Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fedgmullem1 Structured version   Visualization version   GIF version

Theorem fedgmullem1 33642
Description: Lemma for fedgmul 33644. (Contributed by Thierry Arnoux, 20-Jul-2023.)
Hypotheses
Ref Expression
fedgmul.a 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
fedgmul.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
fedgmul.c 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
fedgmul.f 𝐹 = (𝐸s 𝑈)
fedgmul.k 𝐾 = (𝐸s 𝑉)
fedgmul.1 (𝜑𝐸 ∈ DivRing)
fedgmul.2 (𝜑𝐹 ∈ DivRing)
fedgmul.3 (𝜑𝐾 ∈ DivRing)
fedgmul.4 (𝜑𝑈 ∈ (SubRing‘𝐸))
fedgmul.5 (𝜑𝑉 ∈ (SubRing‘𝐹))
fedgmullem.d 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
fedgmullem.h 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
fedgmullem.x (𝜑𝑋 ∈ (LBasis‘𝐶))
fedgmullem.y (𝜑𝑌 ∈ (LBasis‘𝐵))
fedgmullem1.a (𝜑𝑍 ∈ (Base‘𝐴))
fedgmullem1.l (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))
fedgmullem1.1 (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))
fedgmullem1.z (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
fedgmullem1.g (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
fedgmullem1.2 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))
fedgmullem1.3 ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
Assertion
Ref Expression
fedgmullem1 (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷))))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑗   𝐶,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝐸,𝑗   𝑖,𝐺,𝑗   𝑖,𝐻,𝑗   𝑗,𝐿   𝑈,𝑖   𝑖,𝑋,𝑗   𝑖,𝑌,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐵(𝑖)   𝑈(𝑗)   𝐹(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝐿(𝑖)   𝑉(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem fedgmullem1
Dummy variables 𝑢 𝑘 𝑙 𝑔 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fedgmullem1.g . . . . 5 (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
2 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
3 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
42, 3ffvelcdmd 7119 . . . . . . . . . . . 12 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋))
5 elmapi 8907 . . . . . . . . . . . 12 ((𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
64, 5syl 17 . . . . . . . . . . 11 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
76anasss 466 . . . . . . . . . 10 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
8 simprr 772 . . . . . . . . . 10 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → 𝑖𝑋)
97, 8ffvelcdmd 7119 . . . . . . . . 9 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
10 fedgmul.k . . . . . . . . . . . . 13 𝐾 = (𝐸s 𝑉)
11 fedgmul.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
1211a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝐸)‘𝑉))
13 fedgmul.4 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 ∈ (SubRing‘𝐸))
14 fedgmul.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 ∈ (SubRing‘𝐹))
15 fedgmul.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝐸s 𝑈)
1615subsubrg 20626 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈)))
1716biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
1813, 14, 17syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
1918simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (SubRing‘𝐸))
20 eqid 2740 . . . . . . . . . . . . . . . 16 (Base‘𝐸) = (Base‘𝐸)
2120subrgss 20600 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸))
2219, 21syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐸))
2312, 22srasca 21206 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝑉) = (Scalar‘𝐴))
2410, 23eqtrid 2792 . . . . . . . . . . . 12 (𝜑𝐾 = (Scalar‘𝐴))
2518simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝑉𝑈)
26 ressabs 17308 . . . . . . . . . . . . . . 15 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈) → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
2713, 25, 26syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
2815oveq1i 7458 . . . . . . . . . . . . . 14 (𝐹s 𝑉) = ((𝐸s 𝑈) ↾s 𝑉)
2927, 28, 103eqtr4g 2805 . . . . . . . . . . . . 13 (𝜑 → (𝐹s 𝑉) = 𝐾)
