Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supgtoreq | Structured version Visualization version GIF version |
Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.) |
Ref | Expression |
---|---|
supgtoreq.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
supgtoreq.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
supgtoreq.3 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
supgtoreq.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
supgtoreq.5 | ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
supgtoreq | ⊢ (𝜑 → (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supgtoreq.5 | . . . 4 ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, 𝑅)) | |
2 | supgtoreq.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
3 | supgtoreq.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
4 | supgtoreq.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
5 | supgtoreq.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
6 | 2 | ne0d 4274 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ ∅) |
7 | fisup2g 9188 | . . . . . . . 8 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
8 | 3, 5, 6, 4, 7 | syl13anc 1370 | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
9 | ssrexv 3992 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) | |
10 | 4, 8, 9 | sylc 65 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
11 | 3, 10 | supub 9179 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
12 | 2, 11 | mpd 15 | . . . 4 ⊢ (𝜑 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶) |
13 | 1, 12 | eqnbrtrd 5096 | . . 3 ⊢ (𝜑 → ¬ 𝑆𝑅𝐶) |
14 | fisupcl 9189 | . . . . . . . 8 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) | |
15 | 3, 5, 6, 4, 14 | syl13anc 1370 | . . . . . . 7 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
16 | 4, 15 | sseldd 3926 | . . . . . 6 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
17 | 1, 16 | eqeltrd 2840 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
18 | 4, 2 | sseldd 3926 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
19 | sotric 5530 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶 ∨ 𝐶𝑅𝑆))) | |
20 | 3, 17, 18, 19 | syl12anc 833 | . . . 4 ⊢ (𝜑 → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶 ∨ 𝐶𝑅𝑆))) |
21 | orcom 866 | . . . . . 6 ⊢ ((𝑆 = 𝐶 ∨ 𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆 ∨ 𝑆 = 𝐶)) | |
22 | eqcom 2746 | . . . . . . 7 ⊢ (𝑆 = 𝐶 ↔ 𝐶 = 𝑆) | |
23 | 22 | orbi2i 909 | . . . . . 6 ⊢ ((𝐶𝑅𝑆 ∨ 𝑆 = 𝐶) ↔ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
24 | 21, 23 | bitri 274 | . . . . 5 ⊢ ((𝑆 = 𝐶 ∨ 𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
25 | 24 | notbii 319 | . . . 4 ⊢ (¬ (𝑆 = 𝐶 ∨ 𝐶𝑅𝑆) ↔ ¬ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
26 | 20, 25 | bitr2di 287 | . . 3 ⊢ (𝜑 → (¬ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆) ↔ 𝑆𝑅𝐶)) |
27 | 13, 26 | mtbird 324 | . 2 ⊢ (𝜑 → ¬ ¬ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
28 | 27 | notnotrd 133 | 1 ⊢ (𝜑 → (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 ⊆ wss 3891 ∅c0 4261 class class class wbr 5078 Or wor 5501 Fincfn 8707 supcsup 9160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-om 7701 df-en 8708 df-fin 8711 df-sup 9162 |
This theorem is referenced by: infltoreq 9222 supfirege 11945 |
Copyright terms: Public domain | W3C validator |