Step | Hyp | Ref
| Expression |
1 | | fedgmullem1.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) |
2 | | simpllr 773 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) |
3 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝑗 ∈ 𝑌) |
4 | 2, 3 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (𝐺‘𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)) |
5 | | elmapi 8637 |
. . . . . . . . . . . 12
⊢ ((𝐺‘𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋) → (𝐺‘𝑗):𝑋⟶(Base‘(Scalar‘𝐶))) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (𝐺‘𝑗):𝑋⟶(Base‘(Scalar‘𝐶))) |
7 | 6 | anasss 467 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋)) → (𝐺‘𝑗):𝑋⟶(Base‘(Scalar‘𝐶))) |
8 | | simprr 770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋)) → 𝑖 ∈ 𝑋) |
9 | 7, 8 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋)) → ((𝐺‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶))) |
10 | | fedgmul.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = (𝐸 ↾s 𝑉) |
11 | | fedgmul.a |
. . . . . . . . . . . . . . 15
⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑉) |
12 | 11 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝐸)‘𝑉)) |
13 | | fedgmul.4 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) |
14 | | fedgmul.5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑉 ∈ (SubRing‘𝐹)) |
15 | | fedgmul.f |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐹 = (𝐸 ↾s 𝑈) |
16 | 15 | subsubrg 20050 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉 ⊆ 𝑈))) |
17 | 16 | biimpa 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉 ⊆ 𝑈)) |
18 | 13, 14, 17 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉 ⊆ 𝑈)) |
19 | 18 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉 ∈ (SubRing‘𝐸)) |
20 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐸) =
(Base‘𝐸) |
21 | 20 | subrgss 20025 |
. . . . . . . . . . . . . . 15
⊢ (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸)) |
22 | 19, 21 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑉 ⊆ (Base‘𝐸)) |
23 | 12, 22 | srasca 20447 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ↾s 𝑉) = (Scalar‘𝐴)) |
24 | 10, 23 | eqtrid 2790 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 = (Scalar‘𝐴)) |
25 | 18 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉 ⊆ 𝑈) |
26 | | ressabs 16959 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ⊆ 𝑈) → ((𝐸 ↾s 𝑈) ↾s 𝑉) = (𝐸 ↾s 𝑉)) |
27 | 13, 25, 26 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐸 ↾s 𝑈) ↾s 𝑉) = (𝐸 ↾s 𝑉)) |
28 | 15 | oveq1i 7285 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ↾s 𝑉) = ((𝐸 ↾s 𝑈) ↾s 𝑉) |
29 | 27, 28, 10 | 3eqtr4g 2803 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ↾s 𝑉) = 𝐾) |
30 | | fedgmul.c |
. . . . . . . . . . . . . . 15
⊢ 𝐶 = ((subringAlg ‘𝐹)‘𝑉) |
31 | 30 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 = ((subringAlg ‘𝐹)‘𝑉)) |
32 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐹) =
(Base‘𝐹) |
33 | 32 | subrgss 20025 |
. . . . . . . . . . . . . . 15
⊢ (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹)) |
34 | 14, 33 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑉 ⊆ (Base‘𝐹)) |
35 | 31, 34 | srasca 20447 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ↾s 𝑉) = (Scalar‘𝐶)) |
36 | 29, 35 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 = (Scalar‘𝐶)) |
37 | 24, 36 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶)) |
38 | 37 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝜑 →
(Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶))) |
39 | 38 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋)) → (Base‘(Scalar‘𝐴)) =
(Base‘(Scalar‘𝐶))) |
40 | 9, 39 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋)) → ((𝐺‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴))) |
41 | 40 | ralrimivva 3123 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → ∀𝑗 ∈ 𝑌 ∀𝑖 ∈ 𝑋 ((𝐺‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴))) |
42 | | fedgmullem.h |
. . . . . . . 8
⊢ 𝐻 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ ((𝐺‘𝑗)‘𝑖)) |
43 | 42 | fmpo 7908 |
. . . . . . 7
⊢
(∀𝑗 ∈
𝑌 ∀𝑖 ∈ 𝑋 ((𝐺‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴))) |
44 | 41, 43 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴))) |
45 | | fvexd 6789 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) →
(Base‘(Scalar‘𝐴)) ∈ V) |
46 | | fedgmullem.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ (LBasis‘𝐵)) |
47 | | fedgmullem.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (LBasis‘𝐶)) |
48 | 46, 47 | xpexd 7601 |
. . . . . . . 8
⊢ (𝜑 → (𝑌 × 𝑋) ∈ V) |
49 | 48 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (𝑌 × 𝑋) ∈ V) |
50 | 45, 49 | elmapd 8629 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))) |
51 | 44, 50 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → 𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋))) |
