Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fedgmullem1 Structured version   Visualization version   GIF version

Theorem fedgmullem1 33625
Description: Lemma for fedgmul 33627. (Contributed by Thierry Arnoux, 20-Jul-2023.)
Hypotheses
Ref Expression
fedgmul.a 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
fedgmul.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
fedgmul.c 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
fedgmul.f 𝐹 = (𝐸s 𝑈)
fedgmul.k 𝐾 = (𝐸s 𝑉)
fedgmul.1 (𝜑𝐸 ∈ DivRing)
fedgmul.2 (𝜑𝐹 ∈ DivRing)
fedgmul.3 (𝜑𝐾 ∈ DivRing)
fedgmul.4 (𝜑𝑈 ∈ (SubRing‘𝐸))
fedgmul.5 (𝜑𝑉 ∈ (SubRing‘𝐹))
fedgmullem.d 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
fedgmullem.h 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
fedgmullem.x (𝜑𝑋 ∈ (LBasis‘𝐶))
fedgmullem.y (𝜑𝑌 ∈ (LBasis‘𝐵))
fedgmullem1.a (𝜑𝑍 ∈ (Base‘𝐴))
fedgmullem1.l (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))
fedgmullem1.1 (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))
fedgmullem1.z (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
fedgmullem1.g (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
fedgmullem1.2 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))
fedgmullem1.3 ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
Assertion
Ref Expression
fedgmullem1 (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷))))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑗   𝐶,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝐸,𝑗   𝑖,𝐺,𝑗   𝑖,𝐻,𝑗   𝑗,𝐿   𝑈,𝑖   𝑖,𝑋,𝑗   𝑖,𝑌,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐵(𝑖)   𝑈(𝑗)   𝐹(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝐿(𝑖)   𝑉(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem fedgmullem1
Dummy variables 𝑢 𝑘 𝑙 𝑔 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fedgmullem1.g . . . . 5 (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
2 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
3 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
42, 3ffvelcdmd 7057 . . . . . . . . . . . 12 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋))
5 elmapi 8822 . . . . . . . . . . . 12 ((𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
64, 5syl 17 . . . . . . . . . . 11 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
76anasss 466 . . . . . . . . . 10 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
8 simprr 772 . . . . . . . . . 10 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → 𝑖𝑋)
97, 8ffvelcdmd 7057 . . . . . . . . 9 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
10 fedgmul.k . . . . . . . . . . . . 13 𝐾 = (𝐸s 𝑉)
11 fedgmul.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
1211a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝐸)‘𝑉))
13 fedgmul.4 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 ∈ (SubRing‘𝐸))
14 fedgmul.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 ∈ (SubRing‘𝐹))
15 fedgmul.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝐸s 𝑈)
1615subsubrg 20507 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈)))
1716biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
1813, 14, 17syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
1918simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (SubRing‘𝐸))
20 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐸) = (Base‘𝐸)
2120subrgss 20481 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸))
2219, 21syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐸))
2312, 22srasca 21087 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝑉) = (Scalar‘𝐴))
2410, 23eqtrid 2776 . . . . . . . . . . . 12 (𝜑𝐾 = (Scalar‘𝐴))
2518simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝑉𝑈)
26 ressabs 17218 . . . . . . . . . . . . . . 15 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈) → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
2713, 25, 26syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
2815oveq1i 7397 . . . . . . . . . . . . . 14 (𝐹s 𝑉) = ((𝐸s 𝑈) ↾s 𝑉)
2927, 28, 103eqtr4g 2789 . . . . . . . . . . . . 13 (𝜑 → (𝐹s 𝑉) = 𝐾)
