Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fedgmullem1 Structured version   Visualization version   GIF version

Theorem fedgmullem1 30621
Description: Lemma for fedgmul 30623 (Contributed by Thierry Arnoux, 20-Jul-2023.)
Hypotheses
Ref Expression
fedgmul.a 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
fedgmul.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
fedgmul.c 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
fedgmul.f 𝐹 = (𝐸s 𝑈)
fedgmul.k 𝐾 = (𝐸s 𝑉)
fedgmul.1 (𝜑𝐸 ∈ DivRing)
fedgmul.2 (𝜑𝐹 ∈ DivRing)
fedgmul.3 (𝜑𝐾 ∈ DivRing)
fedgmul.4 (𝜑𝑈 ∈ (SubRing‘𝐸))
fedgmul.5 (𝜑𝑉 ∈ (SubRing‘𝐹))
fedgmullem.d 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
fedgmullem.h 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
fedgmullem.x (𝜑𝑋 ∈ (LBasis‘𝐶))
fedgmullem.y (𝜑𝑌 ∈ (LBasis‘𝐵))
fedgmullem1.a (𝜑𝑍 ∈ (Base‘𝐴))
fedgmullem1.l (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))
fedgmullem1.1 (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))
fedgmullem1.z (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
fedgmullem1.g (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋))
fedgmullem1.2 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))
fedgmullem1.3 ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
Assertion
Ref Expression
fedgmullem1 (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻𝑓 ( ·𝑠𝐴)𝐷))))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑗   𝐶,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝐸,𝑗   𝑖,𝐺,𝑗   𝑖,𝐻,𝑗   𝑗,𝐿   𝑈,𝑖   𝑖,𝑋,𝑗   𝑖,𝑌,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐵(𝑖)   𝑈(𝑗)   𝐹(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝐿(𝑖)   𝑉(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem fedgmullem1
Dummy variables 𝑢 𝑘 𝑙 𝑔 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fedgmullem1.g . . . . 5 (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋))
2 simpllr 772 . . . . . . . . . . . . 13 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋))
3 simplr 765 . . . . . . . . . . . . 13 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
42, 3ffvelrnd 6720 . . . . . . . . . . . 12 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋))
5 elmapi 8281 . . . . . . . . . . . 12 ((𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
64, 5syl 17 . . . . . . . . . . 11 ((((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) ∧ 𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
76anasss 467 . . . . . . . . . 10 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
8 simprr 769 . . . . . . . . . 10 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → 𝑖𝑋)
97, 8ffvelrnd 6720 . . . . . . . . 9 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
10 fedgmul.k . . . . . . . . . . . . 13 𝐾 = (𝐸s 𝑉)
11 fedgmul.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
1211a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝐸)‘𝑉))
13 fedgmul.4 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 ∈ (SubRing‘𝐸))
14 fedgmul.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 ∈ (SubRing‘𝐹))
15 fedgmul.f . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝐸s 𝑈)
1615subsubrg 19251 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈)))
1716biimpa 477 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
1813, 14, 17syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
1918simpld 495 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (SubRing‘𝐸))
20 eqid 2794 . . . . . . . . . . . . . . . 16 (Base‘𝐸) = (Base‘𝐸)
2120subrgss 19226 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸))
2219, 21syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐸))
2312, 22srasca 19643 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝑉) = (Scalar‘𝐴))
2410, 23syl5eq 2842 . . . . . . . . . . . 12 (𝜑𝐾 = (Scalar‘𝐴))
2518simprd 496 . . . . . . . . . . . . . . 15 (𝜑𝑉𝑈)
26 ressabs 16392 . . . . . . . . . . . . . . 15 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈) → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
2713, 25, 26syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
2815oveq1i 7029 . . . . . . . . . . . . . 14 (𝐹s 𝑉) = ((𝐸s 𝑈) ↾s 𝑉)
2927, 28, 103eqtr4g 2855 . . . . . . . . . . . . 13 (𝜑 → (𝐹s 𝑉) = 𝐾)
30 fedgmul.c . . . . . . . . . . . . . . 15 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
3130a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐶 = ((subringAlg ‘𝐹)‘𝑉))
32 eqid 2794 . . . . . . . . . . . . . . . 16 (Base‘𝐹) = (Base‘𝐹)
3332subrgss 19226 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹))
3414, 33syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐹))
3531, 34srasca 19643 . . . . . . . . . . . . 13 (𝜑 → (𝐹s 𝑉) = (Scalar‘𝐶))