30 fedgmul.c . . . . . . . . . . . . . . 15 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
3130a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐶 = ((subringAlg ‘𝐹)‘𝑉))
32 eqid 2740 . . . . . . . . . . . . . . . 16 (Base‘𝐹) = (Base‘𝐹)
3332subrgss 20600 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹))
3414, 33syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐹))
3531, 34srasca 21206 . . . . . . . . . . . . 13 (𝜑 → (𝐹s 𝑉) = (Scalar‘𝐶))
3629, 35eqtr3d 2782 . . . . . . . . . . . 12 (𝜑𝐾 = (Scalar‘𝐶))
3724, 36eqtr3d 2782 . . . . . . . . . . 11 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶))
3837fveq2d 6924 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
3938ad2antrr 725 . . . . . . . . 9 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
409, 39eleqtrrd 2847 . . . . . . . 8 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
4140ralrimivva 3208 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → ∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
42 fedgmullem.h . . . . . . . 8 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
4342fmpo 8109 . . . . . . 7 (∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
4441, 43sylib 218 . . . . . 6 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
45 fvexd 6935 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (Base‘(Scalar‘𝐴)) ∈ V)
46 fedgmullem.y . . . . . . . . 9 (𝜑𝑌 ∈ (LBasis‘𝐵))
47 fedgmullem.x . . . . . . . . 9 (𝜑𝑋 ∈ (LBasis‘𝐶))
4846, 47xpexd 7786 . . . . . . . 8 (𝜑 → (𝑌 × 𝑋) ∈ V)
4948adantr 480 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (𝑌 × 𝑋) ∈ V)
5045, 49elmapd 8898 . . . . . 6 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴))))
5144, 50mpbird 257 . . . . 5 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → 𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)))
521, 51mpdan 686 . . . 4 (𝜑𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)))
53 simpl 482 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝜑)
5453adantr 480 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝜑)
551ffvelcdmda 7118 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋))
5655, 5syl 17 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
5756adantr 480 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
5838feq3d 6734 . . . . . . . . . . 11 (𝜑 → ((𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)) ↔ (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶))))
5958biimpar 477 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶))) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)))
6054, 57, 59syl2anc 583 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)))
61 simpr 484 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖𝑋)
6260, 61ffvelcdmd 7119 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6362ralrimiva 3152 . . . . . . 7 ((𝜑𝑗𝑌) → ∀𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6463ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6564, 43sylib 218 . . . . 5 (𝜑𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
6665ffund 6751 . . . 4 (𝜑 → Fun 𝐻)
67 fedgmul.1 . . . . . 6 (𝜑𝐸 ∈ DivRing)
68 drngring 20758 . . . . . 6 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
6967, 68syl 17 . . . . 5 (𝜑𝐸 ∈ Ring)
70 ringgrp 20265 . . . . 5 (𝐸 ∈ Ring → 𝐸 ∈ Grp)
71 eqid 2740 . . . . . 6 (0g𝐸) = (0g𝐸)
7220, 71grpidcl 19005 . . . . 5 (𝐸 ∈ Grp → (0g𝐸) ∈ (Base‘𝐸))
7369, 70, 723syl 18 . . . 4 (𝜑 → (0g𝐸) ∈ (Base‘𝐸))
74 fedgmullem1.1 . . . . . . 7 (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))
7574fsuppimpd 9439 . . . . . 6 (𝜑 → (𝐿 supp (0g‘(Scalar‘𝐵))) ∈ Fin)
76 simpl 482 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝜑)
77 simpr 484 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵)))))
7877eldifad 3988 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝑗𝑌)
79 fedgmullem1.l . . . . . . . . . 10 (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))
80 ssidd 4032 . . . . . . . . . 10 (𝜑 → (𝐿 supp (0g‘(Scalar‘𝐵))) ⊆ (𝐿 supp (0g‘(Scalar‘𝐵))))
