Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fedgmullem1 Structured version   Visualization version   GIF version

Theorem fedgmullem1 33618
Description: Lemma for fedgmul 33620. (Contributed by Thierry Arnoux, 20-Jul-2023.)
Hypotheses
Ref Expression
fedgmul.a 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
fedgmul.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
fedgmul.c 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
fedgmul.f 𝐹 = (𝐸s 𝑈)
fedgmul.k 𝐾 = (𝐸s 𝑉)
fedgmul.1 (𝜑𝐸 ∈ DivRing)
fedgmul.2 (𝜑𝐹 ∈ DivRing)
fedgmul.3 (𝜑𝐾 ∈ DivRing)
fedgmul.4 (𝜑𝑈 ∈ (SubRing‘𝐸))
fedgmul.5 (𝜑𝑉 ∈ (SubRing‘𝐹))
fedgmullem.d 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
fedgmullem.h 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
fedgmullem.x (𝜑𝑋 ∈ (LBasis‘𝐶))
fedgmullem.y (𝜑𝑌 ∈ (LBasis‘𝐵))
fedgmullem1.a (𝜑𝑍 ∈ (Base‘𝐴))
fedgmullem1.l (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))
fedgmullem1.1 (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))
fedgmullem1.z (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
fedgmullem1.g (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
fedgmullem1.2 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))
fedgmullem1.3 ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
Assertion
Ref Expression
fedgmullem1 (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷))))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑗   𝐶,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝐸,𝑗   𝑖,𝐺,𝑗   𝑖,𝐻,𝑗   𝑗,𝐿   𝑈,𝑖   𝑖,𝑋,𝑗   𝑖,𝑌,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐵(𝑖)   𝑈(𝑗)   𝐹(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝐿(𝑖)   𝑉(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem fedgmullem1
Dummy variables 𝑢 𝑘 𝑙 𝑔 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fedgmullem1.g . . . . 5 (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
2 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
3 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
42, 3ffvelcdmd 7039 . . . . . . . . . . . 12 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋))
5 elmapi 8799 . . . . . . . . . . . 12 ((𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
64, 5syl 17 . . . . . . . . . . 11 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
76anasss 466 . . . . . . . . . 10 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
8 simprr 772 . . . . . . . . . 10 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → 𝑖𝑋)
97, 8ffvelcdmd 7039 . . . . . . . . 9 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
10 fedgmul.k . . . . . . . . . . . . 13 𝐾 = (𝐸s 𝑉)
11 fedgmul.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
1211a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝐸)‘𝑉))
13 fedgmul.4 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 ∈ (SubRing‘𝐸))
14 fedgmul.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 ∈ (SubRing‘𝐹))
15 fedgmul.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝐸s 𝑈)
1615subsubrg 20518 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈)))
1716biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
1813, 14, 17syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
1918simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (SubRing‘𝐸))
20 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐸) = (Base‘𝐸)
2120subrgss 20492 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸))
2219, 21syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐸))
2312, 22srasca 21119 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝑉) = (Scalar‘𝐴))
2410, 23eqtrid 2776 . . . . . . . . . . . 12 (𝜑𝐾 = (Scalar‘𝐴))
2518simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝑉𝑈)
26 ressabs 17194 . . . . . . . . . . . . . . 15 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈) → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
2713, 25, 26syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
2815oveq1i 7379 . . . . . . . . . . . . . 14 (𝐹s 𝑉) = ((𝐸s 𝑈) ↾s 𝑉)
2927, 28, 103eqtr4g 2789 . . . . . . . . . . . . 13 (𝜑 → (𝐹s 𝑉) = 𝐾)