52 | 1, 51 | mpdan 684 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋))) |
53 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝜑) |
54 | 53 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝜑) |
55 | 1 | ffvelrnda 6961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐺‘𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)) |
56 | 55, 5 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐺‘𝑗):𝑋⟶(Base‘(Scalar‘𝐶))) |
57 | 56 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (𝐺‘𝑗):𝑋⟶(Base‘(Scalar‘𝐶))) |
58 | 38 | feq3d 6587 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐺‘𝑗):𝑋⟶(Base‘(Scalar‘𝐴)) ↔ (𝐺‘𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))) |
59 | 58 | biimpar 478 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺‘𝑗):𝑋⟶(Base‘(Scalar‘𝐶))) → (𝐺‘𝑗):𝑋⟶(Base‘(Scalar‘𝐴))) |
60 | 54, 57, 59 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (𝐺‘𝑗):𝑋⟶(Base‘(Scalar‘𝐴))) |
61 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝑖 ∈ 𝑋) |
62 | 60, 61 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → ((𝐺‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴))) |
63 | 62 | ralrimiva 3103 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ∀𝑖 ∈ 𝑋 ((𝐺‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴))) |
64 | 63 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑗 ∈ 𝑌 ∀𝑖 ∈ 𝑋 ((𝐺‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴))) |
65 | 64, 43 | sylib 217 |
. . . . 5
⊢ (𝜑 → 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴))) |
66 | 65 | ffund 6604 |
. . . 4
⊢ (𝜑 → Fun 𝐻) |
67 | | fedgmul.1 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ DivRing) |
68 | | drngring 19998 |
. . . . . 6
⊢ (𝐸 ∈ DivRing → 𝐸 ∈ Ring) |
69 | 67, 68 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ Ring) |
70 | | ringgrp 19788 |
. . . . 5
⊢ (𝐸 ∈ Ring → 𝐸 ∈ Grp) |
71 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝐸) = (0g‘𝐸) |
72 | 20, 71 | grpidcl 18607 |
. . . . 5
⊢ (𝐸 ∈ Grp →
(0g‘𝐸)
∈ (Base‘𝐸)) |
73 | 69, 70, 72 | 3syl 18 |
. . . 4
⊢ (𝜑 → (0g‘𝐸) ∈ (Base‘𝐸)) |
74 | | fedgmullem1.1 |
. . . . . . 7
⊢ (𝜑 → 𝐿 finSupp
(0g‘(Scalar‘𝐵))) |
75 | 74 | fsuppimpd 9135 |
. . . . . 6
⊢ (𝜑 → (𝐿 supp
(0g‘(Scalar‘𝐵))) ∈ Fin) |
76 | | simpl 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑌 ∖ (𝐿 supp
(0g‘(Scalar‘𝐵))))) → 𝜑) |
77 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑌 ∖ (𝐿 supp
(0g‘(Scalar‘𝐵))))) → 𝑗 ∈ (𝑌 ∖ (𝐿 supp
(0g‘(Scalar‘𝐵))))) |
78 | 77 | eldifad 3899 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑌 ∖ (𝐿 supp
(0g‘(Scalar‘𝐵))))) → 𝑗 ∈ 𝑌) |
79 | | fedgmullem1.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿:𝑌⟶(Base‘(Scalar‘𝐵))) |
80 | | ssidd 3944 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿 supp
(0g‘(Scalar‘𝐵))) ⊆ (𝐿 supp
(0g‘(Scalar‘𝐵)))) |
81 | | fvexd 6789 |
. . . . . . . . . 10
⊢ (𝜑 →
(0g‘(Scalar‘𝐵)) ∈ V) |
82 | 79, 80, 46, 81 | suppssr 8012 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑌 ∖ (𝐿 supp
(0g‘(Scalar‘𝐵))))) → (𝐿‘𝑗) = (0g‘(Scalar‘𝐵))) |
83 | | fedgmullem1.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐿‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))) |
84 | 78, 83 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑌 ∖ (𝐿 supp
(0g‘(Scalar‘𝐵))))) → (𝐿‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))) |
85 | | fedgmul.b |
. . . . . . . . . . . . . . 15
⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) |
86 | 85 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 = ((subringAlg ‘𝐸)‘𝑈)) |
87 | 20 | subrgss 20025 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸)) |
88 | 13, 87 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐸)) |
89 | 86, 88 | srasca 20447 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 ↾s 𝑈) = (Scalar‘𝐵)) |
90 | 15, 89 | eqtrid 2790 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 = (Scalar‘𝐵)) |
91 | 90 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝐹) =
(0g‘(Scalar‘𝐵))) |
92 | | fedgmul.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ DivRing) |
93 | 30, 92, 14 | drgext0g 31677 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝐹) = (0g‘𝐶)) |
94 | 91, 93 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (𝜑 →
(0g‘(Scalar‘𝐵)) = (0g‘𝐶)) |
95 | 94 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑌 ∖ (𝐿 supp
(0g‘(Scalar‘𝐵))))) →
(0g‘(Scalar‘𝐵)) = (0g‘𝐶)) |
96 | 82, 84, 95 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑌 ∖ (𝐿 supp
(0g‘(Scalar‘𝐵))))) → (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶)) |
97 | | fedgmullem1.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐺‘𝑗) finSupp
(0g‘(Scalar‘𝐶))) |
98 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝐺‘𝑗) → (𝑔 finSupp
(0g‘(Scalar‘𝐶)) ↔ (𝐺‘𝑗) finSupp
(0g‘(Scalar‘𝐶)))) |
