Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fedgmullem1 Structured version   Visualization version   GIF version

Theorem fedgmullem1 33002
Description: Lemma for fedgmul 33004. (Contributed by Thierry Arnoux, 20-Jul-2023.)
Hypotheses
Ref Expression
fedgmul.a 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
fedgmul.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
fedgmul.c 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
fedgmul.f 𝐹 = (𝐸s 𝑈)
fedgmul.k 𝐾 = (𝐸s 𝑉)
fedgmul.1 (𝜑𝐸 ∈ DivRing)
fedgmul.2 (𝜑𝐹 ∈ DivRing)
fedgmul.3 (𝜑𝐾 ∈ DivRing)
fedgmul.4 (𝜑𝑈 ∈ (SubRing‘𝐸))
fedgmul.5 (𝜑𝑉 ∈ (SubRing‘𝐹))
fedgmullem.d 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
fedgmullem.h 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
fedgmullem.x (𝜑𝑋 ∈ (LBasis‘𝐶))
fedgmullem.y (𝜑𝑌 ∈ (LBasis‘𝐵))
fedgmullem1.a (𝜑𝑍 ∈ (Base‘𝐴))
fedgmullem1.l (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))
fedgmullem1.1 (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))
fedgmullem1.z (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
fedgmullem1.g (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
fedgmullem1.2 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))
fedgmullem1.3 ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
Assertion
Ref Expression
fedgmullem1 (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷))))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑗   𝐶,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝐸,𝑗   𝑖,𝐺,𝑗   𝑖,𝐻,𝑗   𝑗,𝐿   𝑈,𝑖   𝑖,𝑋,𝑗   𝑖,𝑌,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐵(𝑖)   𝑈(𝑗)   𝐹(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝐿(𝑖)   𝑉(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem fedgmullem1
Dummy variables 𝑢 𝑘 𝑙 𝑔 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fedgmullem1.g . . . . 5 (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
2 simpllr 772 . . . . . . . . . . . . 13 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))
3 simplr 765 . . . . . . . . . . . . 13 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
42, 3ffvelcdmd 7086 . . . . . . . . . . . 12 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋))
5 elmapi 8845 . . . . . . . . . . . 12 ((𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
64, 5syl 17 . . . . . . . . . . 11 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
76anasss 465 . . . . . . . . . 10 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
8 simprr 769 . . . . . . . . . 10 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → 𝑖𝑋)
97, 8ffvelcdmd 7086 . . . . . . . . 9 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
10 fedgmul.k . . . . . . . . . . . . 13 𝐾 = (𝐸s 𝑉)
11 fedgmul.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
1211a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝐸)‘𝑉))
13 fedgmul.4 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 ∈ (SubRing‘𝐸))
14 fedgmul.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 ∈ (SubRing‘𝐹))
15 fedgmul.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝐸s 𝑈)
1615subsubrg 20488 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈)))
1716biimpa 475 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
1813, 14, 17syl2anc 582 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
1918simpld 493 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (SubRing‘𝐸))
20 eqid 2730 . . . . . . . . . . . . . . . 16 (Base‘𝐸) = (Base‘𝐸)
2120subrgss 20462 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸))
2219, 21syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐸))
2312, 22srasca 20943 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝑉) = (Scalar‘𝐴))
2410, 23eqtrid 2782 . . . . . . . . . . . 12 (𝜑𝐾 = (Scalar‘𝐴))
2518simprd 494 . . . . . . . . . . . . . . 15 (𝜑𝑉𝑈)
26 ressabs 17198 . . . . . . . . . . . . . . 15 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈) → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
2713, 25, 26syl2anc 582 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
2815oveq1i 7421 . . . . . . . . . . . . . 14 (𝐹s 𝑉) = ((𝐸s 𝑈) ↾s 𝑉)
2927, 28, 103eqtr4g 2795 . . . . . . . . . . . . 13 (𝜑 → (𝐹s 𝑉) = 𝐾)