30 fedgmul.c . . . . . . . . . . . . . . 15 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
3130a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐶 = ((subringAlg ‘𝐹)‘𝑉))
32 eqid 2729 . . . . . . . . . . . . . . . 16 (Base‘𝐹) = (Base‘𝐹)
3332subrgss 20492 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹))
3414, 33syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐹))
3531, 34srasca 21119 . . . . . . . . . . . . 13 (𝜑 → (𝐹s 𝑉) = (Scalar‘𝐶))
3629, 35eqtr3d 2766 . . . . . . . . . . . 12 (𝜑𝐾 = (Scalar‘𝐶))
3724, 36eqtr3d 2766 . . . . . . . . . . 11 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶))
3837fveq2d 6844 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
3938ad2antrr 726 . . . . . . . . 9 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
409, 39eleqtrrd 2831 . . . . . . . 8 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
4140ralrimivva 3178 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → ∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
42 fedgmullem.h . . . . . . . 8 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
4342fmpo 8026 . . . . . . 7 (∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
4441, 43sylib 218 . . . . . 6 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
45 fvexd 6855 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (Base‘(Scalar‘𝐴)) ∈ V)
46 fedgmullem.y . . . . . . . . 9 (𝜑𝑌 ∈ (LBasis‘𝐵))
47 fedgmullem.x . . . . . . . . 9 (𝜑𝑋 ∈ (LBasis‘𝐶))
4846, 47xpexd 7707 . . . . . . . 8 (𝜑 → (𝑌 × 𝑋) ∈ V)
4948adantr 480 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (𝑌 × 𝑋) ∈ V)
5045, 49elmapd 8790 . . . . . 6 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴))))
5144, 50mpbird 257 . . . . 5 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → 𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)))
521, 51mpdan 687 . . . 4 (𝜑𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)))
53 simpl 482 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝜑)
5453adantr 480 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝜑)
551ffvelcdmda 7038 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋))
5655, 5syl 17 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
5756adantr 480 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
5838feq3d 6655 . . . . . . . . . . 11 (𝜑 → ((𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)) ↔ (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶))))
5958biimpar 477 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶))) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)))
6054, 57, 59syl2anc 584 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)))
61 simpr 484 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖𝑋)
6260, 61ffvelcdmd 7039 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6362ralrimiva 3125 . . . . . . 7 ((𝜑𝑗𝑌) → ∀𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6463ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6564, 43sylib 218 . . . . 5 (𝜑𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
6665ffund 6674 . . . 4 (𝜑 → Fun 𝐻)
67 fedgmul.1 . . . . . 6 (𝜑𝐸 ∈ DivRing)
68 drngring 20656 . . . . . 6 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
6967, 68syl 17 . . . . 5 (𝜑𝐸 ∈ Ring)
70 ringgrp 20158 . . . . 5 (𝐸 ∈ Ring → 𝐸 ∈ Grp)
71 eqid 2729 . . . . . 6 (0g𝐸) = (0g𝐸)
7220, 71grpidcl 18879 . . . . 5 (𝐸 ∈ Grp → (0g𝐸) ∈ (Base‘𝐸))
7369, 70, 723syl 18 . . . 4 (𝜑 → (0g𝐸) ∈ (Base‘𝐸))
74 fedgmullem1.1 . . . . . . 7 (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))
7574fsuppimpd 9296 . . . . . 6 (𝜑 → (𝐿 supp (0g‘(Scalar‘𝐵))) ∈ Fin)
76 simpl 482 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝜑)
77 simpr 484 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵)))))
7877eldifad 3923 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝑗𝑌)
79 fedgmullem1.l . . . . . . . . . 10 (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))
80 ssidd 3967 . . . . . . . . . 10 (𝜑 → (𝐿 supp (0g‘(Scalar‘𝐵))) ⊆ (𝐿 supp (0g‘(Scalar‘𝐵))))
81 fvexd 6855 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) ∈ V)