30 fedgmul.c . . . . . . . . . . . . . . 15 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
3130a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐶 = ((subringAlg ‘𝐹)‘𝑉))
32 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐹) = (Base‘𝐹)
3332subrgss 20481 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹))
3414, 33syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐹))
3531, 34srasca 21087 . . . . . . . . . . . . 13 (𝜑 → (𝐹s 𝑉) = (Scalar‘𝐶))
3629, 35eqtr3d 2766 . . . . . . . . . . . 12 (𝜑𝐾 = (Scalar‘𝐶))
3724, 36eqtr3d 2766 . . . . . . . . . . 11 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶))
3837fveq2d 6862 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
3938ad2antrr 726 . . . . . . . . 9 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
409, 39eleqtrrd 2831 . . . . . . . 8 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
4140ralrimivva 3180 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → ∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
42 fedgmullem.h . . . . . . . 8 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
4342fmpo 8047 . . . . . . 7 (∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
4441, 43sylib 218 . . . . . 6 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
45 fvexd 6873 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (Base‘(Scalar‘𝐴)) ∈ V)
46 fedgmullem.y . . . . . . . . 9 (𝜑𝑌 ∈ (LBasis‘𝐵))
47 fedgmullem.x . . . . . . . . 9 (𝜑𝑋 ∈ (LBasis‘𝐶))
4846, 47xpexd 7727 . . . . . . . 8 (𝜑 → (𝑌 × 𝑋) ∈ V)
4948adantr 480 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (𝑌 × 𝑋) ∈ V)
5045, 49elmapd 8813 . . . . . 6 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴))))
5144, 50mpbird 257 . . . . 5 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → 𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)))
521, 51mpdan 687 . . . 4 (𝜑𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)))
53 simpl 482 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝜑)
5453adantr 480 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝜑)
551ffvelcdmda 7056 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋))
5655, 5syl 17 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
5756adantr 480 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
5838feq3d 6673 . . . . . . . . . . 11 (𝜑 → ((𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)) ↔ (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶))))
5958biimpar 477 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶))) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)))
6054, 57, 59syl2anc 584 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)))
61 simpr 484 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖𝑋)
6260, 61ffvelcdmd 7057 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6362ralrimiva 3125 . . . . . . 7 ((𝜑𝑗𝑌) → ∀𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6463ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6564, 43sylib 218 . . . . 5 (𝜑𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
6665ffund 6692 . . . 4 (𝜑 → Fun 𝐻)
67 fedgmul.1 . . . . . 6 (𝜑𝐸 ∈ DivRing)
68 drngring 20645 . . . . . 6 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
6967, 68syl 17 . . . . 5 (𝜑𝐸 ∈ Ring)
70 ringgrp 20147 . . . . 5 (𝐸 ∈ Ring → 𝐸 ∈ Grp)
71 eqid 2729 . . . . . 6 (0g𝐸) = (0g𝐸)
7220, 71grpidcl 18897 . . . . 5 (𝐸 ∈ Grp → (0g𝐸) ∈ (Base‘𝐸))
7369, 70, 723syl 18 . . . 4 (𝜑 → (0g𝐸) ∈ (Base‘𝐸))
74 fedgmullem1.1 . . . . . . 7 (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))
7574fsuppimpd 9320 . . . . . 6 (𝜑 → (𝐿 supp (0g‘(Scalar‘𝐵))) ∈ Fin)
76 simpl 482 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝜑)
77 simpr 484 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵)))))
7877eldifad 3926 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝑗𝑌)
79 fedgmullem1.l . . . . . . . . . 10 (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))
80 ssidd 3970 . . . . . . . . . 10 (𝜑 → (𝐿 supp (0g‘(Scalar‘𝐵))) ⊆ (𝐿 supp (0g‘(Scalar‘𝐵))))
81 fvexd 6873 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) ∈ V)