30 fedgmul.c . . . . . . . . . . . . . . 15 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
3130a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐶 = ((subringAlg ‘𝐹)‘𝑉))
32 eqid 2730 . . . . . . . . . . . . . . . 16 (Base‘𝐹) = (Base‘𝐹)
3332subrgss 20462 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹))
3414, 33syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐹))
3531, 34srasca 20943 . . . . . . . . . . . . 13 (𝜑 → (𝐹s 𝑉) = (Scalar‘𝐶))
3629, 35eqtr3d 2772 . . . . . . . . . . . 12 (𝜑𝐾 = (Scalar‘𝐶))
3724, 36eqtr3d 2772 . . . . . . . . . . 11 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶))
3837fveq2d 6894 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
3938ad2antrr 722 . . . . . . . . 9 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
409, 39eleqtrrd 2834 . . . . . . . 8 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
4140ralrimivva 3198 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → ∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
42 fedgmullem.h . . . . . . . 8 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
4342fmpo 8056 . . . . . . 7 (∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
4441, 43sylib 217 . . . . . 6 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
45 fvexd 6905 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (Base‘(Scalar‘𝐴)) ∈ V)
46 fedgmullem.y . . . . . . . . 9 (𝜑𝑌 ∈ (LBasis‘𝐵))
47 fedgmullem.x . . . . . . . . 9 (𝜑𝑋 ∈ (LBasis‘𝐶))
4846, 47xpexd 7740 . . . . . . . 8 (𝜑 → (𝑌 × 𝑋) ∈ V)
4948adantr 479 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (𝑌 × 𝑋) ∈ V)
5045, 49elmapd 8836 . . . . . 6 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → (𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴))))
5144, 50mpbird 256 . . . . 5 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) → 𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)))
521, 51mpdan 683 . . . 4 (𝜑𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)))
53 simpl 481 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝜑)
5453adantr 479 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝜑)
551ffvelcdmda 7085 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋))
5655, 5syl 17 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
5756adantr 479 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
5838feq3d 6703 . . . . . . . . . . 11 (𝜑 → ((𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)) ↔ (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶))))
5958biimpar 476 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶))) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)))
6054, 57, 59syl2anc 582 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)))
61 simpr 483 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖𝑋)
6260, 61ffvelcdmd 7086 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6362ralrimiva 3144 . . . . . . 7 ((𝜑𝑗𝑌) → ∀𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6463ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6564, 43sylib 217 . . . . 5 (𝜑𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
6665ffund 6720 . . . 4 (𝜑 → Fun 𝐻)
67 fedgmul.1 . . . . . 6 (𝜑𝐸 ∈ DivRing)
68 drngring 20507 . . . . . 6 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
6967, 68syl 17 . . . . 5 (𝜑𝐸 ∈ Ring)
70 ringgrp 20132 . . . . 5 (𝐸 ∈ Ring → 𝐸 ∈ Grp)
71 eqid 2730 . . . . . 6 (0g𝐸) = (0g𝐸)
7220, 71grpidcl 18886 . . . . 5 (𝐸 ∈ Grp → (0g𝐸) ∈ (Base‘𝐸))
7369, 70, 723syl 18 . . . 4 (𝜑 → (0g𝐸) ∈ (Base‘𝐸))
74 fedgmullem1.1 . . . . . . 7 (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))
7574fsuppimpd 9371 . . . . . 6 (𝜑 → (𝐿 supp (0g‘(Scalar‘𝐵))) ∈ Fin)
76 simpl 481 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝜑)
77 simpr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵)))))
7877eldifad 3959 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝑗𝑌)
79 fedgmullem1.l . . . . . . . . . 10 (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))
80 ssidd 4004 . . . . . . . . . 10 (𝜑 → (𝐿 supp (0g‘(Scalar‘𝐵))) ⊆ (𝐿 supp (0g‘(Scalar‘𝐵))))
81 fvexd 6905 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) ∈ V)