8279, 80, 46, 81suppssr 8151 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐿𝑗) = (0g‘(Scalar‘𝐵)))
83 fedgmullem1.3 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
8478, 83syldan 591 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
85 fedgmul.b . . . . . . . . . . . . . . 15 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
8685a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
8720subrgss 20492 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
8813, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘𝐸))
8986, 88srasca 21119 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
9015, 89eqtrid 2776 . . . . . . . . . . . 12 (𝜑𝐹 = (Scalar‘𝐵))
9190fveq2d 6844 . . . . . . . . . . 11 (𝜑 → (0g𝐹) = (0g‘(Scalar‘𝐵)))
92 fedgmul.2 . . . . . . . . . . . 12 (𝜑𝐹 ∈ DivRing)
9330, 92, 14drgext0g 33578 . . . . . . . . . . 11 (𝜑 → (0g𝐹) = (0g𝐶))
9491, 93eqtr3d 2766 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) = (0g𝐶))
9594adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (0g‘(Scalar‘𝐵)) = (0g𝐶))
9682, 84, 953eqtr3d 2772 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶))
97 fedgmullem1.2 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))
98 breq1 5105 . . . . . . . . . . . . 13 (𝑔 = (𝐺𝑗) → (𝑔 finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶))))
99 fveq1 6839 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝐺𝑗) → (𝑔𝑖) = ((𝐺𝑗)‘𝑖))
10099oveq1d 7384 . . . . . . . . . . . . . . . 16 (𝑔 = (𝐺𝑗) → ((𝑔𝑖)( ·𝑠𝐶)𝑖) = (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))
101100mpteq2dv 5196 . . . . . . . . . . . . . . 15 (𝑔 = (𝐺𝑗) → (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
102101oveq2d 7385 . . . . . . . . . . . . . 14 (𝑔 = (𝐺𝑗) → (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
103102eqeq1d 2731 . . . . . . . . . . . . 13 (𝑔 = (𝐺𝑗) → ((𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶) ↔ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)))
10498, 103anbi12d 632 . . . . . . . . . . . 12 (𝑔 = (𝐺𝑗) → ((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) ↔ ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶))))
105 eqeq1 2733 . . . . . . . . . . . 12 (𝑔 = (𝐺𝑗) → (𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))}) ↔ (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
106104, 105imbi12d 344 . . . . . . . . . . 11 (𝑔 = (𝐺𝑗) → (((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})) ↔ (((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))))
107 fedgmul.3 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ DivRing)
10829, 107eqeltrd 2828 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹s 𝑉) ∈ DivRing)
109 eqid 2729 . . . . . . . . . . . . . . . 16 (𝐹s 𝑉) = (𝐹s 𝑉)
11030, 109sralvec 33574 . . . . . . . . . . . . . . 15 ((𝐹 ∈ DivRing ∧ (𝐹s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec)
11192, 108, 14, 110syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ LVec)
112 lveclmod 21045 . . . . . . . . . . . . . 14 (𝐶 ∈ LVec → 𝐶 ∈ LMod)
113111, 112syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ LMod)
114113adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝐶 ∈ LMod)
115 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝐶) = (Base‘𝐶)
116 eqid 2729 . . . . . . . . . . . . . . 15 (LBasis‘𝐶) = (LBasis‘𝐶)
117115, 116lbsss 21016 . . . . . . . . . . . . . 14 (𝑋 ∈ (LBasis‘𝐶) → 𝑋 ⊆ (Base‘𝐶))
11847, 117syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ (Base‘𝐶))
119118adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ⊆ (Base‘𝐶))
120 eqid 2729 . . . . . . . . . . . . . . . 16 (LSpan‘𝐶) = (LSpan‘𝐶)
121115, 116, 120islbs4 21774 . . . . . . . . . . . . . . 15 (𝑋 ∈ (LBasis‘𝐶) ↔ (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶)))
12247, 121sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶)))
123122simpld 494 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (LIndS‘𝐶))
124123adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ∈ (LIndS‘𝐶))
125 eqid 2729 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
126 eqid 2729 . . . . . . . . . . . . . 14 (Scalar‘𝐶) = (Scalar‘𝐶)