81 fvexd 6935 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) ∈ V)
8279, 80, 46, 81suppssr 8236 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐿𝑗) = (0g‘(Scalar‘𝐵)))
83 fedgmullem1.3 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
8478, 83syldan 590 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
85 fedgmul.b . . . . . . . . . . . . . . 15 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
8685a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
8720subrgss 20600 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
8813, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘𝐸))
8986, 88srasca 21206 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
9015, 89eqtrid 2792 . . . . . . . . . . . 12 (𝜑𝐹 = (Scalar‘𝐵))
9190fveq2d 6924 . . . . . . . . . . 11 (𝜑 → (0g𝐹) = (0g‘(Scalar‘𝐵)))
92 fedgmul.2 . . . . . . . . . . . 12 (𝜑𝐹 ∈ DivRing)
9330, 92, 14drgext0g 33604 . . . . . . . . . . 11 (𝜑 → (0g𝐹) = (0g𝐶))
9491, 93eqtr3d 2782 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) = (0g𝐶))
9594adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (0g‘(Scalar‘𝐵)) = (0g𝐶))
9682, 84, 953eqtr3d 2788 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶))
97 fedgmullem1.2 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))
98 breq1 5169 . . . . . . . . . . . . 13 (𝑔 = (𝐺𝑗) → (𝑔 finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶))))
99 fveq1 6919 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝐺𝑗) → (𝑔𝑖) = ((𝐺𝑗)‘𝑖))
10099oveq1d 7463 . . . . . . . . . . . . . . . 16 (𝑔 = (𝐺𝑗) → ((𝑔𝑖)( ·𝑠𝐶)𝑖) = (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))
101100mpteq2dv 5268 . . . . . . . . . . . . . . 15 (𝑔 = (𝐺𝑗) → (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
102101oveq2d 7464 . . . . . . . . . . . . . 14 (𝑔 = (𝐺𝑗) → (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
103102eqeq1d 2742 . . . . . . . . . . . . 13 (𝑔 = (𝐺𝑗) → ((𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶) ↔ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)))
10498, 103anbi12d 631 . . . . . . . . . . . 12 (𝑔 = (𝐺𝑗) → ((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) ↔ ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶))))
105 eqeq1 2744 . . . . . . . . . . . 12 (𝑔 = (𝐺𝑗) → (𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))}) ↔ (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
106104, 105imbi12d 344 . . . . . . . . . . 11 (𝑔 = (𝐺𝑗) → (((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})) ↔ (((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))))
107 fedgmul.3 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ DivRing)
10829, 107eqeltrd 2844 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹s 𝑉) ∈ DivRing)
109 eqid 2740 . . . . . . . . . . . . . . . 16 (𝐹s 𝑉) = (𝐹s 𝑉)
11030, 109sralvec 33600 . . . . . . . . . . . . . . 15 ((𝐹 ∈ DivRing ∧ (𝐹s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec)
11192, 108, 14, 110syl3anc 1371 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ LVec)
112 lveclmod 21128 . . . . . . . . . . . . . 14 (𝐶 ∈ LVec → 𝐶 ∈ LMod)
113111, 112syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ LMod)
114113adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝐶 ∈ LMod)
115 eqid 2740 . . . . . . . . . . . . . . 15 (Base‘𝐶) = (Base‘𝐶)
116 eqid 2740 . . . . . . . . . . . . . . 15 (LBasis‘𝐶) = (LBasis‘𝐶)
117115, 116lbsss 21099 . . . . . . . . . . . . . 14 (𝑋 ∈ (LBasis‘𝐶) → 𝑋 ⊆ (Base‘𝐶))
11847, 117syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ (Base‘𝐶))
119118adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ⊆ (Base‘𝐶))
120 eqid 2740 . . . . . . . . . . . . . . . 16 (LSpan‘𝐶) = (LSpan‘𝐶)
121115, 116, 120islbs4 21875 . . . . . . . . . . . . . . 15 (𝑋 ∈ (LBasis‘𝐶) ↔ (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶)))
12247, 121sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶)))
123122simpld 494 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (LIndS‘𝐶))
124123adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ∈ (LIndS‘𝐶))
125 eqid 2740 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
