MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsradd Structured version   Visualization version   GIF version

Theorem resspsradd 21891
Description: A restricted power series algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsradd ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))

Proof of Theorem resspsradd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 resspsr.u . . 3 𝑈 = (𝐼 mPwSer 𝐻)
2 resspsr.b . . 3 𝐵 = (Base‘𝑈)
3 eqid 2730 . . 3 (+g𝐻) = (+g𝐻)
4 eqid 2730 . . 3 (+g𝑈) = (+g𝑈)
5 simprl 770 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
6 simprr 772 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
71, 2, 3, 4, 5, 6psradd 21853 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋f (+g𝐻)𝑌))
8 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
9 eqid 2730 . . . 4 (Base‘𝑆) = (Base‘𝑆)
10 eqid 2730 . . . 4 (+g𝑅) = (+g𝑅)
11 eqid 2730 . . . 4 (+g𝑆) = (+g𝑆)
12 fvex 6874 . . . . . . . 8 (Base‘𝑅) ∈ V
13 resspsr.2 . . . . . . . . . 10 (𝜑𝑇 ∈ (SubRing‘𝑅))
14 resspsr.h . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
1514subrgbas 20497 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
1613, 15syl 17 . . . . . . . . 9 (𝜑𝑇 = (Base‘𝐻))
17 eqid 2730 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
1817subrgss 20488 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
1913, 18syl 17 . . . . . . . . 9 (𝜑𝑇 ⊆ (Base‘𝑅))
2016, 19eqsstrrd 3985 . . . . . . . 8 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅))
21 mapss 8865 . . . . . . . 8 (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2212, 20, 21sylancr 587 . . . . . . 7 (𝜑 → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2322adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
24 eqid 2730 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
25 eqid 2730 . . . . . . 7 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
26 reldmpsr 21830 . . . . . . . . . 10 Rel dom mPwSer
2726, 1, 2elbasov 17193 . . . . . . . . 9 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝐻 ∈ V))
2827ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐼 ∈ V ∧ 𝐻 ∈ V))
2928simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐼 ∈ V)
301, 24, 25, 2, 29psrbas 21849 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
318, 17, 25, 9, 29psrbas 21849 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
3223, 30, 313sstr4d 4005 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
3332, 5sseldd 3950 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑆))
3432, 6sseldd 3950 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
358, 9, 10, 11, 33, 34psradd 21853 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑆)𝑌) = (𝑋f (+g𝑅)𝑌))
3614, 10ressplusg 17261 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝐻))
3713, 36syl 17 . . . . . 6 (𝜑 → (+g𝑅) = (+g𝐻))
3837adantr 480 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (+g𝑅) = (+g𝐻))
3938ofeqd 7658 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ∘f (+g𝑅) = ∘f (+g𝐻))
4039oveqd 7407 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋f (+g𝑅)𝑌) = (𝑋f (+g𝐻)𝑌))
4135, 40eqtrd 2765 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑆)𝑌) = (𝑋f (+g𝐻)𝑌))
422fvexi 6875 . . . 4 𝐵 ∈ V
43 resspsr.p . . . . 5 𝑃 = (𝑆s 𝐵)
4443, 11ressplusg 17261 . . . 4 (𝐵 ∈ V → (+g𝑆) = (+g𝑃))
4542, 44mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (+g𝑆) = (+g𝑃))
4645oveqd 7407 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑆)𝑌) = (𝑋(+g𝑃)𝑌))
477, 41, 463eqtr2d 2771 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3917  ccnv 5640  cima 5644  cfv 6514  (class class class)co 7390  f cof 7654  m cmap 8802  Fincfn 8921  cn 12193  0cn0 12449  Basecbs 17186  s cress 17207  +gcplusg 17227  SubRingcsubrg 20485   mPwSer cmps 21820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-subg 19062  df-ring 20151  df-subrg 20486  df-psr 21825
This theorem is referenced by:  subrgpsr  21894  ressmpladd  21943
  Copyright terms: Public domain W3C validator