127 eqid 2729 . . . . . . . . . . . . . 14 ( ·𝑠𝐶) = ( ·𝑠𝐶)
128 eqid 2729 . . . . . . . . . . . . . 14 (0g𝐶) = (0g𝐶)
129 eqid 2729 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
130115, 125, 126, 127, 128, 129islinds5 33331 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) → (𝑋 ∈ (LIndS‘𝐶) ↔ ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))}))))
131130biimpa 476 . . . . . . . . . . . 12 (((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) ∧ 𝑋 ∈ (LIndS‘𝐶)) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})))
132114, 119, 124, 131syl21anc 837 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})))
133106, 132, 55rspcdva 3586 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
13497, 133mpand 695 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
135134imp 406 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))
13676, 78, 96, 135syl21anc 837 . . . . . . 7 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))
1371, 136suppss 8150 . . . . . 6 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ (𝐿 supp (0g‘(Scalar‘𝐵))))
13875, 137ssfid 9188 . . . . 5 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin)
139 suppssdm 8133 . . . . . . . . . 10 (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ dom 𝐺
140139, 1fssdm 6689 . . . . . . . . 9 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ 𝑌)
141140sselda 3943 . . . . . . . 8 ((𝜑𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))) → 𝑤𝑌)
142 eleq1w 2811 . . . . . . . . . . . 12 (𝑗 = 𝑤 → (𝑗𝑌𝑤𝑌))
143142anbi2d 630 . . . . . . . . . . 11 (𝑗 = 𝑤 → ((𝜑𝑗𝑌) ↔ (𝜑𝑤𝑌)))
144 fveq2 6840 . . . . . . . . . . . 12 (𝑗 = 𝑤 → (𝐺𝑗) = (𝐺𝑤))
145144breq1d 5112 . . . . . . . . . . 11 (𝑗 = 𝑤 → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶))))
146143, 145imbi12d 344 . . . . . . . . . 10 (𝑗 = 𝑤 → (((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶))) ↔ ((𝜑𝑤𝑌) → (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶)))))
147146, 97chvarvv 1989 . . . . . . . . 9 ((𝜑𝑤𝑌) → (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶)))
148147fsuppimpd 9296 . . . . . . . 8 ((𝜑𝑤𝑌) → ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
149141, 148syldan 591 . . . . . . 7 ((𝜑𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))) → ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
150149ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
151 iunfi 9270 . . . . . 6 (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ ∀𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin) → 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
152138, 150, 151syl2anc 584 . . . . 5 (𝜑 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
153 xpfi 9245 . . . . 5 (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin) → ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin)
154138, 152, 153syl2anc 584 . . . 4 (𝜑 → ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin)
155 fveq2 6840 . . . . . . . . . 10 (𝑣 = 𝑗 → (𝐺𝑣) = (𝐺𝑗))
156155fveq1d 6842 . . . . . . . . 9 (𝑣 = 𝑗 → ((𝐺𝑣)‘𝑢) = ((𝐺𝑗)‘𝑢))
157156mpteq2dv 5196 . . . . . . . 8 (𝑣 = 𝑗 → (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)) = (𝑢𝑋 ↦ ((𝐺𝑗)‘𝑢)))
158 fveq2 6840 . . . . . . . . 9 (𝑢 = 𝑖 → ((𝐺𝑗)‘𝑢) = ((𝐺𝑗)‘𝑖))
159158cbvmptv 5206 . . . . . . . 8 (𝑢𝑋 ↦ ((𝐺𝑗)‘𝑢)) = (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
160157, 159eqtrdi 2780 . . . . . . 7 (𝑣 = 𝑗 → (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)) = (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
161160cbvmptv 5206 . . . . . 6 (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) = (𝑗𝑌 ↦ (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
162 fvexd 6855 . . . . . 6 (𝜑 → (0g‘(Scalar‘𝐶)) ∈ V)
163 fvexd 6855 . . . . . 6 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ V)
16442, 161, 46, 47, 162, 163suppovss 32654 . . . . 5 (𝜑 → (𝐻 supp (0g‘(Scalar‘𝐶))) ⊆ (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶)))))
16510, 71subrg0 20499 . . . . . . . 8 (𝑉 ∈ (SubRing‘𝐸) → (0g𝐸) = (0g𝐾))
16619, 165syl 17 . . . . . . 7 (𝜑 → (0g𝐸) = (0g𝐾))