8279, 80, 46, 81suppssr 8174 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐿𝑗) = (0g‘(Scalar‘𝐵)))
83 fedgmullem1.3 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
8478, 83syldan 591 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
85 fedgmul.b . . . . . . . . . . . . . . 15 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
8685a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
8720subrgss 20481 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
8813, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘𝐸))
8986, 88srasca 21087 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
9015, 89eqtrid 2776 . . . . . . . . . . . 12 (𝜑𝐹 = (Scalar‘𝐵))
9190fveq2d 6862 . . . . . . . . . . 11 (𝜑 → (0g𝐹) = (0g‘(Scalar‘𝐵)))
92 fedgmul.2 . . . . . . . . . . . 12 (𝜑𝐹 ∈ DivRing)
9330, 92, 14drgext0g 33585 . . . . . . . . . . 11 (𝜑 → (0g𝐹) = (0g𝐶))
9491, 93eqtr3d 2766 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) = (0g𝐶))
9594adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (0g‘(Scalar‘𝐵)) = (0g𝐶))
9682, 84, 953eqtr3d 2772 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶))
97 fedgmullem1.2 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))
98 breq1 5110 . . . . . . . . . . . . 13 (𝑔 = (𝐺𝑗) → (𝑔 finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶))))
99 fveq1 6857 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝐺𝑗) → (𝑔𝑖) = ((𝐺𝑗)‘𝑖))
10099oveq1d 7402 . . . . . . . . . . . . . . . 16 (𝑔 = (𝐺𝑗) → ((𝑔𝑖)( ·𝑠𝐶)𝑖) = (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))
101100mpteq2dv 5201 . . . . . . . . . . . . . . 15 (𝑔 = (𝐺𝑗) → (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
102101oveq2d 7403 . . . . . . . . . . . . . 14 (𝑔 = (𝐺𝑗) → (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
103102eqeq1d 2731 . . . . . . . . . . . . 13 (𝑔 = (𝐺𝑗) → ((𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶) ↔ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)))
10498, 103anbi12d 632 . . . . . . . . . . . 12 (𝑔 = (𝐺𝑗) → ((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) ↔ ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶))))
105 eqeq1 2733 . . . . . . . . . . . 12 (𝑔 = (𝐺𝑗) → (𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))}) ↔ (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
106104, 105imbi12d 344 . . . . . . . . . . 11 (𝑔 = (𝐺𝑗) → (((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})) ↔ (((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))))
107 fedgmul.3 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ DivRing)
10829, 107eqeltrd 2828 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹s 𝑉) ∈ DivRing)
109 eqid 2729 . . . . . . . . . . . . . . . 16 (𝐹s 𝑉) = (𝐹s 𝑉)
11030, 109sralvec 33581 . . . . . . . . . . . . . . 15 ((𝐹 ∈ DivRing ∧ (𝐹s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec)
11192, 108, 14, 110syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ LVec)
112 lveclmod 21013 . . . . . . . . . . . . . 14 (𝐶 ∈ LVec → 𝐶 ∈ LMod)
113111, 112syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ LMod)
114113adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝐶 ∈ LMod)
115 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝐶) = (Base‘𝐶)
116 eqid 2729 . . . . . . . . . . . . . . 15 (LBasis‘𝐶) = (LBasis‘𝐶)
117115, 116lbsss 20984 . . . . . . . . . . . . . 14 (𝑋 ∈ (LBasis‘𝐶) → 𝑋 ⊆ (Base‘𝐶))
11847, 117syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ (Base‘𝐶))
119118adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ⊆ (Base‘𝐶))
120 eqid 2729 . . . . . . . . . . . . . . . 16 (LSpan‘𝐶) = (LSpan‘𝐶)
121115, 116, 120islbs4 21741 . . . . . . . . . . . . . . 15 (𝑋 ∈ (LBasis‘𝐶) ↔ (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶)))
12247, 121sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶)))
123122simpld 494 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (LIndS‘𝐶))
124123adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ∈ (LIndS‘𝐶))
125 eqid 2729 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