99 | | fveq1 6773 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = (𝐺‘𝑗) → (𝑔‘𝑖) = ((𝐺‘𝑗)‘𝑖)) |
100 | 99 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (𝐺‘𝑗) → ((𝑔‘𝑖)( ·𝑠
‘𝐶)𝑖) = (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)) |
101 | 100 | mpteq2dv 5176 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (𝐺‘𝑗) → (𝑖 ∈ 𝑋 ↦ ((𝑔‘𝑖)( ·𝑠
‘𝐶)𝑖)) = (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) |
102 | 101 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (𝐺‘𝑗) → (𝐶 Σg (𝑖 ∈ 𝑋 ↦ ((𝑔‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))) |
103 | 102 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝐺‘𝑗) → ((𝐶 Σg (𝑖 ∈ 𝑋 ↦ ((𝑔‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶) ↔ (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶))) |
104 | 98, 103 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝐺‘𝑗) → ((𝑔 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖 ∈ 𝑋 ↦ ((𝑔‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶)) ↔ ((𝐺‘𝑗) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶)))) |
105 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝐺‘𝑗) → (𝑔 = (𝑋 ×
{(0g‘(Scalar‘𝐶))}) ↔ (𝐺‘𝑗) = (𝑋 ×
{(0g‘(Scalar‘𝐶))}))) |
106 | 104, 105 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝐺‘𝑗) → (((𝑔 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖 ∈ 𝑋 ↦ ((𝑔‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶)) → 𝑔 = (𝑋 ×
{(0g‘(Scalar‘𝐶))})) ↔ (((𝐺‘𝑗) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶)) → (𝐺‘𝑗) = (𝑋 ×
{(0g‘(Scalar‘𝐶))})))) |
107 | | fedgmul.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ DivRing) |
108 | 29, 107 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹 ↾s 𝑉) ∈ DivRing) |
109 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ↾s 𝑉) = (𝐹 ↾s 𝑉) |
110 | 30, 109 | sralvec 31675 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ DivRing ∧ (𝐹 ↾s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec) |
111 | 92, 108, 14, 110 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ∈ LVec) |
112 | | lveclmod 20368 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ LVec → 𝐶 ∈ LMod) |
113 | 111, 112 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ LMod) |
114 | 113 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝐶 ∈ LMod) |
115 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐶) =
(Base‘𝐶) |
116 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(LBasis‘𝐶) =
(LBasis‘𝐶) |
117 | 115, 116 | lbsss 20339 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ (LBasis‘𝐶) → 𝑋 ⊆ (Base‘𝐶)) |
118 | 47, 117 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ⊆ (Base‘𝐶)) |
119 | 118 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑋 ⊆ (Base‘𝐶)) |
120 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(LSpan‘𝐶) =
(LSpan‘𝐶) |
121 | 115, 116,
120 | islbs4 21039 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ (LBasis‘𝐶) ↔ (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶))) |
122 | 47, 121 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶))) |
123 | 122 | simpld 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ (LIndS‘𝐶)) |
124 | 123 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑋 ∈ (LIndS‘𝐶)) |
125 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) |
126 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Scalar‘𝐶) =
(Scalar‘𝐶) |
127 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (
·𝑠 ‘𝐶) = ( ·𝑠
‘𝐶) |
128 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝐶) = (0g‘𝐶) |
129 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0g‘(Scalar‘𝐶)) =
(0g‘(Scalar‘𝐶)) |
130 | 115, 125,
126, 127, 128, 129 | islinds5 31563 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) → (𝑋 ∈ (LIndS‘𝐶) ↔ ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖 ∈ 𝑋 ↦ ((𝑔‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶)) → 𝑔 = (𝑋 ×
{(0g‘(Scalar‘𝐶))})))) |
131 | 130 | biimpa 477 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) ∧ 𝑋 ∈ (LIndS‘𝐶)) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖 ∈ 𝑋 ↦ ((𝑔‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶)) → 𝑔 = (𝑋 ×
{(0g‘(Scalar‘𝐶))}))) |
132 | 114, 119,
124, 131 | syl21anc 835 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖 ∈ 𝑋 ↦ ((𝑔‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶)) → 𝑔 = (𝑋 ×
{(0g‘(Scalar‘𝐶))}))) |
133 | 106, 132,
55 | rspcdva 3562 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (((𝐺‘𝑗) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶)) → (𝐺‘𝑗) = (𝑋 ×
{(0g‘(Scalar‘𝐶))}))) |
134 | 97, 133 | mpand 692 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ((𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶) → (𝐺‘𝑗) = (𝑋 ×
{(0g‘(Scalar‘𝐶))}))) |
135 | 134 | imp 407 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (0g‘𝐶)) → (𝐺‘𝑗) = (𝑋 ×
{(0g‘(Scalar‘𝐶))})) |
136 | 76, 78, 96, 135 | syl21anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑌 ∖ (𝐿 supp
