MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supgtoreq Structured version   Visualization version   GIF version

Theorem supgtoreq 9510
Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.)
Hypotheses
Ref Expression
supgtoreq.1 (𝜑𝑅 Or 𝐴)
supgtoreq.2 (𝜑𝐵𝐴)
supgtoreq.3 (𝜑𝐵 ∈ Fin)
supgtoreq.4 (𝜑𝐶𝐵)
supgtoreq.5 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
Assertion
Ref Expression
supgtoreq (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))

Proof of Theorem supgtoreq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supgtoreq.5 . . . 4 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
2 supgtoreq.4 . . . . 5 (𝜑𝐶𝐵)
3 supgtoreq.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
4 supgtoreq.2 . . . . . . 7 (𝜑𝐵𝐴)
5 supgtoreq.3 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
62ne0d 4342 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
7 fisup2g 9508 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
83, 5, 6, 4, 7syl13anc 1374 . . . . . . 7 (𝜑 → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
9 ssrexv 4053 . . . . . . 7 (𝐵𝐴 → (∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
104, 8, 9sylc 65 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
113, 10supub 9499 . . . . 5 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
122, 11mpd 15 . . . 4 (𝜑 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
131, 12eqnbrtrd 5161 . . 3 (𝜑 → ¬ 𝑆𝑅𝐶)
14 fisupcl 9509 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
153, 5, 6, 4, 14syl13anc 1374 . . . . . . 7 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
164, 15sseldd 3984 . . . . . 6 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
171, 16eqeltrd 2841 . . . . 5 (𝜑𝑆𝐴)
184, 2sseldd 3984 . . . . 5 (𝜑𝐶𝐴)
19 sotric 5622 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑆𝐴𝐶𝐴)) → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶𝐶𝑅𝑆)))
203, 17, 18, 19syl12anc 837 . . . 4 (𝜑 → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶𝐶𝑅𝑆)))
21 orcom 871 . . . . . 6 ((𝑆 = 𝐶𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆𝑆 = 𝐶))
22 eqcom 2744 . . . . . . 7 (𝑆 = 𝐶𝐶 = 𝑆)
2322orbi2i 913 . . . . . 6 ((𝐶𝑅𝑆𝑆 = 𝐶) ↔ (𝐶𝑅𝑆𝐶 = 𝑆))
2421, 23bitri 275 . . . . 5 ((𝑆 = 𝐶𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆𝐶 = 𝑆))
2524notbii 320 . . . 4 (¬ (𝑆 = 𝐶𝐶𝑅𝑆) ↔ ¬ (𝐶𝑅𝑆𝐶 = 𝑆))
2620, 25bitr2di 288 . . 3 (𝜑 → (¬ (𝐶𝑅𝑆𝐶 = 𝑆) ↔ 𝑆𝑅𝐶))
2713, 26mtbird 325 . 2 (𝜑 → ¬ ¬ (𝐶𝑅𝑆𝐶 = 𝑆))
2827notnotrd 133 1 (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951  c0 4333   class class class wbr 5143   Or wor 5591  Fincfn 8985  supcsup 9480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-om 7888  df-en 8986  df-fin 8989  df-sup 9482
This theorem is referenced by:  infltoreq  9542  supfirege  12255  safesnsupfilb  43431
  Copyright terms: Public domain W3C validator