126 eqid 2729 . . . . . . . . . . . . . 14 (Scalar‘𝐶) = (Scalar‘𝐶)
127 eqid 2729 . . . . . . . . . . . . . 14 ( ·𝑠𝐶) = ( ·𝑠𝐶)
128 eqid 2729 . . . . . . . . . . . . . 14 (0g𝐶) = (0g𝐶)
129 eqid 2729 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
130115, 125, 126, 127, 128, 129islinds5 33338 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) → (𝑋 ∈ (LIndS‘𝐶) ↔ ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))}))))
131130biimpa 476 . . . . . . . . . . . 12 (((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) ∧ 𝑋 ∈ (LIndS‘𝐶)) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})))
132114, 119, 124, 131syl21anc 837 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})))
133106, 132, 55rspcdva 3589 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
13497, 133mpand 695 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
135134imp 406 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))
13676, 78, 96, 135syl21anc 837 . . . . . . 7 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))
1371, 136suppss 8173 . . . . . 6 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ (𝐿 supp (0g‘(Scalar‘𝐵))))
13875, 137ssfid 9212 . . . . 5 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin)
139 suppssdm 8156 . . . . . . . . . 10 (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ dom 𝐺
140139, 1fssdm 6707 . . . . . . . . 9 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ 𝑌)
141140sselda 3946 . . . . . . . 8 ((𝜑𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))) → 𝑤𝑌)
142 eleq1w 2811 . . . . . . . . . . . 12 (𝑗 = 𝑤 → (𝑗𝑌𝑤𝑌))
143142anbi2d 630 . . . . . . . . . . 11 (𝑗 = 𝑤 → ((𝜑𝑗𝑌) ↔ (𝜑𝑤𝑌)))
144 fveq2 6858 . . . . . . . . . . . 12 (𝑗 = 𝑤 → (𝐺𝑗) = (𝐺𝑤))
145144breq1d 5117 . . . . . . . . . . 11 (𝑗 = 𝑤 → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶))))
146143, 145imbi12d 344 . . . . . . . . . 10 (𝑗 = 𝑤 → (((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶))) ↔ ((𝜑𝑤𝑌) → (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶)))))
147146, 97chvarvv 1989 . . . . . . . . 9 ((𝜑𝑤𝑌) → (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶)))
148147fsuppimpd 9320 . . . . . . . 8 ((𝜑𝑤𝑌) → ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
149141, 148syldan 591 . . . . . . 7 ((𝜑𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))) → ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
150149ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
151 iunfi 9294 . . . . . 6 (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ ∀𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin) → 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
152138, 150, 151syl2anc 584 . . . . 5 (𝜑 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
153 xpfi 9269 . . . . 5 (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin) → ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin)
154138, 152, 153syl2anc 584 . . . 4 (𝜑 → ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin)
155 fveq2 6858 . . . . . . . . . 10 (𝑣 = 𝑗 → (𝐺𝑣) = (𝐺𝑗))
156155fveq1d 6860 . . . . . . . . 9 (𝑣 = 𝑗 → ((𝐺𝑣)‘𝑢) = ((𝐺𝑗)‘𝑢))
157156mpteq2dv 5201 . . . . . . . 8 (𝑣 = 𝑗 → (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)) = (𝑢𝑋 ↦ ((𝐺𝑗)‘𝑢)))
158 fveq2 6858 . . . . . . . . 9 (𝑢 = 𝑖 → ((𝐺𝑗)‘𝑢) = ((𝐺𝑗)‘𝑖))
159158cbvmptv 5211 . . . . . . . 8 (𝑢𝑋 ↦ ((𝐺𝑗)‘𝑢)) = (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
160157, 159eqtrdi 2780 . . . . . . 7 (𝑣 = 𝑗 → (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)) = (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
161160cbvmptv 5211 . . . . . 6 (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) = (𝑗𝑌 ↦ (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
162 fvexd 6873 . . . . . 6 (𝜑 → (0g‘(Scalar‘𝐶)) ∈ V)
163 fvexd 6873 . . . . . 6 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ V)
16442, 161, 46, 47, 162, 163suppovss 32604 . . . . 5 (𝜑 → (𝐻 supp (0g‘(Scalar‘𝐶))) ⊆ (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶)))))
16510, 71subrg0 20488 . . . . . . . 8 (𝑉 ∈ (SubRing‘𝐸) → (0g𝐸) = (0g𝐾))