8279, 80, 46, 81suppssr 8183 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐿𝑗) = (0g‘(Scalar‘𝐵)))
83 fedgmullem1.3 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
8478, 83syldan 589 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
85 fedgmul.b . . . . . . . . . . . . . . 15 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
8685a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
8720subrgss 20462 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
8813, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘𝐸))
8986, 88srasca 20943 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
9015, 89eqtrid 2782 . . . . . . . . . . . 12 (𝜑𝐹 = (Scalar‘𝐵))
9190fveq2d 6894 . . . . . . . . . . 11 (𝜑 → (0g𝐹) = (0g‘(Scalar‘𝐵)))
92 fedgmul.2 . . . . . . . . . . . 12 (𝜑𝐹 ∈ DivRing)
9330, 92, 14drgext0g 32964 . . . . . . . . . . 11 (𝜑 → (0g𝐹) = (0g𝐶))
9491, 93eqtr3d 2772 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) = (0g𝐶))
9594adantr 479 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (0g‘(Scalar‘𝐵)) = (0g𝐶))
9682, 84, 953eqtr3d 2778 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶))
97 fedgmullem1.2 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))
98 breq1 5150 . . . . . . . . . . . . 13 (𝑔 = (𝐺𝑗) → (𝑔 finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶))))
99 fveq1 6889 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝐺𝑗) → (𝑔𝑖) = ((𝐺𝑗)‘𝑖))
10099oveq1d 7426 . . . . . . . . . . . . . . . 16 (𝑔 = (𝐺𝑗) → ((𝑔𝑖)( ·𝑠𝐶)𝑖) = (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))
101100mpteq2dv 5249 . . . . . . . . . . . . . . 15 (𝑔 = (𝐺𝑗) → (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
102101oveq2d 7427 . . . . . . . . . . . . . 14 (𝑔 = (𝐺𝑗) → (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
103102eqeq1d 2732 . . . . . . . . . . . . 13 (𝑔 = (𝐺𝑗) → ((𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶) ↔ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)))
10498, 103anbi12d 629 . . . . . . . . . . . 12 (𝑔 = (𝐺𝑗) → ((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) ↔ ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶))))
105 eqeq1 2734 . . . . . . . . . . . 12 (𝑔 = (𝐺𝑗) → (𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))}) ↔ (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
106104, 105imbi12d 343 . . . . . . . . . . 11 (𝑔 = (𝐺𝑗) → (((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})) ↔ (((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))))
107 fedgmul.3 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ DivRing)
10829, 107eqeltrd 2831 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹s 𝑉) ∈ DivRing)
109 eqid 2730 . . . . . . . . . . . . . . . 16 (𝐹s 𝑉) = (𝐹s 𝑉)
11030, 109sralvec 32960 . . . . . . . . . . . . . . 15 ((𝐹 ∈ DivRing ∧ (𝐹s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec)
11192, 108, 14, 110syl3anc 1369 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ LVec)
112 lveclmod 20861 . . . . . . . . . . . . . 14 (𝐶 ∈ LVec → 𝐶 ∈ LMod)
113111, 112syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ LMod)
114113adantr 479 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝐶 ∈ LMod)
115 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘𝐶) = (Base‘𝐶)
116 eqid 2730 . . . . . . . . . . . . . . 15 (LBasis‘𝐶) = (LBasis‘𝐶)
117115, 116lbsss 20832 . . . . . . . . . . . . . 14 (𝑋 ∈ (LBasis‘𝐶) → 𝑋 ⊆ (Base‘𝐶))
11847, 117syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ (Base‘𝐶))
119118adantr 479 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ⊆ (Base‘𝐶))
120 eqid 2730 . . . . . . . . . . . . . . . 16 (LSpan‘𝐶) = (LSpan‘𝐶)
121115, 116, 120islbs4 21606 . . . . . . . . . . . . . . 15 (𝑋 ∈ (LBasis‘𝐶) ↔ (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶)))
12247, 121sylib 217 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶)))
123122simpld 493 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (LIndS‘𝐶))
124123adantr 479 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ∈ (LIndS‘𝐶))
125 eqid 2730 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
126 eqid 2730 . . . . . . . . . . . . . 14 (Scalar‘𝐶) = (Scalar‘𝐶)