(0g‘(Scalar‘𝐵))))) → (𝐺‘𝑗) = (𝑋 ×
{(0g‘(Scalar‘𝐶))})) |
137 | 1, 136 | suppss 8010 |
. . . . . 6
⊢ (𝜑 → (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) ⊆ (𝐿 supp
(0g‘(Scalar‘𝐵)))) |
138 | 75, 137 | ssfid 9042 |
. . . . 5
⊢ (𝜑 → (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) ∈ Fin) |
139 | | suppssdm 7993 |
. . . . . . . . . 10
⊢ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) ⊆ dom 𝐺 |
140 | 139, 1 | fssdm 6620 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) ⊆ 𝑌) |
141 | 140 | sselda 3921 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))) → 𝑤 ∈ 𝑌) |
142 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑤 → (𝑗 ∈ 𝑌 ↔ 𝑤 ∈ 𝑌)) |
143 | 142 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑤 → ((𝜑 ∧ 𝑗 ∈ 𝑌) ↔ (𝜑 ∧ 𝑤 ∈ 𝑌))) |
144 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑤 → (𝐺‘𝑗) = (𝐺‘𝑤)) |
145 | 144 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑤 → ((𝐺‘𝑗) finSupp
(0g‘(Scalar‘𝐶)) ↔ (𝐺‘𝑤) finSupp
(0g‘(Scalar‘𝐶)))) |
146 | 143, 145 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑤 → (((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐺‘𝑗) finSupp
(0g‘(Scalar‘𝐶))) ↔ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝐺‘𝑤) finSupp
(0g‘(Scalar‘𝐶))))) |
147 | 146, 97 | chvarvv 2002 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → (𝐺‘𝑤) finSupp
(0g‘(Scalar‘𝐶))) |
148 | 147 | fsuppimpd 9135 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑌) → ((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶))) ∈ Fin) |
149 | 141, 148 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))) → ((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶))) ∈ Fin) |
150 | 149 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶))) ∈ Fin) |
151 | | iunfi 9107 |
. . . . . 6
⊢ (((𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ ∀𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶))) ∈ Fin) → ∪ 𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶))) ∈ Fin) |
152 | 138, 150,
151 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∪ 𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶))) ∈ Fin) |
153 | | xpfi 9085 |
. . . . 5
⊢ (((𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ ∪ 𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶))) ∈ Fin) → ((𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) × ∪ 𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶)))) ∈ Fin) |
154 | 138, 152,
153 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) × ∪ 𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶)))) ∈ Fin) |
155 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑗 → (𝐺‘𝑣) = (𝐺‘𝑗)) |
156 | 155 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑣 = 𝑗 → ((𝐺‘𝑣)‘𝑢) = ((𝐺‘𝑗)‘𝑢)) |
157 | 156 | mpteq2dv 5176 |
. . . . . . . 8
⊢ (𝑣 = 𝑗 → (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢)) = (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑗)‘𝑢))) |
158 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑢 = 𝑖 → ((𝐺‘𝑗)‘𝑢) = ((𝐺‘𝑗)‘𝑖)) |
159 | 158 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑗)‘𝑢)) = (𝑖 ∈ 𝑋 ↦ ((𝐺‘𝑗)‘𝑖)) |
160 | 157, 159 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝑣 = 𝑗 → (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢)) = (𝑖 ∈ 𝑋 ↦ ((𝐺‘𝑗)‘𝑖))) |
161 | 160 | cbvmptv 5187 |
. . . . . 6
⊢ (𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢))) = (𝑗 ∈ 𝑌 ↦ (𝑖 ∈ 𝑋 ↦ ((𝐺‘𝑗)‘𝑖))) |
162 | | fvexd 6789 |
. . . . . 6
⊢ (𝜑 →
(0g‘(Scalar‘𝐶)) ∈ V) |
163 | | fvexd 6789 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋)) → ((𝐺‘𝑗)‘𝑖) ∈ V) |
164 | 42, 161, 46, 47, 162, 163 | suppovss 31017 |
. . . . 5
⊢ (𝜑 → (𝐻 supp
(0g‘(Scalar‘𝐶))) ⊆ (((𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢))) supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) × ∪ 𝑤 ∈ ((𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢))) supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))(((𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢)))‘𝑤) supp
(0g‘(Scalar‘𝐶))))) |
165 | 10, 71 | subrg0 20031 |
. . . . . . . 8
⊢ (𝑉 ∈ (SubRing‘𝐸) →
(0g‘𝐸) =
(0g‘𝐾)) |
166 | 19, 165 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝐸) = (0g‘𝐾)) |
167 | 36 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝐾) =
(0g‘(Scalar‘𝐶))) |
168 | 166, 167 | eqtr2d 2779 |
. . . . . 6
⊢ (𝜑 →
(0g‘(Scalar‘𝐶)) = (0g‘𝐸)) |
169 | 168 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 → (𝐻 supp
(0g‘(Scalar‘𝐶))) = (𝐻 supp (0g‘𝐸))) |
170 | 1 | feqmptd 6837 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑌 ↦ (𝐺‘𝑣))) |
171 | | eleq1w 2821 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑣 → (𝑗 ∈ 𝑌 ↔ 𝑣 ∈ 𝑌)) |
172 | 171 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑣 → ((𝜑 ∧ 𝑗 ∈ 𝑌) ↔ (𝜑 ∧ 𝑣 ∈ 𝑌))) |
173 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑣 → (𝐺‘𝑗) = (𝐺‘𝑣)) |
