MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supgtoreq Structured version   Visualization version   GIF version

Theorem supgtoreq 9159
Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.)
Hypotheses
Ref Expression
supgtoreq.1 (𝜑𝑅 Or 𝐴)
supgtoreq.2 (𝜑𝐵𝐴)
supgtoreq.3 (𝜑𝐵 ∈ Fin)
supgtoreq.4 (𝜑𝐶𝐵)
supgtoreq.5 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
Assertion
Ref Expression
supgtoreq (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))

Proof of Theorem supgtoreq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supgtoreq.5 . . . 4 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
2 supgtoreq.4 . . . . 5 (𝜑𝐶𝐵)
3 supgtoreq.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
4 supgtoreq.2 . . . . . . 7 (𝜑𝐵𝐴)
5 supgtoreq.3 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
62ne0d 4266 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
7 fisup2g 9157 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
83, 5, 6, 4, 7syl13anc 1370 . . . . . . 7 (𝜑 → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
9 ssrexv 3984 . . . . . . 7 (𝐵𝐴 → (∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
104, 8, 9sylc 65 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
113, 10supub 9148 . . . . 5 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
122, 11mpd 15 . . . 4 (𝜑 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
131, 12eqnbrtrd 5088 . . 3 (𝜑 → ¬ 𝑆𝑅𝐶)
14 fisupcl 9158 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
153, 5, 6, 4, 14syl13anc 1370 . . . . . . 7 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
164, 15sseldd 3918 . . . . . 6 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
171, 16eqeltrd 2839 . . . . 5 (𝜑𝑆𝐴)
184, 2sseldd 3918 . . . . 5 (𝜑𝐶𝐴)
19 sotric 5522 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑆𝐴𝐶𝐴)) → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶𝐶𝑅𝑆)))
203, 17, 18, 19syl12anc 833 . . . 4 (𝜑 → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶𝐶𝑅𝑆)))
21 orcom 866 . . . . . 6 ((𝑆 = 𝐶𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆𝑆 = 𝐶))
22 eqcom 2745 . . . . . . 7 (𝑆 = 𝐶𝐶 = 𝑆)
2322orbi2i 909 . . . . . 6 ((𝐶𝑅𝑆𝑆 = 𝐶) ↔ (𝐶𝑅𝑆𝐶 = 𝑆))
2421, 23bitri 274 . . . . 5 ((𝑆 = 𝐶𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆𝐶 = 𝑆))
2524notbii 319 . . . 4 (¬ (𝑆 = 𝐶𝐶𝑅𝑆) ↔ ¬ (𝐶𝑅𝑆𝐶 = 𝑆))
2620, 25bitr2di 287 . . 3 (𝜑 → (¬ (𝐶𝑅𝑆𝐶 = 𝑆) ↔ 𝑆𝑅𝐶))
2713, 26mtbird 324 . 2 (𝜑 → ¬ ¬ (𝐶𝑅𝑆𝐶 = 𝑆))
2827notnotrd 133 1 (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   class class class wbr 5070   Or wor 5493  Fincfn 8691  supcsup 9129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-om 7688  df-en 8692  df-fin 8695  df-sup 9131
This theorem is referenced by:  infltoreq  9191  supfirege  11892
  Copyright terms: Public domain W3C validator