127 eqid 2730 . . . . . . . . . . . . . 14 ( ·𝑠𝐶) = ( ·𝑠𝐶)
128 eqid 2730 . . . . . . . . . . . . . 14 (0g𝐶) = (0g𝐶)
129 eqid 2730 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
130115, 125, 126, 127, 128, 129islinds5 32754 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) → (𝑋 ∈ (LIndS‘𝐶) ↔ ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))}))))
131130biimpa 475 . . . . . . . . . . . 12 (((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) ∧ 𝑋 ∈ (LIndS‘𝐶)) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})))
132114, 119, 124, 131syl21anc 834 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})))
133106, 132, 55rspcdva 3612 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
13497, 133mpand 691 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
135134imp 405 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))
13676, 78, 96, 135syl21anc 834 . . . . . . 7 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))
1371, 136suppss 8181 . . . . . 6 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ (𝐿 supp (0g‘(Scalar‘𝐵))))
13875, 137ssfid 9269 . . . . 5 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin)
139 suppssdm 8164 . . . . . . . . . 10 (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ dom 𝐺
140139, 1fssdm 6736 . . . . . . . . 9 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ 𝑌)
141140sselda 3981 . . . . . . . 8 ((𝜑𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))) → 𝑤𝑌)
142 eleq1w 2814 . . . . . . . . . . . 12 (𝑗 = 𝑤 → (𝑗𝑌𝑤𝑌))
143142anbi2d 627 . . . . . . . . . . 11 (𝑗 = 𝑤 → ((𝜑𝑗𝑌) ↔ (𝜑𝑤𝑌)))
144 fveq2 6890 . . . . . . . . . . . 12 (𝑗 = 𝑤 → (𝐺𝑗) = (𝐺𝑤))
145144breq1d 5157 . . . . . . . . . . 11 (𝑗 = 𝑤 → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶))))
146143, 145imbi12d 343 . . . . . . . . . 10 (𝑗 = 𝑤 → (((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶))) ↔ ((𝜑𝑤𝑌) → (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶)))))
147146, 97chvarvv 2000 . . . . . . . . 9 ((𝜑𝑤𝑌) → (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶)))
148147fsuppimpd 9371 . . . . . . . 8 ((𝜑𝑤𝑌) → ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
149141, 148syldan 589 . . . . . . 7 ((𝜑𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))) → ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
150149ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
151 iunfi 9342 . . . . . 6 (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ ∀𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin) → 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
152138, 150, 151syl2anc 582 . . . . 5 (𝜑 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
153 xpfi 9319 . . . . 5 (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin) → ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin)
154138, 152, 153syl2anc 582 . . . 4 (𝜑 → ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin)
155 fveq2 6890 . . . . . . . . . 10 (𝑣 = 𝑗 → (𝐺𝑣) = (𝐺𝑗))
156155fveq1d 6892 . . . . . . . . 9 (𝑣 = 𝑗 → ((𝐺𝑣)‘𝑢) = ((𝐺𝑗)‘𝑢))
157156mpteq2dv 5249 . . . . . . . 8 (𝑣 = 𝑗 → (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)) = (𝑢𝑋 ↦ ((𝐺𝑗)‘𝑢)))
158 fveq2 6890 . . . . . . . . 9 (𝑢 = 𝑖 → ((𝐺𝑗)‘𝑢) = ((𝐺𝑗)‘𝑖))
159158cbvmptv 5260 . . . . . . . 8 (𝑢𝑋 ↦ ((𝐺𝑗)‘𝑢)) = (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
160157, 159eqtrdi 2786 . . . . . . 7 (𝑣 = 𝑗 → (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)) = (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
161160cbvmptv 5260 . . . . . 6 (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) = (𝑗𝑌 ↦ (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
162 fvexd 6905 . . . . . 6 (𝜑 → (0g‘(Scalar‘𝐶)) ∈ V)
163 fvexd 6905 . . . . . 6 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ V)
16442, 161, 46, 47, 162, 163suppovss 32173 . . . . 5 (𝜑 → (𝐻 supp (0g‘(Scalar‘𝐶))) ⊆ (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶)))))
16510, 71subrg0 20469 . . . . . . . 8 (𝑉 ∈ (SubRing‘𝐸) → (0g𝐸) = (0g𝐾))
16619, 165syl 17 . . . . . . 7 (𝜑 → (0g𝐸) = (0g𝐾))
16736fveq2d 6894 . . . . . . 7 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝐶)))