174 | 173 | feq1d 6585 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑣 → ((𝐺‘𝑗):𝑋⟶(Base‘𝐸) ↔ (𝐺‘𝑣):𝑋⟶(Base‘𝐸))) |
175 | 172, 174 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑣 → (((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐺‘𝑗):𝑋⟶(Base‘𝐸)) ↔ ((𝜑 ∧ 𝑣 ∈ 𝑌) → (𝐺‘𝑣):𝑋⟶(Base‘𝐸)))) |
176 | 10, 20 | ressbas2 16949 |
. . . . . . . . . . . . . . . 16
⊢ (𝑉 ⊆ (Base‘𝐸) → 𝑉 = (Base‘𝐾)) |
177 | 22, 176 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉 = (Base‘𝐾)) |
178 | 36 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (Base‘𝐾) =
(Base‘(Scalar‘𝐶))) |
179 | 177, 178 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑉 = (Base‘(Scalar‘𝐶))) |
180 | 179, 22 | eqsstrrd 3960 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸)) |
181 | 180 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸)) |
182 | 56, 181 | fssd 6618 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐺‘𝑗):𝑋⟶(Base‘𝐸)) |
183 | 175, 182 | chvarvv 2002 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑌) → (𝐺‘𝑣):𝑋⟶(Base‘𝐸)) |
184 | 183 | feqmptd 6837 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑌) → (𝐺‘𝑣) = (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢))) |
185 | 184 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (𝜑 → (𝑣 ∈ 𝑌 ↦ (𝐺‘𝑣)) = (𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢)))) |
186 | 170, 185 | eqtr2d 2779 |
. . . . . . 7
⊢ (𝜑 → (𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢))) = 𝐺) |
187 | 186 | oveq1d 7290 |
. . . . . 6
⊢ (𝜑 → ((𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢))) supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) = (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))) |
188 | 186 | fveq1d 6776 |
. . . . . . . 8
⊢ (𝜑 → ((𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢)))‘𝑤) = (𝐺‘𝑤)) |
189 | 188 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → (((𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢)))‘𝑤) supp
(0g‘(Scalar‘𝐶))) = ((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶)))) |
190 | 187, 189 | iuneq12d 4952 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑤 ∈ ((𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢))) supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))(((𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢)))‘𝑤) supp
(0g‘(Scalar‘𝐶))) = ∪
𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶)))) |
191 | 187, 190 | xpeq12d 5620 |
. . . . 5
⊢ (𝜑 → (((𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢))) supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) × ∪ 𝑤 ∈ ((𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢))) supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))(((𝑣 ∈ 𝑌 ↦ (𝑢 ∈ 𝑋 ↦ ((𝐺‘𝑣)‘𝑢)))‘𝑤) supp
(0g‘(Scalar‘𝐶)))) = ((𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) × ∪ 𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶))))) |
192 | 164, 169,
191 | 3sstr3d 3967 |
. . . 4
⊢ (𝜑 → (𝐻 supp (0g‘𝐸)) ⊆ ((𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) × ∪ 𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶))))) |
193 | | suppssfifsupp 9143 |
. . . 4
⊢ (((𝐻 ∈
((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ∧ Fun 𝐻 ∧ (0g‘𝐸) ∈ (Base‘𝐸)) ∧ (((𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) × ∪ 𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶)))) ∈ Fin ∧ (𝐻 supp (0g‘𝐸)) ⊆ ((𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))})) × ∪ 𝑤 ∈ (𝐺 supp (𝑋 ×
{(0g‘(Scalar‘𝐶))}))((𝐺‘𝑤) supp
(0g‘(Scalar‘𝐶)))))) → 𝐻 finSupp (0g‘𝐸)) |
194 | 52, 66, 73, 154, 192, 193 | syl32anc 1377 |
. . 3
⊢ (𝜑 → 𝐻 finSupp (0g‘𝐸)) |
195 | 37 | fveq2d 6778 |
. . . 4
⊢ (𝜑 →
(0g‘(Scalar‘𝐴)) =
(0g‘(Scalar‘𝐶))) |
196 | 195, 168 | eqtr2d 2779 |
. . 3
⊢ (𝜑 → (0g‘𝐸) =
(0g‘(Scalar‘𝐴))) |
197 | 194, 196 | breqtrd 5100 |
. 2
⊢ (𝜑 → 𝐻 finSupp
(0g‘(Scalar‘𝐴))) |
198 | | fedgmullem1.z |
. . 3
⊢ (𝜑 → 𝑍 = (𝐵 Σg (𝑗 ∈ 𝑌 ↦ ((𝐿‘𝑗)( ·𝑠
‘𝐵)𝑗)))) |
199 | 85, 67, 13, 15, 92, 46 | drgextgsum 31682 |
. . 3
⊢ (𝜑 → (𝐸 Σg (𝑗 ∈ 𝑌 ↦ ((𝐿‘𝑗)( ·𝑠
‘𝐵)𝑗))) = (𝐵 Σg (𝑗 ∈ 𝑌 ↦ ((𝐿‘𝑗)( ·𝑠
‘𝐵)𝑗)))) |
200 | 47 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑋 ∈ (LBasis‘𝐶)) |
201 | 13 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑈 ∈ (SubRing‘𝐸)) |
202 | | subrgsubg 20030 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸)) |
203 | | subgsubm 18777 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (SubGrp‘𝐸) → 𝑈 ∈ (SubMnd‘𝐸)) |
204 | 201, 202,
203 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑈 ∈ (SubMnd‘𝐸)) |
205 | 113 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝐶 ∈ LMod) |
206 | 56 | ffvelrnda 6961 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → ((𝐺‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶))) |
207 | 118 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝑋 ⊆ (Base‘𝐶)) |