126 eqid 2740 . . . . . . . . . . . . . 14 (Scalar‘𝐶) = (Scalar‘𝐶)
127 eqid 2740 . . . . . . . . . . . . . 14 ( ·𝑠𝐶) = ( ·𝑠𝐶)
128 eqid 2740 . . . . . . . . . . . . . 14 (0g𝐶) = (0g𝐶)
129 eqid 2740 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
130115, 125, 126, 127, 128, 129islinds5 33360 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) → (𝑋 ∈ (LIndS‘𝐶) ↔ ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))}))))
131130biimpa 476 . . . . . . . . . . . 12 (((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) ∧ 𝑋 ∈ (LIndS‘𝐶)) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})))
132114, 119, 124, 131syl21anc 837 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})))
133106, 132, 55rspcdva 3636 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
13497, 133mpand 694 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
135134imp 406 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))
13676, 78, 96, 135syl21anc 837 . . . . . . 7 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))
1371, 136suppss 8235 . . . . . 6 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ (𝐿 supp (0g‘(Scalar‘𝐵))))
13875, 137ssfid 9329 . . . . 5 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin)
139 suppssdm 8218 . . . . . . . . . 10 (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ dom 𝐺
140139, 1fssdm 6766 . . . . . . . . 9 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ 𝑌)
141140sselda 4008 . . . . . . . 8 ((𝜑𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))) → 𝑤𝑌)
142 eleq1w 2827 . . . . . . . . . . . 12 (𝑗 = 𝑤 → (𝑗𝑌𝑤𝑌))
143142anbi2d 629 . . . . . . . . . . 11 (𝑗 = 𝑤 → ((𝜑𝑗𝑌) ↔ (𝜑𝑤𝑌)))
144 fveq2 6920 . . . . . . . . . . . 12 (𝑗 = 𝑤 → (𝐺𝑗) = (𝐺𝑤))
145144breq1d 5176 . . . . . . . . . . 11 (𝑗 = 𝑤 → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶))))
146143, 145imbi12d 344 . . . . . . . . . 10 (𝑗 = 𝑤 → (((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶))) ↔ ((𝜑𝑤𝑌) → (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶)))))
147146, 97chvarvv 1998 . . . . . . . . 9 ((𝜑𝑤𝑌) → (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶)))
148147fsuppimpd 9439 . . . . . . . 8 ((𝜑𝑤𝑌) → ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
149141, 148syldan 590 . . . . . . 7 ((𝜑𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))) → ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
150149ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
151 iunfi 9411 . . . . . 6 (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ ∀𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin) → 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
152138, 150, 151syl2anc 583 . . . . 5 (𝜑 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
153 xpfi 9386 . . . . 5 (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin) → ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin)
154138, 152, 153syl2anc 583 . . . 4 (𝜑 → ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin)
155 fveq2 6920 . . . . . . . . . 10 (𝑣 = 𝑗 → (𝐺𝑣) = (𝐺𝑗))
156155fveq1d 6922 . . . . . . . . 9 (𝑣 = 𝑗 → ((𝐺𝑣)‘𝑢) = ((𝐺𝑗)‘𝑢))
157156mpteq2dv 5268 . . . . . . . 8 (𝑣 = 𝑗 → (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)) = (𝑢𝑋 ↦ ((𝐺𝑗)‘𝑢)))
158 fveq2 6920 . . . . . . . . 9 (𝑢 = 𝑖 → ((𝐺𝑗)‘𝑢) = ((𝐺𝑗)‘𝑖))
159158cbvmptv 5279 . . . . . . . 8 (𝑢𝑋 ↦ ((𝐺𝑗)‘𝑢)) = (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
160157, 159eqtrdi 2796 . . . . . . 7 (𝑣 = 𝑗 → (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)) = (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
161160cbvmptv 5279 . . . . . 6 (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) = (𝑗𝑌 ↦ (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
162 fvexd 6935 . . . . . 6 (𝜑 → (0g‘(Scalar‘𝐶)) ∈ V)
163 fvexd 6935 . . . . . 6 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ V)
16442, 161, 46, 47, 162, 163suppovss 32697 . . . . 5 (𝜑 → (𝐻 supp (0g‘(Scalar‘𝐶))) ⊆ (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶)))))
16510, 71subrg0 20607 . . . . . . . 8 (𝑉 ∈ (SubRing‘𝐸) → (0g𝐸) = (0g𝐾))
