MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsradd Structured version   Visualization version   GIF version

Theorem resspsradd 21535
Description: A restricted power series algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅 β†Ύs 𝑇)
resspsr.u π‘ˆ = (𝐼 mPwSer 𝐻)
resspsr.b 𝐡 = (Baseβ€˜π‘ˆ)
resspsr.p 𝑃 = (𝑆 β†Ύs 𝐡)
resspsr.2 (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))
Assertion
Ref Expression
resspsradd ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(+gβ€˜π‘ˆ)π‘Œ) = (𝑋(+gβ€˜π‘ƒ)π‘Œ))

Proof of Theorem resspsradd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 resspsr.u . . 3 π‘ˆ = (𝐼 mPwSer 𝐻)
2 resspsr.b . . 3 𝐡 = (Baseβ€˜π‘ˆ)
3 eqid 2732 . . 3 (+gβ€˜π») = (+gβ€˜π»)
4 eqid 2732 . . 3 (+gβ€˜π‘ˆ) = (+gβ€˜π‘ˆ)
5 simprl 769 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
6 simprr 771 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
71, 2, 3, 4, 5, 6psradd 21500 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(+gβ€˜π‘ˆ)π‘Œ) = (𝑋 ∘f (+gβ€˜π»)π‘Œ))
8 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
9 eqid 2732 . . . 4 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
10 eqid 2732 . . . 4 (+gβ€˜π‘…) = (+gβ€˜π‘…)
11 eqid 2732 . . . 4 (+gβ€˜π‘†) = (+gβ€˜π‘†)
12 fvex 6904 . . . . . . . 8 (Baseβ€˜π‘…) ∈ V
13 resspsr.2 . . . . . . . . . 10 (πœ‘ β†’ 𝑇 ∈ (SubRingβ€˜π‘…))
14 resspsr.h . . . . . . . . . . 11 𝐻 = (𝑅 β†Ύs 𝑇)
1514subrgbas 20327 . . . . . . . . . 10 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ 𝑇 = (Baseβ€˜π»))
1613, 15syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑇 = (Baseβ€˜π»))
17 eqid 2732 . . . . . . . . . . 11 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
1817subrgss 20319 . . . . . . . . . 10 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ 𝑇 βŠ† (Baseβ€˜π‘…))
1913, 18syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑇 βŠ† (Baseβ€˜π‘…))
2016, 19eqsstrrd 4021 . . . . . . . 8 (πœ‘ β†’ (Baseβ€˜π») βŠ† (Baseβ€˜π‘…))
21 mapss 8882 . . . . . . . 8 (((Baseβ€˜π‘…) ∈ V ∧ (Baseβ€˜π») βŠ† (Baseβ€˜π‘…)) β†’ ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) βŠ† ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
2212, 20, 21sylancr 587 . . . . . . 7 (πœ‘ β†’ ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) βŠ† ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
2322adantr 481 . . . . . 6 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}) βŠ† ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
24 eqid 2732 . . . . . . 7 (Baseβ€˜π») = (Baseβ€˜π»)
25 eqid 2732 . . . . . . 7 {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin} = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}
26 reldmpsr 21466 . . . . . . . . . 10 Rel dom mPwSer
2726, 1, 2elbasov 17150 . . . . . . . . 9 (𝑋 ∈ 𝐡 β†’ (𝐼 ∈ V ∧ 𝐻 ∈ V))
2827ad2antrl 726 . . . . . . . 8 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝐼 ∈ V ∧ 𝐻 ∈ V))
2928simpld 495 . . . . . . 7 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝐼 ∈ V)
301, 24, 25, 2, 29psrbas 21496 . . . . . 6 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝐡 = ((Baseβ€˜π») ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
318, 17, 25, 9, 29psrbas 21496 . . . . . 6 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (Baseβ€˜π‘†) = ((Baseβ€˜π‘…) ↑m {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}))
3223, 30, 313sstr4d 4029 . . . . 5 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝐡 βŠ† (Baseβ€˜π‘†))
3332, 5sseldd 3983 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝑋 ∈ (Baseβ€˜π‘†))
3432, 6sseldd 3983 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘Œ ∈ (Baseβ€˜π‘†))
358, 9, 10, 11, 33, 34psradd 21500 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(+gβ€˜π‘†)π‘Œ) = (𝑋 ∘f (+gβ€˜π‘…)π‘Œ))
3614, 10ressplusg 17234 . . . . . . 7 (𝑇 ∈ (SubRingβ€˜π‘…) β†’ (+gβ€˜π‘…) = (+gβ€˜π»))
3713, 36syl 17 . . . . . 6 (πœ‘ β†’ (+gβ€˜π‘…) = (+gβ€˜π»))
3837adantr 481 . . . . 5 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (+gβ€˜π‘…) = (+gβ€˜π»))
3938ofeqd 7671 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ∘f (+gβ€˜π‘…) = ∘f (+gβ€˜π»))
4039oveqd 7425 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋 ∘f (+gβ€˜π‘…)π‘Œ) = (𝑋 ∘f (+gβ€˜π»)π‘Œ))
4135, 40eqtrd 2772 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(+gβ€˜π‘†)π‘Œ) = (𝑋 ∘f (+gβ€˜π»)π‘Œ))
422fvexi 6905 . . . 4 𝐡 ∈ V
43 resspsr.p . . . . 5 𝑃 = (𝑆 β†Ύs 𝐡)
4443, 11ressplusg 17234 . . . 4 (𝐡 ∈ V β†’ (+gβ€˜π‘†) = (+gβ€˜π‘ƒ))
4542, 44mp1i 13 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (+gβ€˜π‘†) = (+gβ€˜π‘ƒ))
4645oveqd 7425 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(+gβ€˜π‘†)π‘Œ) = (𝑋(+gβ€˜π‘ƒ)π‘Œ))
477, 41, 463eqtr2d 2778 1 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(+gβ€˜π‘ˆ)π‘Œ) = (𝑋(+gβ€˜π‘ƒ)π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βŠ† wss 3948  β—‘ccnv 5675   β€œ cima 5679  β€˜cfv 6543  (class class class)co 7408   ∘f cof 7667   ↑m cmap 8819  Fincfn 8938  β„•cn 12211  β„•0cn0 12471  Basecbs 17143   β†Ύs cress 17172  +gcplusg 17196  SubRingcsubrg 20314   mPwSer cmps 21456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-tset 17215  df-subg 19002  df-ring 20057  df-subrg 20316  df-psr 21461
This theorem is referenced by:  subrgpsr  21538  ressmpladd  21583
  Copyright terms: Public domain W3C validator