208 | 207, 61 | sseldd 3922 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝑖 ∈ (Base‘𝐶)) |
209 | 115, 126,
127, 125 | lmodvscl 20140 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ LMod ∧ ((𝐺‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑖 ∈ (Base‘𝐶)) → (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖) ∈ (Base‘𝐶)) |
210 | 205, 206,
208, 209 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖) ∈ (Base‘𝐶)) |
211 | 15, 20 | ressbas2 16949 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹)) |
212 | 88, 211 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑈 = (Base‘𝐹)) |
213 | 31, 34 | srabase 20441 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (Base‘𝐹) = (Base‘𝐶)) |
214 | 212, 213 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
215 | 214 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝑈 = (Base‘𝐶)) |
216 | 210, 215 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖) ∈ 𝑈) |
217 | 216 | fmpttd 6989 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)):𝑋⟶𝑈) |
218 | 200, 204,
217, 15 | gsumsubm 18473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (𝐹 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))) |
219 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(.r‘𝐸) = (.r‘𝐸) |
220 | 15, 219 | ressmulr 17017 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈 ∈ (SubRing‘𝐸) →
(.r‘𝐸) =
(.r‘𝐹)) |
221 | 13, 220 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (.r‘𝐸) = (.r‘𝐹)) |
222 | 31, 34 | sravsca 20449 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (.r‘𝐹) = (
·𝑠 ‘𝐶)) |
223 | 221, 222 | eqtr2d 2779 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (
·𝑠 ‘𝐶) = (.r‘𝐸)) |
224 | 223 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (
·𝑠 ‘𝐶) = (.r‘𝐸)) |
225 | 224 | oveqd 7292 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖) = (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖)) |
226 | 225 | mpteq2dva 5174 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)) = (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖))) |
227 | 226 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖)))) |
228 | 30, 92, 14, 109, 108, 47 | drgextgsum 31682 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))) |
229 | 228 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐹 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) = (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))) |
230 | 218, 227,
229 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖))) = (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))) |
231 | 230 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ((𝐸 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖)))(.r‘𝐸)𝑗) = ((𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))(.r‘𝐸)𝑗)) |
232 | 69 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝐸 ∈ Ring) |
233 | 180 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸)) |
234 | 233, 206 | sseldd 3922 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → ((𝐺‘𝑗)‘𝑖) ∈ (Base‘𝐸)) |
235 | 214, 88 | eqsstrrd 3960 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸)) |
236 | 118, 235 | sstrd 3931 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ⊆ (Base‘𝐸)) |
237 | 236 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝑋 ⊆ (Base‘𝐸)) |
238 | 237, 61 | sseldd 3922 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝑖 ∈ (Base‘𝐸)) |
239 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘𝐵) =
(Base‘𝐵) |
240 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(LBasis‘𝐵) =
(LBasis‘𝐵) |
241 | 239, 240 | lbsss 20339 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑌 ∈ (LBasis‘𝐵) → 𝑌 ⊆ (Base‘𝐵)) |
242 | 46, 241 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑌 ⊆ (Base‘𝐵)) |
243 | 86, 88 | srabase 20441 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (Base‘𝐸) = (Base‘𝐵)) |
244 | 242, 243 | sseqtrrd 3962 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑌 ⊆ (Base‘𝐸)) |
245 | 244 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝑌 ⊆ (Base‘𝐸)) |
246 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝑗 ∈ 𝑌) |
247 | 245, 246 | sseldd 3922 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → 𝑗 ∈ (Base‘𝐸)) |
248 | 20, 219 | ringass 19803 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ Ring ∧ (((𝐺‘𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸))) → ((((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖)(.r‘𝐸)𝑗) = (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗))) |
249 | 232, 234,
238, 247, 248 | syl13anc 1371 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → ((((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖)(.r‘𝐸)𝑗) = (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗))) |
