Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  supgtoreq Structured version   Visualization version   GIF version

Theorem supgtoreq 8931
 Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.)
Hypotheses
Ref Expression
supgtoreq.1 (𝜑𝑅 Or 𝐴)
supgtoreq.2 (𝜑𝐵𝐴)
supgtoreq.3 (𝜑𝐵 ∈ Fin)
supgtoreq.4 (𝜑𝐶𝐵)
supgtoreq.5 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
Assertion
Ref Expression
supgtoreq (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))

Proof of Theorem supgtoreq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supgtoreq.5 . . . 4 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
2 supgtoreq.4 . . . . 5 (𝜑𝐶𝐵)
3 supgtoreq.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
4 supgtoreq.2 . . . . . . 7 (𝜑𝐵𝐴)
5 supgtoreq.3 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
62ne0d 4284 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
7 fisup2g 8929 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
83, 5, 6, 4, 7syl13anc 1369 . . . . . . 7 (𝜑 → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
9 ssrexv 4020 . . . . . . 7 (𝐵𝐴 → (∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
104, 8, 9sylc 65 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
113, 10supub 8920 . . . . 5 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
122, 11mpd 15 . . . 4 (𝜑 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
131, 12eqnbrtrd 5070 . . 3 (𝜑 → ¬ 𝑆𝑅𝐶)
14 fisupcl 8930 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
153, 5, 6, 4, 14syl13anc 1369 . . . . . . 7 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
164, 15sseldd 3954 . . . . . 6 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
171, 16eqeltrd 2916 . . . . 5 (𝜑𝑆𝐴)
184, 2sseldd 3954 . . . . 5 (𝜑𝐶𝐴)
19 sotric 5488 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑆𝐴𝐶𝐴)) → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶𝐶𝑅𝑆)))
203, 17, 18, 19syl12anc 835 . . . 4 (𝜑 → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶𝐶𝑅𝑆)))
21 orcom 867 . . . . . 6 ((𝑆 = 𝐶𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆𝑆 = 𝐶))
22 eqcom 2831 . . . . . . 7 (𝑆 = 𝐶𝐶 = 𝑆)
2322orbi2i 910 . . . . . 6 ((𝐶𝑅𝑆𝑆 = 𝐶) ↔ (𝐶𝑅𝑆𝐶 = 𝑆))
2421, 23bitri 278 . . . . 5 ((𝑆 = 𝐶𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆𝐶 = 𝑆))
2524notbii 323 . . . 4 (¬ (𝑆 = 𝐶𝐶𝑅𝑆) ↔ ¬ (𝐶𝑅𝑆𝐶 = 𝑆))
2620, 25syl6rbb 291 . . 3 (𝜑 → (¬ (𝐶𝑅𝑆𝐶 = 𝑆) ↔ 𝑆𝑅𝐶))
2713, 26mtbird 328 . 2 (𝜑 → ¬ ¬ (𝐶𝑅𝑆𝐶 = 𝑆))
2827notnotrd 135 1 (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  ∀wral 3133  ∃wrex 3134   ⊆ wss 3919  ∅c0 4276   class class class wbr 5052   Or wor 5460  Fincfn 8505  supcsup 8901 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-om 7575  df-1o 8098  df-er 8285  df-en 8506  df-fin 8509  df-sup 8903 This theorem is referenced by:  infltoreq  8963  supfirege  11623
 Copyright terms: Public domain W3C validator