168166, 167eqtr2d 2771 . . . . . 6 (𝜑 → (0g‘(Scalar‘𝐶)) = (0g𝐸))
169168oveq2d 7427 . . . . 5 (𝜑 → (𝐻 supp (0g‘(Scalar‘𝐶))) = (𝐻 supp (0g𝐸)))
1701feqmptd 6959 . . . . . . . 8 (𝜑𝐺 = (𝑣𝑌 ↦ (𝐺𝑣)))
171 eleq1w 2814 . . . . . . . . . . . . 13 (𝑗 = 𝑣 → (𝑗𝑌𝑣𝑌))
172171anbi2d 627 . . . . . . . . . . . 12 (𝑗 = 𝑣 → ((𝜑𝑗𝑌) ↔ (𝜑𝑣𝑌)))
173 fveq2 6890 . . . . . . . . . . . . 13 (𝑗 = 𝑣 → (𝐺𝑗) = (𝐺𝑣))
174173feq1d 6701 . . . . . . . . . . . 12 (𝑗 = 𝑣 → ((𝐺𝑗):𝑋⟶(Base‘𝐸) ↔ (𝐺𝑣):𝑋⟶(Base‘𝐸)))
175172, 174imbi12d 343 . . . . . . . . . . 11 (𝑗 = 𝑣 → (((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘𝐸)) ↔ ((𝜑𝑣𝑌) → (𝐺𝑣):𝑋⟶(Base‘𝐸))))
17610, 20ressbas2 17186 . . . . . . . . . . . . . . . 16 (𝑉 ⊆ (Base‘𝐸) → 𝑉 = (Base‘𝐾))
17722, 176syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑉 = (Base‘𝐾))
17836fveq2d 6894 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝐶)))
179177, 178eqtrd 2770 . . . . . . . . . . . . . 14 (𝜑𝑉 = (Base‘(Scalar‘𝐶)))
180179, 22eqsstrrd 4020 . . . . . . . . . . . . 13 (𝜑 → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
181180adantr 479 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
18256, 181fssd 6734 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘𝐸))
183175, 182chvarvv 2000 . . . . . . . . . 10 ((𝜑𝑣𝑌) → (𝐺𝑣):𝑋⟶(Base‘𝐸))
184183feqmptd 6959 . . . . . . . . 9 ((𝜑𝑣𝑌) → (𝐺𝑣) = (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))
185184mpteq2dva 5247 . . . . . . . 8 (𝜑 → (𝑣𝑌 ↦ (𝐺𝑣)) = (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))))
186170, 185eqtr2d 2771 . . . . . . 7 (𝜑 → (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) = 𝐺)
187186oveq1d 7426 . . . . . 6 (𝜑 → ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) = (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})))
188186fveq1d 6892 . . . . . . . 8 (𝜑 → ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) = (𝐺𝑤))
189188oveq1d 7426 . . . . . . 7 (𝜑 → (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶))) = ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))))
190187, 189iuneq12d 5024 . . . . . 6 (𝜑 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶))) = 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))))
191187, 190xpeq12d 5706 . . . . 5 (𝜑 → (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶)))) = ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))
192164, 169, 1913sstr3d 4027 . . . 4 (𝜑 → (𝐻 supp (0g𝐸)) ⊆ ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))
193 suppssfifsupp 9380 . . . 4 (((𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑌 × 𝑋)) ∧ Fun 𝐻 ∧ (0g𝐸) ∈ (Base‘𝐸)) ∧ (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin ∧ (𝐻 supp (0g𝐸)) ⊆ ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))) → 𝐻 finSupp (0g𝐸))
19452, 66, 73, 154, 192, 193syl32anc 1376 . . 3 (𝜑𝐻 finSupp (0g𝐸))
19537fveq2d 6894 . . . 4 (𝜑 → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐶)))
196195, 168eqtr2d 2771 . . 3 (𝜑 → (0g𝐸) = (0g‘(Scalar‘𝐴)))
197194, 196breqtrd 5173 . 2 (𝜑𝐻 finSupp (0g‘(Scalar‘𝐴)))
198 fedgmullem1.z . . 3 (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
19985, 67, 13, 15, 92, 46drgextgsum 32969 . . 3 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
20047adantr 479 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ∈ (LBasis‘𝐶))
20113adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubRing‘𝐸))
202 subrgsubg 20467 . . . . . . . . . . . . 13 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸))
203 subgsubm 19064 . . . . . . . . . . . . 13 (𝑈 ∈ (SubGrp‘𝐸) → 𝑈 ∈ (SubMnd‘𝐸))
204201, 202, 2033syl 18 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubMnd‘𝐸))
205113ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐶 ∈ LMod)
20656ffvelcdmda 7085 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
207118ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐶))
208207, 61sseldd 3982 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐶))
209115, 126, 127, 125lmodvscl 20632 . . . . . . . . . . . . . . 15 ((𝐶 ∈ LMod ∧ ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑖 ∈ (Base‘𝐶)) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