16619, 165syl 17 . . . . . . 7 (𝜑 → (0g𝐸) = (0g𝐾))
16736fveq2d 6862 . . . . . . 7 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝐶)))
168166, 167eqtr2d 2765 . . . . . 6 (𝜑 → (0g‘(Scalar‘𝐶)) = (0g𝐸))
169168oveq2d 7403 . . . . 5 (𝜑 → (𝐻 supp (0g‘(Scalar‘𝐶))) = (𝐻 supp (0g𝐸)))
1701feqmptd 6929 . . . . . . . 8 (𝜑𝐺 = (𝑣𝑌 ↦ (𝐺𝑣)))
171 eleq1w 2811 . . . . . . . . . . . . 13 (𝑗 = 𝑣 → (𝑗𝑌𝑣𝑌))
172171anbi2d 630 . . . . . . . . . . . 12 (𝑗 = 𝑣 → ((𝜑𝑗𝑌) ↔ (𝜑𝑣𝑌)))
173 fveq2 6858 . . . . . . . . . . . . 13 (𝑗 = 𝑣 → (𝐺𝑗) = (𝐺𝑣))
174173feq1d 6670 . . . . . . . . . . . 12 (𝑗 = 𝑣 → ((𝐺𝑗):𝑋⟶(Base‘𝐸) ↔ (𝐺𝑣):𝑋⟶(Base‘𝐸)))
175172, 174imbi12d 344 . . . . . . . . . . 11 (𝑗 = 𝑣 → (((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘𝐸)) ↔ ((𝜑𝑣𝑌) → (𝐺𝑣):𝑋⟶(Base‘𝐸))))
17610, 20ressbas2 17208 . . . . . . . . . . . . . . . 16 (𝑉 ⊆ (Base‘𝐸) → 𝑉 = (Base‘𝐾))
17722, 176syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑉 = (Base‘𝐾))
17836fveq2d 6862 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝐶)))
179177, 178eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑𝑉 = (Base‘(Scalar‘𝐶)))
180179, 22eqsstrrd 3982 . . . . . . . . . . . . 13 (𝜑 → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
181180adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
18256, 181fssd 6705 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘𝐸))
183175, 182chvarvv 1989 . . . . . . . . . 10 ((𝜑𝑣𝑌) → (𝐺𝑣):𝑋⟶(Base‘𝐸))
184183feqmptd 6929 . . . . . . . . 9 ((𝜑𝑣𝑌) → (𝐺𝑣) = (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))
185184mpteq2dva 5200 . . . . . . . 8 (𝜑 → (𝑣𝑌 ↦ (𝐺𝑣)) = (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))))
186170, 185eqtr2d 2765 . . . . . . 7 (𝜑 → (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) = 𝐺)
187186oveq1d 7402 . . . . . 6 (𝜑 → ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) = (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})))
188186fveq1d 6860 . . . . . . . 8 (𝜑 → ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) = (𝐺𝑤))
189188oveq1d 7402 . . . . . . 7 (𝜑 → (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶))) = ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))))
190187, 189iuneq12d 4985 . . . . . 6 (𝜑 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶))) = 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))))
191187, 190xpeq12d 5669 . . . . 5 (𝜑 → (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶)))) = ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))
192164, 169, 1913sstr3d 4001 . . . 4 (𝜑 → (𝐻 supp (0g𝐸)) ⊆ ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))
193 suppssfifsupp 9331 . . . 4 (((𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ∧ Fun 𝐻 ∧ (0g𝐸) ∈ (Base‘𝐸)) ∧ (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin ∧ (𝐻 supp (0g𝐸)) ⊆ ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))) → 𝐻 finSupp (0g𝐸))
19452, 66, 73, 154, 192, 193syl32anc 1380 . . 3 (𝜑𝐻 finSupp (0g𝐸))
19537fveq2d 6862 . . . 4 (𝜑 → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐶)))
196195, 168eqtr2d 2765 . . 3 (𝜑 → (0g𝐸) = (0g‘(Scalar‘𝐴)))
197194, 196breqtrd 5133 . 2 (𝜑𝐻 finSupp (0g‘(Scalar‘𝐴)))
198 fedgmullem1.z . . 3 (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
19985, 67, 13, 15, 92, 46drgextgsum 33590 . . 3 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
20047adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ∈ (LBasis‘𝐶))
20113adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubRing‘𝐸))
202 subrgsubg 20486 . . . . . . . . . . . . 13 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸))
203 subgsubm 19080 . . . . . . . . . . . . 13 (𝑈 ∈ (SubGrp‘𝐸) → 𝑈 ∈ (SubMnd‘𝐸))
204201, 202, 2033syl 18 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubMnd‘𝐸))
205113ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐶 ∈ LMod)
20656ffvelcdmda 7056 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
207118ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐶))
208207, 61sseldd 3947 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐶))
