MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supgtoreq Structured version   Visualization version   GIF version

Theorem supgtoreq 9398
Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.)
Hypotheses
Ref Expression
supgtoreq.1 (𝜑𝑅 Or 𝐴)
supgtoreq.2 (𝜑𝐵𝐴)
supgtoreq.3 (𝜑𝐵 ∈ Fin)
supgtoreq.4 (𝜑𝐶𝐵)
supgtoreq.5 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
Assertion
Ref Expression
supgtoreq (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))

Proof of Theorem supgtoreq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supgtoreq.5 . . . 4 (𝜑𝑆 = sup(𝐵, 𝐴, 𝑅))
2 supgtoreq.4 . . . . 5 (𝜑𝐶𝐵)
3 supgtoreq.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
4 supgtoreq.2 . . . . . . 7 (𝜑𝐵𝐴)
5 supgtoreq.3 . . . . . . . 8 (𝜑𝐵 ∈ Fin)
62ne0d 4301 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
7 fisup2g 9396 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
83, 5, 6, 4, 7syl13anc 1374 . . . . . . 7 (𝜑 → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
9 ssrexv 4013 . . . . . . 7 (𝐵𝐴 → (∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
104, 8, 9sylc 65 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
113, 10supub 9386 . . . . 5 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
122, 11mpd 15 . . . 4 (𝜑 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
131, 12eqnbrtrd 5120 . . 3 (𝜑 → ¬ 𝑆𝑅𝐶)
14 fisupcl 9397 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
153, 5, 6, 4, 14syl13anc 1374 . . . . . . 7 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
164, 15sseldd 3944 . . . . . 6 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
171, 16eqeltrd 2828 . . . . 5 (𝜑𝑆𝐴)
184, 2sseldd 3944 . . . . 5 (𝜑𝐶𝐴)
19 sotric 5569 . . . . 5 ((𝑅 Or 𝐴 ∧ (𝑆𝐴𝐶𝐴)) → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶𝐶𝑅𝑆)))
203, 17, 18, 19syl12anc 836 . . . 4 (𝜑 → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶𝐶𝑅𝑆)))
21 orcom 870 . . . . . 6 ((𝑆 = 𝐶𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆𝑆 = 𝐶))
22 eqcom 2736 . . . . . . 7 (𝑆 = 𝐶𝐶 = 𝑆)
2322orbi2i 912 . . . . . 6 ((𝐶𝑅𝑆𝑆 = 𝐶) ↔ (𝐶𝑅𝑆𝐶 = 𝑆))
2421, 23bitri 275 . . . . 5 ((𝑆 = 𝐶𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆𝐶 = 𝑆))
2524notbii 320 . . . 4 (¬ (𝑆 = 𝐶𝐶𝑅𝑆) ↔ ¬ (𝐶𝑅𝑆𝐶 = 𝑆))
2620, 25bitr2di 288 . . 3 (𝜑 → (¬ (𝐶𝑅𝑆𝐶 = 𝑆) ↔ 𝑆𝑅𝐶))
2713, 26mtbird 325 . 2 (𝜑 → ¬ ¬ (𝐶𝑅𝑆𝐶 = 𝑆))
2827notnotrd 133 1 (𝜑 → (𝐶𝑅𝑆𝐶 = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3911  c0 4292   class class class wbr 5102   Or wor 5538  Fincfn 8895  supcsup 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-om 7823  df-en 8896  df-fin 8899  df-sup 9369
This theorem is referenced by:  infltoreq  9431  supfirege  12146  safesnsupfilb  43380
  Copyright terms: Public domain W3C validator