210205, 206, 208, 209syl3anc 1369 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
21115, 20ressbas2 17186 . . . . . . . . . . . . . . . . 17 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
21288, 211syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝐹))
21331, 34srabase 20937 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐹) = (Base‘𝐶))
214212, 213eqtrd 2770 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝐶))
215214ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑈 = (Base‘𝐶))
216210, 215eleqtrrd 2834 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ 𝑈)
217216fmpttd 7115 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)):𝑋𝑈)
218200, 204, 217, 15gsumsubm 18752 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
219 eqid 2730 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
22015, 219ressmulr 17256 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐹))
22113, 220syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝐸) = (.r𝐹))
22231, 34sravsca 20945 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝐹) = ( ·𝑠𝐶))
223221, 222eqtr2d 2771 . . . . . . . . . . . . . . 15 (𝜑 → ( ·𝑠𝐶) = (.r𝐸))
224223ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ( ·𝑠𝐶) = (.r𝐸))
225224oveqd 7428 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))
226225mpteq2dva 5247 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))
227226oveq2d 7427 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))))
22830, 92, 14, 109, 108, 47drgextgsum 32969 . . . . . . . . . . . 12 (𝜑 → (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
229228adantr 479 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
230218, 227, 2293eqtr3d 2778 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
231230oveq1d 7426 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗) = ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))(.r𝐸)𝑗))
23269ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐸 ∈ Ring)
233180ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
234233, 206sseldd 3982 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸))
235214, 88eqsstrrd 4020 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸))
236118, 235sstrd 3991 . . . . . . . . . . . . . . 15 (𝜑𝑋 ⊆ (Base‘𝐸))
237236ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐸))
238237, 61sseldd 3982 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐸))
239 eqid 2730 . . . . . . . . . . . . . . . . . 18 (Base‘𝐵) = (Base‘𝐵)
240 eqid 2730 . . . . . . . . . . . . . . . . . 18 (LBasis‘𝐵) = (LBasis‘𝐵)
241239, 240lbsss 20832 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ (LBasis‘𝐵) → 𝑌 ⊆ (Base‘𝐵))
24246, 241syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ⊆ (Base‘𝐵))
24386, 88srabase 20937 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
244242, 243sseqtrrd 4022 . . . . . . . . . . . . . . 15 (𝜑𝑌 ⊆ (Base‘𝐸))
245244ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑌 ⊆ (Base‘𝐸))
246 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
247245, 246sseldd 3982 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗 ∈ (Base‘𝐸))
24820, 219ringass 20147 . . . . . . . . . . . . 13 ((𝐸 ∈ Ring ∧ (((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸))) → ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
249232, 234, 238, 247, 248syl13anc 1370 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
250249mpteq2dva 5247 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
251250oveq2d 7427 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))))
25269adantr 479 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝐸 ∈ Ring)
253242adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → 𝑌 ⊆ (Base‘𝐵))
254243adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → (Base‘𝐸) = (Base‘𝐵))
255253, 254sseqtrrd 4022 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑌 ⊆ (Base‘𝐸))
256 simpr 483 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑗𝑌)
257255, 256sseldd 3982 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝑗 ∈ (Base‘𝐸))
25820, 219ringcl 20144 . . . . . . . . . . . 12 ((𝐸 ∈ Ring ∧ ((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸)) → (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