16619, 165syl 17 . . . . . . 7 (𝜑 → (0g𝐸) = (0g𝐾))
16736fveq2d 6924 . . . . . . 7 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝐶)))
168166, 167eqtr2d 2781 . . . . . 6 (𝜑 → (0g‘(Scalar‘𝐶)) = (0g𝐸))
169168oveq2d 7464 . . . . 5 (𝜑 → (𝐻 supp (0g‘(Scalar‘𝐶))) = (𝐻 supp (0g𝐸)))
1701feqmptd 6990 . . . . . . . 8 (𝜑𝐺 = (𝑣𝑌 ↦ (𝐺𝑣)))
171 eleq1w 2827 . . . . . . . . . . . . 13 (𝑗 = 𝑣 → (𝑗𝑌𝑣𝑌))
172171anbi2d 629 . . . . . . . . . . . 12 (𝑗 = 𝑣 → ((𝜑𝑗𝑌) ↔ (𝜑𝑣𝑌)))
173 fveq2 6920 . . . . . . . . . . . . 13 (𝑗 = 𝑣 → (𝐺𝑗) = (𝐺𝑣))
174173feq1d 6732 . . . . . . . . . . . 12 (𝑗 = 𝑣 → ((𝐺𝑗):𝑋⟶(Base‘𝐸) ↔ (𝐺𝑣):𝑋⟶(Base‘𝐸)))
175172, 174imbi12d 344 . . . . . . . . . . 11 (𝑗 = 𝑣 → (((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘𝐸)) ↔ ((𝜑𝑣𝑌) → (𝐺𝑣):𝑋⟶(Base‘𝐸))))
17610, 20ressbas2 17296 . . . . . . . . . . . . . . . 16 (𝑉 ⊆ (Base‘𝐸) → 𝑉 = (Base‘𝐾))
17722, 176syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑉 = (Base‘𝐾))
17836fveq2d 6924 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝐶)))
179177, 178eqtrd 2780 . . . . . . . . . . . . . 14 (𝜑𝑉 = (Base‘(Scalar‘𝐶)))
180179, 22eqsstrrd 4048 . . . . . . . . . . . . 13 (𝜑 → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
181180adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
18256, 181fssd 6764 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘𝐸))
183175, 182chvarvv 1998 . . . . . . . . . 10 ((𝜑𝑣𝑌) → (𝐺𝑣):𝑋⟶(Base‘𝐸))
184183feqmptd 6990 . . . . . . . . 9 ((𝜑𝑣𝑌) → (𝐺𝑣) = (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))
185184mpteq2dva 5266 . . . . . . . 8 (𝜑 → (𝑣𝑌 ↦ (𝐺𝑣)) = (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))))
186170, 185eqtr2d 2781 . . . . . . 7 (𝜑 → (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) = 𝐺)
187186oveq1d 7463 . . . . . 6 (𝜑 → ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) = (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})))
188186fveq1d 6922 . . . . . . . 8 (𝜑 → ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) = (𝐺𝑤))
189188oveq1d 7463 . . . . . . 7 (𝜑 → (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶))) = ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))))
190187, 189iuneq12d 5044 . . . . . 6 (𝜑 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶))) = 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))))
191187, 190xpeq12d 5731 . . . . 5 (𝜑 → (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶)))) = ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))
192164, 169, 1913sstr3d 4055 . . . 4 (𝜑 → (𝐻 supp (0g𝐸)) ⊆ ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))
193 suppssfifsupp 9449 . . . 4 (((𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ∧ Fun 𝐻 ∧ (0g𝐸) ∈ (Base‘𝐸)) ∧ (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin ∧ (𝐻 supp (0g𝐸)) ⊆ ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))) → 𝐻 finSupp (0g𝐸))
19452, 66, 73, 154, 192, 193syl32anc 1378 . . 3 (𝜑𝐻 finSupp (0g𝐸))
19537fveq2d 6924 . . . 4 (𝜑 → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐶)))
196195, 168eqtr2d 2781 . . 3 (𝜑 → (0g𝐸) = (0g‘(Scalar‘𝐴)))
197194, 196breqtrd 5192 . 2 (𝜑𝐻 finSupp (0g‘(Scalar‘𝐴)))
198 fedgmullem1.z . . 3 (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
19985, 67, 13, 15, 92, 46drgextgsum 33609 . . 3 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
20047adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ∈ (LBasis‘𝐶))
20113adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubRing‘𝐸))
202 subrgsubg 20605 . . . . . . . . . . . . 13 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸))
203 subgsubm 19188 . . . . . . . . . . . . 13 (𝑈 ∈ (SubGrp‘𝐸) → 𝑈 ∈ (SubMnd‘𝐸))
204201, 202, 2033syl 18 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubMnd‘𝐸))
205113ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐶 ∈ LMod)
20656ffvelcdmda 7118 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
207118ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐶))
208207, 61sseldd 4009 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐶))