16736fveq2d 6844 . . . . . . 7 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝐶)))
168166, 167eqtr2d 2765 . . . . . 6 (𝜑 → (0g‘(Scalar‘𝐶)) = (0g𝐸))
169168oveq2d 7385 . . . . 5 (𝜑 → (𝐻 supp (0g‘(Scalar‘𝐶))) = (𝐻 supp (0g𝐸)))
1701feqmptd 6911 . . . . . . . 8 (𝜑𝐺 = (𝑣𝑌 ↦ (𝐺𝑣)))
171 eleq1w 2811 . . . . . . . . . . . . 13 (𝑗 = 𝑣 → (𝑗𝑌𝑣𝑌))
172171anbi2d 630 . . . . . . . . . . . 12 (𝑗 = 𝑣 → ((𝜑𝑗𝑌) ↔ (𝜑𝑣𝑌)))
173 fveq2 6840 . . . . . . . . . . . . 13 (𝑗 = 𝑣 → (𝐺𝑗) = (𝐺𝑣))
174173feq1d 6652 . . . . . . . . . . . 12 (𝑗 = 𝑣 → ((𝐺𝑗):𝑋⟶(Base‘𝐸) ↔ (𝐺𝑣):𝑋⟶(Base‘𝐸)))
175172, 174imbi12d 344 . . . . . . . . . . 11 (𝑗 = 𝑣 → (((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘𝐸)) ↔ ((𝜑𝑣𝑌) → (𝐺𝑣):𝑋⟶(Base‘𝐸))))
17610, 20ressbas2 17184 . . . . . . . . . . . . . . . 16 (𝑉 ⊆ (Base‘𝐸) → 𝑉 = (Base‘𝐾))
17722, 176syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑉 = (Base‘𝐾))
17836fveq2d 6844 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝐶)))
179177, 178eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑𝑉 = (Base‘(Scalar‘𝐶)))
180179, 22eqsstrrd 3979 . . . . . . . . . . . . 13 (𝜑 → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
181180adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
18256, 181fssd 6687 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘𝐸))
183175, 182chvarvv 1989 . . . . . . . . . 10 ((𝜑𝑣𝑌) → (𝐺𝑣):𝑋⟶(Base‘𝐸))
184183feqmptd 6911 . . . . . . . . 9 ((𝜑𝑣𝑌) → (𝐺𝑣) = (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))
185184mpteq2dva 5195 . . . . . . . 8 (𝜑 → (𝑣𝑌 ↦ (𝐺𝑣)) = (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))))
186170, 185eqtr2d 2765 . . . . . . 7 (𝜑 → (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) = 𝐺)
187186oveq1d 7384 . . . . . 6 (𝜑 → ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) = (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})))
188186fveq1d 6842 . . . . . . . 8 (𝜑 → ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) = (𝐺𝑤))
189188oveq1d 7384 . . . . . . 7 (𝜑 → (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶))) = ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))))
190187, 189iuneq12d 4981 . . . . . 6 (𝜑 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶))) = 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))))
191187, 190xpeq12d 5662 . . . . 5 (𝜑 → (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶)))) = ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))
192164, 169, 1913sstr3d 3998 . . . 4 (𝜑 → (𝐻 supp (0g𝐸)) ⊆ ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))
193 suppssfifsupp 9307 . . . 4 (((𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ∧ Fun 𝐻 ∧ (0g𝐸) ∈ (Base‘𝐸)) ∧ (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin ∧ (𝐻 supp (0g𝐸)) ⊆ ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))) → 𝐻 finSupp (0g𝐸))
19452, 66, 73, 154, 192, 193syl32anc 1380 . . 3 (𝜑𝐻 finSupp (0g𝐸))
19537fveq2d 6844 . . . 4 (𝜑 → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐶)))
196195, 168eqtr2d 2765 . . 3 (𝜑 → (0g𝐸) = (0g‘(Scalar‘𝐴)))
197194, 196breqtrd 5128 . 2 (𝜑𝐻 finSupp (0g‘(Scalar‘𝐴)))
198 fedgmullem1.z . . 3 (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
19985, 67, 13, 15, 92, 46drgextgsum 33583 . . 3 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
20047adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ∈ (LBasis‘𝐶))
20113adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubRing‘𝐸))
202 subrgsubg 20497 . . . . . . . . . . . . 13 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸))
203 subgsubm 19062 . . . . . . . . . . . . 13 (𝑈 ∈ (SubGrp‘𝐸) → 𝑈 ∈ (SubMnd‘𝐸))
204201, 202, 2033syl 18 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubMnd‘𝐸))
205113ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐶 ∈ LMod)
20656ffvelcdmda 7038 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
207118ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐶))
208207, 61sseldd 3944 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐶))