259232, 234, 238, 258syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
260168breq2d 5159 . . . . . . . . . . . . . 14 (𝜑 → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g𝐸)))
261260adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g𝐸)))
26297, 261mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g𝐸))
26320, 252, 200, 238, 182, 262rmfsupp2 32657 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)) finSupp (0g𝐸))
26420, 71, 219, 252, 200, 257, 259, 263gsummulc1 20204 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
265251, 264eqtr3d 2772 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))) = ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
26683oveq1d 7426 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))(.r𝐸)𝑗))
267231, 265, 2663eqtr4rd 2781 . . . . . . . 8 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))))
26886, 88sravsca 20945 . . . . . . . . . 10 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
269268adantr 479 . . . . . . . . 9 ((𝜑𝑗𝑌) → (.r𝐸) = ( ·𝑠𝐵))
270269oveqd 7428 . . . . . . . 8 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = ((𝐿𝑗)( ·𝑠𝐵)𝑗))
271 fvexd 6905 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑌𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ V)
272 ovexd 7446 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑌𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ V)
27342a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
274 fedgmullem.d . . . . . . . . . . . . . . 15 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
275274a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗)))
27646, 47, 271, 272, 273, 275offval22 8076 . . . . . . . . . . . . 13 (𝜑 → (𝐻f (.r𝐸)𝐷) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
277276oveqd 7428 . . . . . . . . . . . 12 (𝜑 → (𝑗(𝐻f (.r𝐸)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖))
278277ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝐻f (.r𝐸)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖))
279 ovexd 7446 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) ∈ V)
280 eqid 2730 . . . . . . . . . . . . 13 (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
281280ovmpt4g 7557 . . . . . . . . . . . 12 ((𝑗𝑌𝑖𝑋 ∧ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) ∈ V) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
282246, 61, 279, 281syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
283278, 282eqtr2d 2771 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) = (𝑗(𝐻f (.r𝐸)𝐷)𝑖))
284283mpteq2dva 5247 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))) = (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖)))
285284oveq2d 7427 . . . . . . . 8 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))) = (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))
286267, 270, 2853eqtr3d 2778 . . . . . . 7 ((𝜑𝑗𝑌) → ((𝐿𝑗)( ·𝑠𝐵)𝑗) = (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))
287286mpteq2dva 5247 . . . . . 6 (𝜑 → (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗)) = (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖)))))
288287oveq2d 7427 . . . . 5 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐸 Σg (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))))
289 ringcmn 20170 . . . . . . 7 (𝐸 ∈ Ring → 𝐸 ∈ CMnd)
29069, 289syl 17 . . . . . 6 (𝜑𝐸 ∈ CMnd)
29169adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝐸 ∈ Ring)
29238, 180eqsstrd 4019 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
293292adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
294 simprl 767 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘(Scalar‘𝐴)))
295293, 294sseldd 3982 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘𝐸))
296 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐴))
29712, 22srabase 20937 . . . . . . . . . 10 (𝜑 → (Base‘𝐸) = (Base‘𝐴))
298297adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘𝐸) = (Base‘𝐴))
299296, 298eleqtrrd 2834 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐸))
30020, 219ringcl 20144 . . . . . . . 8 ((𝐸 ∈ Ring ∧ 𝑙 ∈ (Base‘𝐸) ∧ 𝑘 ∈ (Base‘𝐸)) → (𝑙(.r𝐸)𝑘) ∈ (Base‘𝐸))