209115, 126, 127, 125lmodvscl 20898 . . . . . . . . . . . . . . 15 ((𝐶 ∈ LMod ∧ ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑖 ∈ (Base‘𝐶)) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
210205, 206, 208, 209syl3anc 1371 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
21115, 20ressbas2 17296 . . . . . . . . . . . . . . . . 17 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
21288, 211syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝐹))
21331, 34srabase 21200 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐹) = (Base‘𝐶))
214212, 213eqtrd 2780 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝐶))
215214ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑈 = (Base‘𝐶))
216210, 215eleqtrrd 2847 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ 𝑈)
217216fmpttd 7149 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)):𝑋𝑈)
218200, 204, 217, 15gsumsubm 18870 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
219 eqid 2740 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
22015, 219ressmulr 17366 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐹))
22113, 220syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝐸) = (.r𝐹))
22231, 34sravsca 21208 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝐹) = ( ·𝑠𝐶))
223221, 222eqtr2d 2781 . . . . . . . . . . . . . . 15 (𝜑 → ( ·𝑠𝐶) = (.r𝐸))
224223ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ( ·𝑠𝐶) = (.r𝐸))
225224oveqd 7465 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))
226225mpteq2dva 5266 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))
227226oveq2d 7464 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))))
22830, 92, 14, 109, 108, 47drgextgsum 33609 . . . . . . . . . . . 12 (𝜑 → (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
229228adantr 480 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
230218, 227, 2293eqtr3d 2788 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
231230oveq1d 7463 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗) = ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))(.r𝐸)𝑗))
23269ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐸 ∈ Ring)
233180ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
234233, 206sseldd 4009 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸))
235214, 88eqsstrrd 4048 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸))
236118, 235sstrd 4019 . . . . . . . . . . . . . . 15 (𝜑𝑋 ⊆ (Base‘𝐸))
237236ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐸))
238237, 61sseldd 4009 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐸))
239 eqid 2740 . . . . . . . . . . . . . . . . . 18 (Base‘𝐵) = (Base‘𝐵)
240 eqid 2740 . . . . . . . . . . . . . . . . . 18 (LBasis‘𝐵) = (LBasis‘𝐵)
241239, 240lbsss 21099 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ (LBasis‘𝐵) → 𝑌 ⊆ (Base‘𝐵))
24246, 241syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ⊆ (Base‘𝐵))
24386, 88srabase 21200 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
244242, 243sseqtrrd 4050 . . . . . . . . . . . . . . 15 (𝜑𝑌 ⊆ (Base‘𝐸))
245244ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑌 ⊆ (Base‘𝐸))
246 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
247245, 246sseldd 4009 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗 ∈ (Base‘𝐸))
24820, 219ringass 20280 . . . . . . . . . . . . 13 ((𝐸 ∈ Ring ∧ (((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸))) → ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
249232, 234, 238, 247, 248syl13anc 1372 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
250249mpteq2dva 5266 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
251250oveq2d 7464 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))))
25269adantr 480 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝐸 ∈ Ring)
253242adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → 𝑌 ⊆ (Base‘𝐵))
254243adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → (Base‘𝐸) = (Base‘𝐵))
255253, 254sseqtrrd 4050 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑌 ⊆ (Base‘𝐸))
