 𝐵 ∈ ℝ)
8684, 85ltnled 10786 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8783, 86mpbird 259 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) < 𝐵)
88 simpll 765 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝜑)
891adantr 483 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ∈ ℝ)
90 simpr 487 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
9189, 90resubcld 11067 . . . . . . . . 9 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
9291adantr 483 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
93 simpr 487 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) < 𝐵)
9490adantr 483 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ)
9588, 1syl 17 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
9694, 95posdifd 11226 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ 0 < (𝐵 − sup(𝐴, ℝ*, < ))))
9793, 96mpbid 234 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 0 < (𝐵 − sup(𝐴, ℝ*, < )))
9892, 97elrpd 12427 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
99 ovex 7188 . . . . . . . 8 (𝐵 − sup(𝐴, ℝ*, < )) ∈ V
100 nfcv 2977 . . . . . . . . 9 𝑥(𝐵 − sup(𝐴, ℝ*, < ))
101 nfv 1911 . . . . . . . . . . 11 𝑥(𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+
10216, 101nfan 1896 . . . . . . . . . 10 𝑥(𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
103 nfv 1911 . . . . . . . . . 10 𝑥𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦
104102, 103nfim 1893 . . . . . . . . 9 𝑥((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
105 eleq1 2900 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑥 ∈ ℝ+ ↔ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+))
106105anbi2d 630 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)))
107 oveq2 7163 . . . . . . . . . . . 12 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝐵𝑥) = (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))))
108107breq1d 5075 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝐵𝑥) < 𝑦 ↔ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
109108rexbidv 3297 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (∃𝑦𝐴 (𝐵𝑥) < 𝑦 ↔ ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
110106, 109imbi12d 347 . . . . . . . . 9 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 (𝐵𝑥) < 𝑦) ↔ ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)))
111100, 104, 110, 27vtoclgf 3565 . . . . . . . 8 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ V → ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦))
11299, 111ax-mp 5 . . . . . . 7 ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
11388, 98, 112syl2anc 586 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
1141recnd 10668 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
115114ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → 𝐵 ∈ ℂ)
11690recnd 10668 . . . . . . . . . . . . 13 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
117116ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) ∈ ℂ)
118115, 117nncand 11001 . . . . . . . . . . 11 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) = sup(𝐴, ℝ*, < ))
119118eqcomd 2827 . . . . . . . . . 10 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) = (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))))
120 simpr 487 . . . . . . . . . 10 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦)
121119, 120eqbrtrd 5087 . . . . . . . . 9 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦) → sup(𝐴, ℝ*, < ) < 𝑦)
122121ex 415 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ((𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → sup(𝐴, ℝ*, < ) < 𝑦))
123122adantr 483 . . . . . . 7 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) → ((𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → sup(𝐴, ℝ*, < ) < 𝑦))
124123reximdva 3274 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 (𝐵 − (𝐵 − sup(𝐴, ℝ*, < ))) < 𝑦 → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦))
125113, 124mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
12682, 87, 125syl2anc 586 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
12761, 37syl 17 . . . . . . . . 9 ((𝜑𝑦𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
12835, 127xrlenltd 10706 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑦 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝑦))
12964, 128mpbid 234 . . . . . . 7 ((𝜑𝑦𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝑦)
130129ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦)
131 ralnex 3236 . . . . . 6 (∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦 ↔ ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
132130, 131sylib 220 . . . . 5 (𝜑 → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
133132ad2antrr 724 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
134126, 133condan 816 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13513, 81, 134syl2anc 586 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
13612, 135pm2.61dan 811 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wnf 1780  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  wss 3935   class class class wbr 5065  (class class class)co 7155  supcsup 8903  cc 10534  cr 10535  0cc0 10536  1c1 10537  +∞cpnf 10671  -∞cmnf 10672  *cxr 10673   < clt 10674  cle 10675  cmin 10869  +crp 12388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-rp 12389
This theorem is referenced by:  suplesup  41607
  Copyright terms: Public domain W3C validator