209115, 126, 127, 125lmodvscl 20816 . . . . . . . . . . . . . . 15 ((𝐶 ∈ LMod ∧ ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑖 ∈ (Base‘𝐶)) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
210205, 206, 208, 209syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
21115, 20ressbas2 17184 . . . . . . . . . . . . . . . . 17 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
21288, 211syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝐹))
21331, 34srabase 21116 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐹) = (Base‘𝐶))
214212, 213eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝐶))
215214ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑈 = (Base‘𝐶))
216210, 215eleqtrrd 2831 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ 𝑈)
217216fmpttd 7069 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)):𝑋𝑈)
218200, 204, 217, 15gsumsubm 18744 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
219 eqid 2729 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
22015, 219ressmulr 17246 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐹))
22113, 220syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝐸) = (.r𝐹))
22231, 34sravsca 21120 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝐹) = ( ·𝑠𝐶))
223221, 222eqtr2d 2765 . . . . . . . . . . . . . . 15 (𝜑 → ( ·𝑠𝐶) = (.r𝐸))
224223ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ( ·𝑠𝐶) = (.r𝐸))
225224oveqd 7386 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))
226225mpteq2dva 5195 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))
227226oveq2d 7385 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))))
22830, 92, 14, 109, 108, 47drgextgsum 33583 . . . . . . . . . . . 12 (𝜑 → (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
229228adantr 480 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
230218, 227, 2293eqtr3d 2772 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
231230oveq1d 7384 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗) = ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))(.r𝐸)𝑗))
23269ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐸 ∈ Ring)
233180ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
234233, 206sseldd 3944 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸))
235214, 88eqsstrrd 3979 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸))
236118, 235sstrd 3954 . . . . . . . . . . . . . . 15 (𝜑𝑋 ⊆ (Base‘𝐸))
237236ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐸))
238237, 61sseldd 3944 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐸))
239 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘𝐵) = (Base‘𝐵)
240 eqid 2729 . . . . . . . . . . . . . . . . . 18 (LBasis‘𝐵) = (LBasis‘𝐵)
241239, 240lbsss 21016 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ (LBasis‘𝐵) → 𝑌 ⊆ (Base‘𝐵))
24246, 241syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ⊆ (Base‘𝐵))
24386, 88srabase 21116 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
244242, 243sseqtrrd 3981 . . . . . . . . . . . . . . 15 (𝜑𝑌 ⊆ (Base‘𝐸))
245244ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑌 ⊆ (Base‘𝐸))
246 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
247245, 246sseldd 3944 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗 ∈ (Base‘𝐸))
24820, 219ringass 20173 . . . . . . . . . . . . 13 ((𝐸 ∈ Ring ∧ (((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸))) → ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
249232, 234, 238, 247, 248syl13anc 1374 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
250249mpteq2dva 5195 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
251250oveq2d 7385 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))))
25269adantr 480 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝐸 ∈ Ring)
253242adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → 𝑌 ⊆ (Base‘𝐵))
254243adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → (Base‘𝐸) = (Base‘𝐵))
255253, 254sseqtrrd 3981 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑌 ⊆ (Base‘𝐸))
256 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑗𝑌)
257255, 256sseldd 3944 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝑗 ∈ (Base‘𝐸))