256 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑗𝑌)
257255, 256sseldd 4009 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝑗 ∈ (Base‘𝐸))
25820, 219ringcl 20277 . . . . . . . . . . . 12 ((𝐸 ∈ Ring ∧ ((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸)) → (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
259232, 234, 238, 258syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
260168breq2d 5178 . . . . . . . . . . . . . 14 (𝜑 → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g𝐸)))
261260adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g𝐸)))
26297, 261mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g𝐸))
26320, 252, 200, 238, 182, 262rmfsupp2 33218 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)) finSupp (0g𝐸))
26420, 71, 219, 252, 200, 257, 259, 263gsummulc1 20339 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
265251, 264eqtr3d 2782 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))) = ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
26683oveq1d 7463 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))(.r𝐸)𝑗))
267231, 265, 2663eqtr4rd 2791 . . . . . . . 8 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))))
26886, 88sravsca 21208 . . . . . . . . . 10 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
269268adantr 480 . . . . . . . . 9 ((𝜑𝑗𝑌) → (.r𝐸) = ( ·𝑠𝐵))
270269oveqd 7465 . . . . . . . 8 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = ((𝐿𝑗)( ·𝑠𝐵)𝑗))
271 fvexd 6935 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑌𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ V)
272 ovexd 7483 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑌𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ V)
27342a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
274 fedgmullem.d . . . . . . . . . . . . . . 15 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
275274a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗)))
27646, 47, 271, 272, 273, 275offval22 8129 . . . . . . . . . . . . 13 (𝜑 → (𝐻f (.r𝐸)𝐷) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
277276oveqd 7465 . . . . . . . . . . . 12 (𝜑 → (𝑗(𝐻f (.r𝐸)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖))
278277ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝐻f (.r𝐸)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖))
279 ovexd 7483 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) ∈ V)
280 eqid 2740 . . . . . . . . . . . . 13 (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
281280ovmpt4g 7597 . . . . . . . . . . . 12 ((𝑗𝑌𝑖𝑋 ∧ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) ∈ V) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
282246, 61, 279, 281syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
283278, 282eqtr2d 2781 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) = (𝑗(𝐻f (.r𝐸)𝐷)𝑖))
284283mpteq2dva 5266 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))) = (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖)))
285284oveq2d 7464 . . . . . . . 8 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))) = (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))
286267, 270, 2853eqtr3d 2788 . . . . . . 7 ((𝜑𝑗𝑌) → ((𝐿𝑗)( ·𝑠𝐵)𝑗) = (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))
287286mpteq2dva 5266 . . . . . 6 (𝜑 → (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗)) = (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖)))))
288287oveq2d 7464 . . . . 5 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐸 Σg (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))))
289 ringcmn 20305 . . . . . . 7 (𝐸 ∈ Ring → 𝐸 ∈ CMnd)
29069, 289syl 17 . . . . . 6 (𝜑𝐸 ∈ CMnd)
29169adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝐸 ∈ Ring)
29238, 180eqsstrd 4047 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
293292adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
294 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘(Scalar‘𝐴)))
295293, 294sseldd 4009 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘𝐸))