301291, 295, 299, 300syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (𝑙(.r𝐸)𝑘) ∈ (Base‘𝐸))
30220, 219ringcl 20144 . . . . . . . . . . . 12 ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
303232, 238, 247, 302syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
304297ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘𝐸) = (Base‘𝐴))
305303, 304eleqtrd 2833 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
306305anasss 465 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
307306ralrimivva 3198 . . . . . . . 8 (𝜑 → ∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
308274fmpo 8056 . . . . . . . 8 (∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴) ↔ 𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
309307, 308sylib 217 . . . . . . 7 (𝜑𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
310 inidm 4217 . . . . . . 7 ((𝑌 × 𝑋) ∩ (𝑌 × 𝑋)) = (𝑌 × 𝑋)
311301, 65, 309, 48, 48, 310off 7690 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷):(𝑌 × 𝑋)⟶(Base‘𝐸))
31269adantr 479 . . . . . . . 8 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝐸 ∈ Ring)
313 simpr 483 . . . . . . . . 9 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐴))
314297adantr 479 . . . . . . . . 9 ((𝜑𝑢 ∈ (Base‘𝐴)) → (Base‘𝐸) = (Base‘𝐴))
315313, 314eleqtrrd 2834 . . . . . . . 8 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐸))
31620, 219, 71ringlz 20181 . . . . . . . 8 ((𝐸 ∈ Ring ∧ 𝑢 ∈ (Base‘𝐸)) → ((0g𝐸)(.r𝐸)𝑢) = (0g𝐸))
317312, 315, 316syl2anc 582 . . . . . . 7 ((𝜑𝑢 ∈ (Base‘𝐴)) → ((0g𝐸)(.r𝐸)𝑢) = (0g𝐸))
31848, 73, 73, 65, 309, 194, 317offinsupp1 32219 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷) finSupp (0g𝐸))
31920, 71, 290, 46, 47, 311, 318gsumxp 19885 . . . . 5 (𝜑 → (𝐸 Σg (𝐻f (.r𝐸)𝐷)) = (𝐸 Σg (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻f (.r𝐸)𝐷)𝑖))))))
32012, 22sravsca 20945 . . . . . . . 8 (𝜑 → (.r𝐸) = ( ·𝑠𝐴))
321320ofeqd 7674 . . . . . . 7 (𝜑 → ∘f (.r𝐸) = ∘f ( ·𝑠𝐴))
322321oveqd 7428 . . . . . 6 (𝜑 → (𝐻f (.r𝐸)𝐷) = (𝐻f ( ·𝑠𝐴)𝐷))
323322oveq2d 7427 . . . . 5 (𝜑 → (𝐸 Σg (𝐻f (.r𝐸)𝐷)) = (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
324288, 319, 3233eqtr2rd 2777 . . . 4 (𝜑 → (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)) = (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
325 ovexd 7446 . . . . 5 (𝜑 → (𝐻f ( ·𝑠𝐴)𝐷) ∈ V)
326 fedgmullem1.a . . . . . 6 (𝜑𝑍 ∈ (Base‘𝐴))
327326elfvexd 6929 . . . . 5 (𝜑𝐴 ∈ V)
32811, 325, 67, 327, 22gsumsra 32469 . . . 4 (𝜑 → (𝐸 Σg (𝐻f ( ·𝑠𝐴)𝐷)) = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
329324, 328eqtr3d 2772 . . 3 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
330198, 199, 3293eqtr2d 2776 . 2 (𝜑𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷)))
331197, 330jca 510 1 (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  Vcvv 3472  cdif 3944  wss 3947  {csn 4627   ciun 4996   class class class wbr 5147  cmpt 5230   × cxp 5673  Fun wfun 6536  wf 6538  cfv 6542  (class class class)co 7411  cmpo 7413  f cof 7670   supp csupp 8148  m cmap 8822  Fincfn 8941   finSupp cfsupp 9363  Basecbs 17148  s cress 17177  .rcmulr 17202  Scalarcsca 17204   ·𝑠 cvsca 17205  0gc0g 17389   Σg cgsu 17390  SubMndcsubmnd 18704  Grpcgrp 18855  SubGrpcsubg 19036  CMndccmn 19689  Ringcrg 20127  SubRingcsubrg 20457  DivRingcdr 20500  LModclmod 20614  LSpanclspn 20726  LBasisclbs 20829  LVecclvec 20857  subringAlg csra 20926  LIndSclinds 21579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-fzo 13632  df-seq 13971  df-hash 14295  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-hom 17225  df-cco 17226  df-0g 17391  df-gsum 17392  df-prds 17397  df-pws 17399  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18987  df-subg 19039  df-ghm 19128  df-cntz 19222  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-nzr 20404  df-subrg 20459  df-drng 20502  df-lmod 20616  df-lss 20687  df-lsp 20727  df-lmhm 20777  df-lbs 20830  df-lvec 20858  df-sra 20930  df-rgmod 20931  df-dsmm 21506  df-frlm 21521  df-uvc 21557  df-lindf 21580  df-linds 21581
This theorem is referenced by:  fedgmul  33004
  Copyright terms: Public domain W3C validator