209115, 126, 127, 125lmodvscl 20784 . . . . . . . . . . . . . . 15 ((𝐶 ∈ LMod ∧ ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑖 ∈ (Base‘𝐶)) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
210205, 206, 208, 209syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
21115, 20ressbas2 17208 . . . . . . . . . . . . . . . . 17 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
21288, 211syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝐹))
21331, 34srabase 21084 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐹) = (Base‘𝐶))
214212, 213eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝐶))
215214ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑈 = (Base‘𝐶))
216210, 215eleqtrrd 2831 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ 𝑈)
217216fmpttd 7087 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)):𝑋𝑈)
218200, 204, 217, 15gsumsubm 18762 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
219 eqid 2729 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
22015, 219ressmulr 17270 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐹))
22113, 220syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝐸) = (.r𝐹))
22231, 34sravsca 21088 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝐹) = ( ·𝑠𝐶))
223221, 222eqtr2d 2765 . . . . . . . . . . . . . . 15 (𝜑 → ( ·𝑠𝐶) = (.r𝐸))
224223ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ( ·𝑠𝐶) = (.r𝐸))
225224oveqd 7404 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))
226225mpteq2dva 5200 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))
227226oveq2d 7403 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))))
22830, 92, 14, 109, 108, 47drgextgsum 33590 . . . . . . . . . . . 12 (𝜑 → (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
229228adantr 480 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
230218, 227, 2293eqtr3d 2772 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
231230oveq1d 7402 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗) = ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))(.r𝐸)𝑗))
23269ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐸 ∈ Ring)
233180ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
234233, 206sseldd 3947 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸))
235214, 88eqsstrrd 3982 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸))
236118, 235sstrd 3957 . . . . . . . . . . . . . . 15 (𝜑𝑋 ⊆ (Base‘𝐸))
237236ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐸))
238237, 61sseldd 3947 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐸))
239 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘𝐵) = (Base‘𝐵)
240 eqid 2729 . . . . . . . . . . . . . . . . . 18 (LBasis‘𝐵) = (LBasis‘𝐵)
241239, 240lbsss 20984 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ (LBasis‘𝐵) → 𝑌 ⊆ (Base‘𝐵))
24246, 241syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ⊆ (Base‘𝐵))
24386, 88srabase 21084 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
244242, 243sseqtrrd 3984 . . . . . . . . . . . . . . 15 (𝜑𝑌 ⊆ (Base‘𝐸))
245244ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑌 ⊆ (Base‘𝐸))
246 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
247245, 246sseldd 3947 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗 ∈ (Base‘𝐸))
24820, 219ringass 20162 . . . . . . . . . . . . 13 ((𝐸 ∈ Ring ∧ (((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸))) → ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
249232, 234, 238, 247, 248syl13anc 1374 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
250249mpteq2dva 5200 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
251250oveq2d 7403 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))))
25269adantr 480 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝐸 ∈ Ring)
253242adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → 𝑌 ⊆ (Base‘𝐵))
254243adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → (Base‘𝐸) = (Base‘𝐵))
255253, 254sseqtrrd 3984 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑌 ⊆ (Base‘𝐸))
256 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑗𝑌)
