MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsradd Structured version   Visualization version   GIF version

Theorem resspsradd 20913
Description: A restricted power series algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsradd ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))

Proof of Theorem resspsradd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 resspsr.u . . 3 𝑈 = (𝐼 mPwSer 𝐻)
2 resspsr.b . . 3 𝐵 = (Base‘𝑈)
3 eqid 2734 . . 3 (+g𝐻) = (+g𝐻)
4 eqid 2734 . . 3 (+g𝑈) = (+g𝑈)
5 simprl 771 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
6 simprr 773 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
71, 2, 3, 4, 5, 6psradd 20879 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋f (+g𝐻)𝑌))
8 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
9 eqid 2734 . . . 4 (Base‘𝑆) = (Base‘𝑆)
10 eqid 2734 . . . 4 (+g𝑅) = (+g𝑅)
11 eqid 2734 . . . 4 (+g𝑆) = (+g𝑆)
12 fvex 6719 . . . . . . . 8 (Base‘𝑅) ∈ V
13 resspsr.2 . . . . . . . . . 10 (𝜑𝑇 ∈ (SubRing‘𝑅))
14 resspsr.h . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
1514subrgbas 19781 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
1613, 15syl 17 . . . . . . . . 9 (𝜑𝑇 = (Base‘𝐻))
17 eqid 2734 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
1817subrgss 19773 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
1913, 18syl 17 . . . . . . . . 9 (𝜑𝑇 ⊆ (Base‘𝑅))
2016, 19eqsstrrd 3930 . . . . . . . 8 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅))
21 mapss 8559 . . . . . . . 8 (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2212, 20, 21sylancr 590 . . . . . . 7 (𝜑 → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2322adantr 484 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
24 eqid 2734 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
25 eqid 2734 . . . . . . 7 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
26 reldmpsr 20845 . . . . . . . . . 10 Rel dom mPwSer
2726, 1, 2elbasov 16746 . . . . . . . . 9 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝐻 ∈ V))
2827ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐼 ∈ V ∧ 𝐻 ∈ V))
2928simpld 498 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐼 ∈ V)
301, 24, 25, 2, 29psrbas 20875 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
318, 17, 25, 9, 29psrbas 20875 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
3223, 30, 313sstr4d 3938 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
3332, 5sseldd 3892 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑆))
3432, 6sseldd 3892 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
358, 9, 10, 11, 33, 34psradd 20879 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑆)𝑌) = (𝑋f (+g𝑅)𝑌))
3614, 10ressplusg 16814 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝐻))
3713, 36syl 17 . . . . . 6 (𝜑 → (+g𝑅) = (+g𝐻))
3837adantr 484 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (+g𝑅) = (+g𝐻))
39 ofeq 7460 . . . . 5 ((+g𝑅) = (+g𝐻) → ∘f (+g𝑅) = ∘f (+g𝐻))
4038, 39syl 17 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ∘f (+g𝑅) = ∘f (+g𝐻))
4140oveqd 7219 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋f (+g𝑅)𝑌) = (𝑋f (+g𝐻)𝑌))
4235, 41eqtrd 2774 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑆)𝑌) = (𝑋f (+g𝐻)𝑌))
432fvexi 6720 . . . 4 𝐵 ∈ V
44 resspsr.p . . . . 5 𝑃 = (𝑆s 𝐵)
4544, 11ressplusg 16814 . . . 4 (𝐵 ∈ V → (+g𝑆) = (+g𝑃))
4643, 45mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (+g𝑆) = (+g𝑃))
4746oveqd 7219 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑆)𝑌) = (𝑋(+g𝑃)𝑌))
487, 42, 473eqtr2d 2780 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3058  Vcvv 3401  wss 3857  ccnv 5539  cima 5543  cfv 6369  (class class class)co 7202  f cof 7456  m cmap 8497  Fincfn 8615  cn 11813  0cn0 12073  Basecbs 16684  s cress 16685  +gcplusg 16767  SubRingcsubrg 19768   mPwSer cmps 20835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-tset 16786  df-subg 18512  df-ring 19536  df-subrg 19770  df-psr 20840
This theorem is referenced by:  subrgpsr  20916  ressmpladd  20958
  Copyright terms: Public domain W3C validator