296 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐴))
29712, 22srabase 21200 . . . . . . . . . 10 (𝜑 → (Base‘𝐸) = (Base‘𝐴))
298297adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘𝐸) = (Base‘𝐴))
299296, 298eleqtrrd 2847 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐸))
30020, 219ringcl 20277 . . . . . . . 8 ((𝐸 ∈ Ring ∧ 𝑙 ∈ (Base‘𝐸) ∧ 𝑘 ∈ (Base‘𝐸)) → (𝑙(.r𝐸)𝑘) ∈ (Base‘𝐸))
301291, 295, 299, 300syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (𝑙(.r𝐸)𝑘) ∈ (Base‘𝐸))
30220, 219ringcl 20277 . . . . . . . . . . . 12 ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
303232, 238, 247, 302syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
304297ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘𝐸) = (Base‘𝐴))
305303, 304eleqtrd 2846 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
306305anasss 466 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
307306ralrimivva 3208 . . . . . . . 8 (𝜑 → ∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
308274fmpo 8109 . . . . . . . 8 (∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴) ↔ 𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
309307, 308sylib 218 . . . . . . 7 (𝜑𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
310 inidm 4248 . . . . . . 7 ((𝑌 × 𝑋) ∩ (𝑌 × 𝑋)) = (𝑌 × 𝑋)
311301, 65, 309, 48, 48, 310off 7732 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷):(𝑌 × 𝑋)⟶(Base‘𝐸))
31269adantr 480 . . . . . . . 8 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝐸 ∈ Ring)
313 simpr 484 . . . . . . . . 9 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐴))
314297adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ (Base‘𝐴)) → (Base‘𝐸) = (Base‘𝐴))
315313, 314eleqtrrd 2847 . . . . . . . 8 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐸))
31620, 219, 71ringlz 20316 . . . . . . . 8 ((𝐸 ∈ Ring ∧ 𝑢 ∈ (Base‘𝐸)) → ((0g𝐸)(.r𝐸)𝑢) = (0g𝐸))
317312, 315, 316syl2anc 583 . . . . . . 7 ((𝜑𝑢 ∈ (Base‘𝐴)) → ((0g𝐸)(.r𝐸)𝑢) = (0g𝐸))
31848, 73, 73, 65, 309, 194, 317offinsupp1 32741 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷) finSupp (0g𝐸))
31920, 71, 290, 46, 47, 311, 318gsumxp 20018 . . . . 5 (𝜑 → (𝐸 Σg (𝐻f (.r𝐸)𝐷)) = (𝐸 Σg (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))))
32012, 22sravsca 21208 . . . . . . . 8 (𝜑 → (.r𝐸) = ( ·𝑠𝐴))
321320ofeqd 7716 . . . . . . 7 (𝜑 → ∘f (.r𝐸) = ∘f ( ·𝑠𝐴))
322321oveqd 7465 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷) = (𝐻f ( ·𝑠𝐴)𝐷))
323322oveq2d 7464 . . . . 5 (𝜑 → (𝐸 Σg (𝐻f (.r𝐸)𝐷)) = (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
324288, 319, 3233eqtr2rd 2787 . . . 4 (𝜑 → (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)) = (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
325 ovexd 7483 . . . . 5 (𝜑 → (𝐻f ( ·𝑠𝐴)𝐷) ∈ V)
326 fedgmullem1.a . . . . . 6 (𝜑𝑍 ∈ (Base‘𝐴))
327326elfvexd 6959 . . . . 5 (𝜑𝐴 ∈ V)
32811, 325, 67, 327, 22gsumsra 33030 . . . 4 (𝜑 → (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)) = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
329324, 328eqtr3d 2782 . . 3 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
330198, 199, 3293eqtr2d 2786 . 2 (𝜑𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
331197, 330jca 511 1 (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  wss 3976  {csn 4648   ciun 5015   class class class wbr 5166  cmpt 5249   × cxp 5698  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  Basecbs 17258  s cress 17287  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  SubMndcsubmnd 18817  Grpcgrp 18973  SubGrpcsubg 19160  CMndccmn 19822  Ringcrg 20260  SubRingcsubrg 20595  DivRingcdr 20751  LModclmod 20880  LSpanclspn 20992  LBasisclbs 21096  LVecclvec 21124  subringAlg csra 21193  LIndSclinds 21848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-nzr 20539  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lmhm 21044  df-lbs 21097  df-lvec 21125  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-uvc 21826  df-lindf 21849  df-linds 21850
This theorem is referenced by:  fedgmul  33644
  Copyright terms: Public domain W3C validator