Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supgtoreq | Structured version Visualization version GIF version |
Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.) |
Ref | Expression |
---|---|
supgtoreq.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
supgtoreq.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
supgtoreq.3 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
supgtoreq.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
supgtoreq.5 | ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
supgtoreq | ⊢ (𝜑 → (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supgtoreq.5 | . . . 4 ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, 𝑅)) | |
2 | supgtoreq.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
3 | supgtoreq.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
4 | supgtoreq.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
5 | supgtoreq.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
6 | 2 | ne0d 4266 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ ∅) |
7 | fisup2g 9157 | . . . . . . . 8 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
8 | 3, 5, 6, 4, 7 | syl13anc 1370 | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
9 | ssrexv 3984 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) | |
10 | 4, 8, 9 | sylc 65 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
11 | 3, 10 | supub 9148 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
12 | 2, 11 | mpd 15 | . . . 4 ⊢ (𝜑 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶) |
13 | 1, 12 | eqnbrtrd 5088 | . . 3 ⊢ (𝜑 → ¬ 𝑆𝑅𝐶) |
14 | fisupcl 9158 | . . . . . . . 8 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) | |
15 | 3, 5, 6, 4, 14 | syl13anc 1370 | . . . . . . 7 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
16 | 4, 15 | sseldd 3918 | . . . . . 6 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
17 | 1, 16 | eqeltrd 2839 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
18 | 4, 2 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
19 | sotric 5522 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶 ∨ 𝐶𝑅𝑆))) | |
20 | 3, 17, 18, 19 | syl12anc 833 | . . . 4 ⊢ (𝜑 → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶 ∨ 𝐶𝑅𝑆))) |
21 | orcom 866 | . . . . . 6 ⊢ ((𝑆 = 𝐶 ∨ 𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆 ∨ 𝑆 = 𝐶)) | |
22 | eqcom 2745 | . . . . . . 7 ⊢ (𝑆 = 𝐶 ↔ 𝐶 = 𝑆) | |
23 | 22 | orbi2i 909 | . . . . . 6 ⊢ ((𝐶𝑅𝑆 ∨ 𝑆 = 𝐶) ↔ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
24 | 21, 23 | bitri 274 | . . . . 5 ⊢ ((𝑆 = 𝐶 ∨ 𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
25 | 24 | notbii 319 | . . . 4 ⊢ (¬ (𝑆 = 𝐶 ∨ 𝐶𝑅𝑆) ↔ ¬ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
26 | 20, 25 | bitr2di 287 | . . 3 ⊢ (𝜑 → (¬ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆) ↔ 𝑆𝑅𝐶)) |
27 | 13, 26 | mtbird 324 | . 2 ⊢ (𝜑 → ¬ ¬ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
28 | 27 | notnotrd 133 | 1 ⊢ (𝜑 → (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 Or wor 5493 Fincfn 8691 supcsup 9129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-om 7688 df-en 8692 df-fin 8695 df-sup 9131 |
This theorem is referenced by: infltoreq 9191 supfirege 11892 |
Copyright terms: Public domain | W3C validator |