250 | 249 | mpteq2dva 5174 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝑖 ∈ 𝑋 ↦ ((((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖)(.r‘𝐸)𝑗)) = (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗)))) |
251 | 250 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐸 Σg (𝑖 ∈ 𝑋 ↦ ((((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖)(.r‘𝐸)𝑗))) = (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗))))) |
252 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(+g‘𝐸) = (+g‘𝐸) |
253 | 69 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝐸 ∈ Ring) |
254 | 242 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑌 ⊆ (Base‘𝐵)) |
255 | 243 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (Base‘𝐸) = (Base‘𝐵)) |
256 | 254, 255 | sseqtrrd 3962 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑌 ⊆ (Base‘𝐸)) |
257 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑗 ∈ 𝑌) |
258 | 256, 257 | sseldd 3922 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑗 ∈ (Base‘𝐸)) |
259 | 20, 219 | ringcl 19800 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∈ Ring ∧ ((𝐺‘𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸)) → (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖) ∈ (Base‘𝐸)) |
260 | 232, 234,
238, 259 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖) ∈ (Base‘𝐸)) |
261 | 168 | breq2d 5086 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺‘𝑗) finSupp
(0g‘(Scalar‘𝐶)) ↔ (𝐺‘𝑗) finSupp (0g‘𝐸))) |
262 | 261 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ((𝐺‘𝑗) finSupp
(0g‘(Scalar‘𝐶)) ↔ (𝐺‘𝑗) finSupp (0g‘𝐸))) |
263 | 97, 262 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐺‘𝑗) finSupp (0g‘𝐸)) |
264 | 20, 253, 200, 238, 182, 263 | rmfsupp2 31492 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖)) finSupp (0g‘𝐸)) |
265 | 20, 71, 252, 219, 253, 200, 258, 260, 264 | gsummulc1 19845 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐸 Σg (𝑖 ∈ 𝑋 ↦ ((((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖)(.r‘𝐸)𝑗))) = ((𝐸 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖)))(.r‘𝐸)𝑗)) |
266 | 251, 265 | eqtr3d 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗)))) = ((𝐸 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)𝑖)))(.r‘𝐸)𝑗)) |
267 | 83 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ((𝐿‘𝑗)(.r‘𝐸)𝑗) = ((𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))(.r‘𝐸)𝑗)) |
268 | 231, 266,
267 | 3eqtr4rd 2789 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ((𝐿‘𝑗)(.r‘𝐸)𝑗) = (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗))))) |
269 | 86, 88 | sravsca 20449 |
. . . . . . . . . 10
⊢ (𝜑 → (.r‘𝐸) = (
·𝑠 ‘𝐵)) |
270 | 269 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (.r‘𝐸) = (
·𝑠 ‘𝐵)) |
271 | 270 | oveqd 7292 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ((𝐿‘𝑗)(.r‘𝐸)𝑗) = ((𝐿‘𝑗)( ·𝑠
‘𝐵)𝑗)) |
272 | | fvexd 6789 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋) → ((𝐺‘𝑗)‘𝑖) ∈ V) |
273 | | ovexd 7310 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋) → (𝑖(.r‘𝐸)𝑗) ∈ V) |
274 | 42 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐻 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ ((𝐺‘𝑗)‘𝑖))) |
275 | | fedgmullem.d |
. . . . . . . . . . . . . . 15
⊢ 𝐷 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (𝑖(.r‘𝐸)𝑗)) |
276 | 275 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (𝑖(.r‘𝐸)𝑗))) |
277 | 46, 47, 272, 273, 274, 276 | offval22 7928 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐻 ∘f
(.r‘𝐸)𝐷) = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗)))) |
278 | 277 | oveqd 7292 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑗(𝐻 ∘f
(.r‘𝐸)𝐷)𝑖) = (𝑗(𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗)))𝑖)) |
279 | 278 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (𝑗(𝐻 ∘f
(.r‘𝐸)𝐷)𝑖) = (𝑗(𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗)))𝑖)) |
280 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗)) ∈ V) |
281 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗))) = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗))) |
282 | 281 | ovmpt4g 7420 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋 ∧ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗)) ∈ V) → (𝑗(𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗)))𝑖) = (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗))) |
283 | 246, 61, 280, 282 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (𝑗(𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗)))𝑖) = (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗))) |
284 | 279, 283 | eqtr2d 2779 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗)) = (𝑗(𝐻 ∘f
(.r‘𝐸)𝐷)𝑖)) |
285 | 284 | mpteq2dva 5174 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗))) = (𝑖 ∈ 𝑋 ↦ (𝑗(𝐻 ∘f
(.r‘𝐸)𝐷)𝑖))) |
286 | 285 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)(.r‘𝐸)(𝑖(.r‘𝐸)𝑗)))) = (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (𝑗(𝐻 ∘f
(.r‘𝐸)𝐷)𝑖)))) |