257255, 256sseldd 3947 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝑗 ∈ (Base‘𝐸))
25820, 219ringcl 20159 . . . . . . . . . . . 12 ((𝐸 ∈ Ring ∧ ((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸)) → (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
259232, 234, 238, 258syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
260168breq2d 5119 . . . . . . . . . . . . . 14 (𝜑 → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g𝐸)))
261260adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g𝐸)))
26297, 261mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g𝐸))
26320, 252, 200, 238, 182, 262rmfsupp2 33189 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)) finSupp (0g𝐸))
26420, 71, 219, 252, 200, 257, 259, 263gsummulc1 20225 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
265251, 264eqtr3d 2766 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))) = ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
26683oveq1d 7402 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))(.r𝐸)𝑗))
267231, 265, 2663eqtr4rd 2775 . . . . . . . 8 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))))
26886, 88sravsca 21088 . . . . . . . . . 10 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
269268adantr 480 . . . . . . . . 9 ((𝜑𝑗𝑌) → (.r𝐸) = ( ·𝑠𝐵))
270269oveqd 7404 . . . . . . . 8 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = ((𝐿𝑗)( ·𝑠𝐵)𝑗))
271 fvexd 6873 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑌𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ V)
272 ovexd 7422 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑌𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ V)
27342a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
274 fedgmullem.d . . . . . . . . . . . . . . 15 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
275274a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗)))
27646, 47, 271, 272, 273, 275offval22 8067 . . . . . . . . . . . . 13 (𝜑 → (𝐻f (.r𝐸)𝐷) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
277276oveqd 7404 . . . . . . . . . . . 12 (𝜑 → (𝑗(𝐻f (.r𝐸)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖))
278277ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝐻f (.r𝐸)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖))
279 ovexd 7422 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) ∈ V)
280 eqid 2729 . . . . . . . . . . . . 13 (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
281280ovmpt4g 7536 . . . . . . . . . . . 12 ((𝑗𝑌𝑖𝑋 ∧ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) ∈ V) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
282246, 61, 279, 281syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
283278, 282eqtr2d 2765 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) = (𝑗(𝐻f (.r𝐸)𝐷)𝑖))
284283mpteq2dva 5200 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))) = (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖)))
285284oveq2d 7403 . . . . . . . 8 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))) = (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))
286267, 270, 2853eqtr3d 2772 . . . . . . 7 ((𝜑𝑗𝑌) → ((𝐿𝑗)( ·𝑠𝐵)𝑗) = (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))
287286mpteq2dva 5200 . . . . . 6 (𝜑 → (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗)) = (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖)))))
288287oveq2d 7403 . . . . 5 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐸 Σg (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))))
289 ringcmn 20191 . . . . . . 7 (𝐸 ∈ Ring → 𝐸 ∈ CMnd)
29069, 289syl 17 . . . . . 6 (𝜑𝐸 ∈ CMnd)
29169adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝐸 ∈ Ring)
29238, 180eqsstrd 3981 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
293292adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
294 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘(Scalar‘𝐴)))
295293, 294sseldd 3947 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘𝐸))
296 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐴))
