MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsradd Structured version   Visualization version   GIF version

Theorem resspsradd 19923
Description: A restricted power series algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsradd ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))

Proof of Theorem resspsradd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 resspsr.u . . 3 𝑈 = (𝐼 mPwSer 𝐻)
2 resspsr.b . . 3 𝐵 = (Base‘𝑈)
3 eqid 2773 . . 3 (+g𝐻) = (+g𝐻)
4 eqid 2773 . . 3 (+g𝑈) = (+g𝑈)
5 simprl 759 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
6 simprr 761 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
71, 2, 3, 4, 5, 6psradd 19889 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋𝑓 (+g𝐻)𝑌))
8 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
9 eqid 2773 . . . 4 (Base‘𝑆) = (Base‘𝑆)
10 eqid 2773 . . . 4 (+g𝑅) = (+g𝑅)
11 eqid 2773 . . . 4 (+g𝑆) = (+g𝑆)
12 fvex 6510 . . . . . . . 8 (Base‘𝑅) ∈ V
13 resspsr.2 . . . . . . . . . 10 (𝜑𝑇 ∈ (SubRing‘𝑅))
14 resspsr.h . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
1514subrgbas 19280 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
1613, 15syl 17 . . . . . . . . 9 (𝜑𝑇 = (Base‘𝐻))
17 eqid 2773 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
1817subrgss 19272 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
1913, 18syl 17 . . . . . . . . 9 (𝜑𝑇 ⊆ (Base‘𝑅))
2016, 19eqsstr3d 3891 . . . . . . . 8 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅))
21 mapss 8250 . . . . . . . 8 (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2212, 20, 21sylancr 579 . . . . . . 7 (𝜑 → ((Base‘𝐻) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
2322adantr 473 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((Base‘𝐻) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
24 eqid 2773 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
25 eqid 2773 . . . . . . 7 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
26 reldmpsr 19868 . . . . . . . . . 10 Rel dom mPwSer
2726, 1, 2elbasov 16400 . . . . . . . . 9 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝐻 ∈ V))
2827ad2antrl 716 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐼 ∈ V ∧ 𝐻 ∈ V))
2928simpld 487 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐼 ∈ V)
301, 24, 25, 2, 29psrbas 19885 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 = ((Base‘𝐻) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
318, 17, 25, 9, 29psrbas 19885 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (Base‘𝑆) = ((Base‘𝑅) ↑𝑚 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
3223, 30, 313sstr4d 3899 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
3332, 5sseldd 3854 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑆))
3432, 6sseldd 3854 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
358, 9, 10, 11, 33, 34psradd 19889 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑆)𝑌) = (𝑋𝑓 (+g𝑅)𝑌))
3614, 10ressplusg 16467 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → (+g𝑅) = (+g𝐻))
3713, 36syl 17 . . . . . 6 (𝜑 → (+g𝑅) = (+g𝐻))
3837adantr 473 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (+g𝑅) = (+g𝐻))
39 ofeq 7228 . . . . 5 ((+g𝑅) = (+g𝐻) → ∘𝑓 (+g𝑅) = ∘𝑓 (+g𝐻))
4038, 39syl 17 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ∘𝑓 (+g𝑅) = ∘𝑓 (+g𝐻))
4140oveqd 6992 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝑓 (+g𝑅)𝑌) = (𝑋𝑓 (+g𝐻)𝑌))
4235, 41eqtrd 2809 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑆)𝑌) = (𝑋𝑓 (+g𝐻)𝑌))
432fvexi 6511 . . . 4 𝐵 ∈ V
44 resspsr.p . . . . 5 𝑃 = (𝑆s 𝐵)
4544, 11ressplusg 16467 . . . 4 (𝐵 ∈ V → (+g𝑆) = (+g𝑃))
4643, 45mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (+g𝑆) = (+g𝑃))
4746oveqd 6992 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑆)𝑌) = (𝑋(+g𝑃)𝑌))
487, 42, 473eqtr2d 2815 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(+g𝑈)𝑌) = (𝑋(+g𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  {crab 3087  Vcvv 3410  wss 3824  ccnv 5403  cima 5407  cfv 6186  (class class class)co 6975  𝑓 cof 7224  𝑚 cmap 8205  Fincfn 8305  cn 11438  0cn0 11706  Basecbs 16338  s cress 16339  +gcplusg 16420  SubRingcsubrg 19267   mPwSer cmps 19858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-of 7226  df-om 7396  df-1st 7500  df-2nd 7501  df-supp 7633  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-oadd 7908  df-er 8088  df-map 8207  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-fsupp 8628  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-5 11505  df-6 11506  df-7 11507  df-8 11508  df-9 11509  df-n0 11707  df-z 11793  df-uz 12058  df-fz 12708  df-struct 16340  df-ndx 16341  df-slot 16342  df-base 16344  df-sets 16345  df-ress 16346  df-plusg 16433  df-mulr 16434  df-sca 16436  df-vsca 16437  df-tset 16439  df-subg 18073  df-ring 19035  df-subrg 19269  df-psr 19863
This theorem is referenced by:  subrgpsr  19926  ressmpladd  19964
  Copyright terms: Public domain W3C validator