287 | 268, 271,
286 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ((𝐿‘𝑗)( ·𝑠
‘𝐵)𝑗) = (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (𝑗(𝐻 ∘f
(.r‘𝐸)𝐷)𝑖)))) |
288 | 287 | mpteq2dva 5174 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ 𝑌 ↦ ((𝐿‘𝑗)( ·𝑠
‘𝐵)𝑗)) = (𝑗 ∈ 𝑌 ↦ (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (𝑗(𝐻 ∘f
(.r‘𝐸)𝐷)𝑖))))) |
289 | 288 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 → (𝐸 Σg (𝑗 ∈ 𝑌 ↦ ((𝐿‘𝑗)( ·𝑠
‘𝐵)𝑗))) = (𝐸 Σg (𝑗 ∈ 𝑌 ↦ (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (𝑗(𝐻 ∘f
(.r‘𝐸)𝐷)𝑖)))))) |
290 | | ringcmn 19820 |
. . . . . . 7
⊢ (𝐸 ∈ Ring → 𝐸 ∈ CMnd) |
291 | 69, 290 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ CMnd) |
292 | 69 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝐸 ∈ Ring) |
293 | 38, 180 | eqsstrd 3959 |
. . . . . . . . . 10
⊢ (𝜑 →
(Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸)) |
294 | 293 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸)) |
295 | | simprl 768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘(Scalar‘𝐴))) |
296 | 294, 295 | sseldd 3922 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘𝐸)) |
297 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐴)) |
298 | 12, 22 | srabase 20441 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝐸) = (Base‘𝐴)) |
299 | 298 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘𝐸) = (Base‘𝐴)) |
300 | 297, 299 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐸)) |
301 | 20, 219 | ringcl 19800 |
. . . . . . . 8
⊢ ((𝐸 ∈ Ring ∧ 𝑙 ∈ (Base‘𝐸) ∧ 𝑘 ∈ (Base‘𝐸)) → (𝑙(.r‘𝐸)𝑘) ∈ (Base‘𝐸)) |
302 | 292, 296,
300, 301 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (𝑙(.r‘𝐸)𝑘) ∈ (Base‘𝐸)) |
303 | 20, 219 | ringcl 19800 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐸)) |
304 | 232, 238,
247, 303 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐸)) |
305 | 298 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (Base‘𝐸) = (Base‘𝐴)) |
306 | 304, 305 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑌) ∧ 𝑖 ∈ 𝑋) → (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐴)) |
307 | 306 | anasss 467 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑌 ∧ 𝑖 ∈ 𝑋)) → (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐴)) |
308 | 307 | ralrimivva 3123 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑗 ∈ 𝑌 ∀𝑖 ∈ 𝑋 (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐴)) |
309 | 275 | fmpo 7908 |
. . . . . . . 8
⊢
(∀𝑗 ∈
𝑌 ∀𝑖 ∈ 𝑋 (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐴) ↔ 𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴)) |
310 | 308, 309 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → 𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴)) |
311 | | inidm 4152 |
. . . . . . 7
⊢ ((𝑌 × 𝑋) ∩ (𝑌 × 𝑋)) = (𝑌 × 𝑋) |
312 | 302, 65, 310, 48, 48, 311 | off 7551 |
. . . . . 6
⊢ (𝜑 → (𝐻 ∘f
(.r‘𝐸)𝐷):(𝑌 × 𝑋)⟶(Base‘𝐸)) |
313 | 69 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (Base‘𝐴)) → 𝐸 ∈ Ring) |
314 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐴)) |
315 | 298 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (Base‘𝐴)) → (Base‘𝐸) = (Base‘𝐴)) |
316 | 314, 315 | eleqtrrd 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐸)) |
317 | 20, 219, 71 | ringlz 19826 |
. . . . . . . 8
⊢ ((𝐸 ∈ Ring ∧ 𝑢 ∈ (Base‘𝐸)) →
((0g‘𝐸)(.r‘𝐸)𝑢) = (0g‘𝐸)) |
318 | 313, 316,
317 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (Base‘𝐴)) → ((0g‘𝐸)(.r‘𝐸)𝑢) = (0g‘𝐸)) |
319 | 48, 73, 73, 65, 310, 194, 318 | offinsupp1 31062 |
. . . . . 6
⊢ (𝜑 → (𝐻 ∘f
(.r‘𝐸)𝐷) finSupp (0g‘𝐸)) |
320 | 20, 71, 291, 46, 47, 312, 319 | gsumxp 19577 |
. . . . 5
⊢ (𝜑 → (𝐸 Σg (𝐻 ∘f
(.r‘𝐸)𝐷)) = (𝐸 Σg (𝑗 ∈ 𝑌 ↦ (𝐸 Σg (𝑖 ∈ 𝑋 ↦ (𝑗(𝐻 ∘f
(.r‘𝐸)𝐷)𝑖)))))) |
321 | 12, 22 | sravsca 20449 |
. . . . . . . 8
⊢ (𝜑 → (.r‘𝐸) = (
·𝑠 ‘𝐴)) |
322 | 321 | ofeqd 7535 |
. . . . . . 7
⊢ (𝜑 → ∘f
(.r‘𝐸) =
∘f ( ·𝑠 ‘𝐴)) |
323 | 322 | oveqd 7292 |
. . . . . 6
⊢ (𝜑 → (𝐻 ∘f
(.r‘𝐸)𝐷) = (𝐻 ∘f (
·𝑠 ‘𝐴)𝐷)) |
324 | 323 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 → (𝐸 Σg (𝐻 ∘f
(.r‘𝐸)𝐷)) = (𝐸 Σg (𝐻 ∘f (
·𝑠 ‘𝐴)𝐷))) |
325 | 289, 320,
324 | 3eqtr2rd 2785 |
. . . 4
⊢ (𝜑 → (𝐸 Σg (𝐻 ∘f (
·𝑠 ‘𝐴)𝐷)) = (𝐸 Σg (𝑗 ∈ 𝑌 ↦ ((𝐿‘𝑗)( ·𝑠
‘𝐵)𝑗)))) |
326 | | ovexd 7310 |
. . . . 5
⊢ (𝜑 → (𝐻 ∘f (
·𝑠 ‘𝐴)𝐷) ∈ V) |
327 | | fedgmullem1.a |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ (Base‘𝐴)) |
328 | 327 | elfvexd 6808 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
329 | 11, 326, 67, 328, 22 | gsumsra 31307 |
. . . 4
⊢ (𝜑 → (𝐸 Σg (𝐻 ∘f (
·𝑠 ‘𝐴)𝐷)) = (𝐴 Σg (𝐻 ∘f (
·𝑠 ‘𝐴)𝐷))) |
330 | 325, 329 | eqtr3d 2780 |
. . 3
⊢ (𝜑 → (𝐸 Σg (𝑗 ∈ 𝑌 ↦ ((𝐿‘𝑗)( ·𝑠
‘𝐵)𝑗))) = (𝐴 Σg (𝐻 ∘f (
·𝑠 ‘𝐴)𝐷))) |
331 | 198, 199,
330 | 3eqtr2d 2784 |
. 2
⊢ (𝜑 → 𝑍 = (𝐴 Σg (𝐻 ∘f (
·𝑠 ‘𝐴)𝐷))) |
332 | 197, 331 | jca 512 |
1
⊢ (𝜑 → (𝐻 finSupp
(0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻 ∘f (
·𝑠 ‘𝐴)𝐷)))) |