29712, 22srabase 21084 . . . . . . . . . 10 (𝜑 → (Base‘𝐸) = (Base‘𝐴))
298297adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘𝐸) = (Base‘𝐴))
299296, 298eleqtrrd 2831 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐸))
30020, 219ringcl 20159 . . . . . . . 8 ((𝐸 ∈ Ring ∧ 𝑙 ∈ (Base‘𝐸) ∧ 𝑘 ∈ (Base‘𝐸)) → (𝑙(.r𝐸)𝑘) ∈ (Base‘𝐸))
301291, 295, 299, 300syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (𝑙(.r𝐸)𝑘) ∈ (Base‘𝐸))
30220, 219ringcl 20159 . . . . . . . . . . . 12 ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
303232, 238, 247, 302syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
304297ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘𝐸) = (Base‘𝐴))
305303, 304eleqtrd 2830 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
306305anasss 466 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
307306ralrimivva 3180 . . . . . . . 8 (𝜑 → ∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
308274fmpo 8047 . . . . . . . 8 (∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴) ↔ 𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
309307, 308sylib 218 . . . . . . 7 (𝜑𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
310 inidm 4190 . . . . . . 7 ((𝑌 × 𝑋) ∩ (𝑌 × 𝑋)) = (𝑌 × 𝑋)
311301, 65, 309, 48, 48, 310off 7671 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷):(𝑌 × 𝑋)⟶(Base‘𝐸))
31269adantr 480 . . . . . . . 8 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝐸 ∈ Ring)
313 simpr 484 . . . . . . . . 9 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐴))
314297adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ (Base‘𝐴)) → (Base‘𝐸) = (Base‘𝐴))
315313, 314eleqtrrd 2831 . . . . . . . 8 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐸))
31620, 219, 71ringlz 20202 . . . . . . . 8 ((𝐸 ∈ Ring ∧ 𝑢 ∈ (Base‘𝐸)) → ((0g𝐸)(.r𝐸)𝑢) = (0g𝐸))
317312, 315, 316syl2anc 584 . . . . . . 7 ((𝜑𝑢 ∈ (Base‘𝐴)) → ((0g𝐸)(.r𝐸)𝑢) = (0g𝐸))
31848, 73, 73, 65, 309, 194, 317offinsupp1 32650 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷) finSupp (0g𝐸))
31920, 71, 290, 46, 47, 311, 318gsumxp 19906 . . . . 5 (𝜑 → (𝐸 Σg (𝐻f (.r𝐸)𝐷)) = (𝐸 Σg (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))))
32012, 22sravsca 21088 . . . . . . . 8 (𝜑 → (.r𝐸) = ( ·𝑠𝐴))
321320ofeqd 7655 . . . . . . 7 (𝜑 → ∘f (.r𝐸) = ∘f ( ·𝑠𝐴))
322321oveqd 7404 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷) = (𝐻f ( ·𝑠𝐴)𝐷))
323322oveq2d 7403 . . . . 5 (𝜑 → (𝐸 Σg (𝐻f (.r𝐸)𝐷)) = (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
324288, 319, 3233eqtr2rd 2771 . . . 4 (𝜑 → (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)) = (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
325 ovexd 7422 . . . . 5 (𝜑 → (𝐻f ( ·𝑠𝐴)𝐷) ∈ V)
326 fedgmullem1.a . . . . . 6 (𝜑𝑍 ∈ (Base‘𝐴))
327326elfvexd 6897 . . . . 5 (𝜑𝐴 ∈ V)
32811, 325, 67, 327, 22gsumsra 32987 . . . 4 (𝜑 → (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)) = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
329324, 328eqtr3d 2766 . . 3 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
330198, 199, 3293eqtr2d 2770 . 2 (𝜑𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
331197, 330jca 511 1 (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  wss 3914  {csn 4589   ciun 4955   class class class wbr 5107  cmpt 5188   × cxp 5636  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  f cof 7651   supp csupp 8139  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  Basecbs 17179  s cress 17200  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  SubMndcsubmnd 18709  Grpcgrp 18865  SubGrpcsubg 19052  CMndccmn 19710  Ringcrg 20142  SubRingcsubrg 20478  DivRingcdr 20638  LModclmod 20766  LSpanclspn 20877  LBasisclbs 20981  LVecclvec 21009  subringAlg csra 21078  LIndSclinds 21714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-nzr 20422  df-subrg 20479  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lbs 20982  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-uvc 21692  df-lindf 21715  df-linds 21716
This theorem is referenced by:  fedgmul  33627
  Copyright terms: Public domain W3C validator