25820, 219ringcl 20170 . . . . . . . . . . . 12 ((𝐸 ∈ Ring ∧ ((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸)) → (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
259232, 234, 238, 258syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
260168breq2d 5114 . . . . . . . . . . . . . 14 (𝜑 → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g𝐸)))
261260adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g𝐸)))
26297, 261mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g𝐸))
26320, 252, 200, 238, 182, 262rmfsupp2 33205 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)) finSupp (0g𝐸))
26420, 71, 219, 252, 200, 257, 259, 263gsummulc1 20236 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
265251, 264eqtr3d 2766 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))) = ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
26683oveq1d 7384 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))(.r𝐸)𝑗))
267231, 265, 2663eqtr4rd 2775 . . . . . . . 8 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))))
26886, 88sravsca 21120 . . . . . . . . . 10 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
269268adantr 480 . . . . . . . . 9 ((𝜑𝑗𝑌) → (.r𝐸) = ( ·𝑠𝐵))
270269oveqd 7386 . . . . . . . 8 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = ((𝐿𝑗)( ·𝑠𝐵)𝑗))
271 fvexd 6855 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑌𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ V)
272 ovexd 7404 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑌𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ V)
27342a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
274 fedgmullem.d . . . . . . . . . . . . . . 15 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
275274a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗)))
27646, 47, 271, 272, 273, 275offval22 8044 . . . . . . . . . . . . 13 (𝜑 → (𝐻f (.r𝐸)𝐷) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
277276oveqd 7386 . . . . . . . . . . . 12 (𝜑 → (𝑗(𝐻f (.r𝐸)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖))
278277ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝐻f (.r𝐸)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖))
279 ovexd 7404 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) ∈ V)
280 eqid 2729 . . . . . . . . . . . . 13 (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
281280ovmpt4g 7516 . . . . . . . . . . . 12 ((𝑗𝑌𝑖𝑋 ∧ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) ∈ V) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
282246, 61, 279, 281syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
283278, 282eqtr2d 2765 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) = (𝑗(𝐻f (.r𝐸)𝐷)𝑖))
284283mpteq2dva 5195 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))) = (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖)))
285284oveq2d 7385 . . . . . . . 8 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))) = (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))
286267, 270, 2853eqtr3d 2772 . . . . . . 7 ((𝜑𝑗𝑌) → ((𝐿𝑗)( ·𝑠𝐵)𝑗) = (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))
287286mpteq2dva 5195 . . . . . 6 (𝜑 → (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗)) = (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖)))))
288287oveq2d 7385 . . . . 5 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐸 Σg (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))))
289 ringcmn 20202 . . . . . . 7 (𝐸 ∈ Ring → 𝐸 ∈ CMnd)
29069, 289syl 17 . . . . . 6 (𝜑𝐸 ∈ CMnd)
29169adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝐸 ∈ Ring)
29238, 180eqsstrd 3978 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
293292adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
294 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘(Scalar‘𝐴)))
295293, 294sseldd 3944 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘𝐸))
296 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐴))
29712, 22srabase 21116 . . . . . . . . . 10 (𝜑 → (Base‘𝐸) = (Base‘𝐴))
298297adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘𝐸) = (Base‘𝐴))
299296, 298eleqtrrd 2831 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐸))
30020, 219ringcl 20170 . . . . . . . 8 ((𝐸 ∈ Ring ∧ 𝑙 ∈ (Base‘𝐸) ∧ 𝑘 ∈ (Base‘𝐸)) → (𝑙(.r𝐸)𝑘) ∈ (Base‘𝐸))
301291, 295, 299, 300syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (𝑙(.r𝐸)𝑘) ∈ (Base‘𝐸))
30220, 219ringcl 20170 . . . . . . . . . . . 12 ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
303232, 238, 247, 302syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
304297ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘𝐸) = (Base‘𝐴))
305303, 304eleqtrd 2830 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
306305anasss 466 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
307306ralrimivva 3178 . . . . . . . 8 (𝜑 → ∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
308274fmpo 8026 . . . . . . . 8 (∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴) ↔ 𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
309307, 308sylib 218 . . . . . . 7 (𝜑𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
310 inidm 4186 . . . . . . 7 ((𝑌 × 𝑋) ∩ (𝑌 × 𝑋)) = (𝑌 × 𝑋)
311301, 65, 309, 48, 48, 310off 7651 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷):(𝑌 × 𝑋)⟶(Base‘𝐸))
31269adantr 480 . . . . . . . 8 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝐸 ∈ Ring)
313 simpr 484 . . . . . . . . 9 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐴))
314297adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ (Base‘𝐴)) → (Base‘𝐸) = (Base‘𝐴))
315313, 314eleqtrrd 2831 . . . . . . . 8 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐸))
31620, 219, 71ringlz 20213 . . . . . . . 8 ((𝐸 ∈ Ring ∧ 𝑢 ∈ (Base‘𝐸)) → ((0g𝐸)(.r𝐸)𝑢) = (0g𝐸))
317312, 315, 316syl2anc 584 . . . . . . 7 ((𝜑𝑢 ∈ (Base‘𝐴)) → ((0g𝐸)(.r𝐸)𝑢) = (0g𝐸))
31848, 73, 73, 65, 309, 194, 317offinsupp1 32700 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷) finSupp (0g𝐸))
31920, 71, 290, 46, 47, 311, 318gsumxp 19890 . . . . 5 (𝜑 → (𝐸 Σg (𝐻f (.r𝐸)𝐷)) = (𝐸 Σg (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))))
32012, 22sravsca 21120 . . . . . . . 8 (𝜑 → (.r𝐸) = ( ·𝑠𝐴))
321320ofeqd 7635 . . . . . . 7 (𝜑 → ∘f (.r𝐸) = ∘f ( ·𝑠𝐴))
322321oveqd 7386 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷) = (𝐻f ( ·𝑠𝐴)𝐷))
323322oveq2d 7385 . . . . 5 (𝜑 → (𝐸 Σg (𝐻f (.r𝐸)𝐷)) = (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
324288, 319, 3233eqtr2rd 2771 . . . 4 (𝜑 → (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)) = (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
325 ovexd 7404 . . . . 5 (𝜑 → (𝐻f ( ·𝑠𝐴)𝐷) ∈ V)
326 fedgmullem1.a . . . . . 6 (𝜑𝑍 ∈ (Base‘𝐴))
327326elfvexd 6879 . . . . 5 (𝜑𝐴 ∈ V)
32811, 325, 67, 327, 22gsumsra 33030 . . . 4 (𝜑 → (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)) = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
329324, 328eqtr3d 2766 . . 3 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
330198, 199, 3293eqtr2d 2770 . 2 (𝜑𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
331197, 330jca 511 1 (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cdif 3908  wss 3911  {csn 4585   ciun 4951   class class class wbr 5102  cmpt 5183   × cxp 5629  Fun wfun 6493  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  f cof 7631   supp csupp 8116  m cmap 8776  Fincfn 8895   finSupp cfsupp 9288  Basecbs 17155  s cress 17176  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  SubMndcsubmnd 18691  Grpcgrp 18847  SubGrpcsubg 19034  CMndccmn 19694  Ringcrg 20153  SubRingcsubrg 20489  DivRingcdr 20649  LModclmod 20798  LSpanclspn 20909  LBasisclbs 21013  LVecclvec 21041  subringAlg csra 21110  LIndSclinds 21747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-nzr 20433  df-subrg 20490  df-drng 20651  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lmhm 20961  df-lbs 21014  df-lvec 21042  df-sra 21112  df-rgmod 21113  df-dsmm 21674  df-frlm 21689  df-uvc 21725  df-lindf 21748  df-linds 21749
This theorem is referenced by:  fedgmul  33620
  Copyright terms: Public domain W3C validator