3629, 35eqtr3d 2832 . . . . . . . . . . . 12 (𝜑𝐾 = (Scalar‘𝐶))
3724, 36eqtr3d 2832 . . . . . . . . . . 11 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶))
3837fveq2d 6545 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
3938ad2antrr 722 . . . . . . . . 9 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
409, 39eleqtrrd 2885 . . . . . . . 8 (((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
4140ralrimivva 3157 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) → ∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
42 fedgmullem.h . . . . . . . 8 𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
4342fmpo 7625 . . . . . . 7 (∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
4441, 43sylib 219 . . . . . 6 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) → 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
45 fvexd 6556 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) → (Base‘(Scalar‘𝐴)) ∈ V)
46 fedgmullem.y . . . . . . . . 9 (𝜑𝑌 ∈ (LBasis‘𝐵))
47 fedgmullem.x . . . . . . . . 9 (𝜑𝑋 ∈ (LBasis‘𝐶))
4846, 47xpexd 7334 . . . . . . . 8 (𝜑 → (𝑌 × 𝑋) ∈ V)
4948adantr 481 . . . . . . 7 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) → (𝑌 × 𝑋) ∈ V)
5045, 49elmapd 8273 . . . . . 6 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) → (𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑𝑚 (𝑌 × 𝑋)) ↔ 𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴))))
5144, 50mpbird 258 . . . . 5 ((𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)) → 𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑𝑚 (𝑌 × 𝑋)))
521, 51mpdan 683 . . . 4 (𝜑𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑𝑚 (𝑌 × 𝑋)))
53 simpl 483 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝜑)
5453adantr 481 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝜑)
551ffvelrnda 6719 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝐺𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋))
5655, 5syl 17 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
5756adantr 481 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶)))
5838feq3d 6372 . . . . . . . . . . 11 (𝜑 → ((𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)) ↔ (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶))))
5958biimpar 478 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐶))) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)))
6054, 57, 59syl2anc 584 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝐺𝑗):𝑋⟶(Base‘(Scalar‘𝐴)))
61 simpr 485 . . . . . . . . 9 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖𝑋)
6260, 61ffvelrnd 6720 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6362ralrimiva 3148 . . . . . . 7 ((𝜑𝑗𝑌) → ∀𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6463ralrimiva 3148 . . . . . 6 (𝜑 → ∀𝑗𝑌𝑖𝑋 ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
6564, 43sylib 219 . . . . 5 (𝜑𝐻:(𝑌 × 𝑋)⟶(Base‘(Scalar‘𝐴)))
6665ffund 6389 . . . 4 (𝜑 → Fun 𝐻)
67 fedgmul.1 . . . . . 6 (𝜑𝐸 ∈ DivRing)
68 drngring 19199 . . . . . 6 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
6967, 68syl 17 . . . . 5 (𝜑𝐸 ∈ Ring)
70 ringgrp 18992 . . . . 5 (𝐸 ∈ Ring → 𝐸 ∈ Grp)
71 eqid 2794 . . . . . 6 (0g𝐸) = (0g𝐸)
7220, 71grpidcl 17889 . . . . 5 (𝐸 ∈ Grp → (0g𝐸) ∈ (Base‘𝐸))
7369, 70, 723syl 18 . . . 4 (𝜑 → (0g𝐸) ∈ (Base‘𝐸))
74 fedgmullem1.1 . . . . . . 7 (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))
7574fsuppimpd 8689 . . . . . 6 (𝜑 → (𝐿 supp (0g‘(Scalar‘𝐵))) ∈ Fin)
76 simpl 483 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝜑)
77 simpr 485 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵)))))
7877eldifad 3873 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → 𝑗𝑌)
79 fedgmullem1.l . . . . . . . . . 10 (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))
80 ssidd 3913 . . . . . . . . . 10 (𝜑 → (𝐿 supp (0g‘(Scalar‘𝐵))) ⊆ (𝐿 supp (0g‘(Scalar‘𝐵))))
81 fvexd 6556 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) ∈ V)
8279, 80, 46, 81suppssr 7715 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐿𝑗) = (0g‘(Scalar‘𝐵)))
83 fedgmullem1.3 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
8478, 83syldan 591 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
85 fedgmul.b . . . . . . . . . . . . . . 15 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
8685a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
8720subrgss 19226 . . . . . . . . . . . . . . 15 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
8813, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑈 ⊆ (Base‘𝐸))
8986, 88srasca 19643 . . . . . . . . . . . . 13 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
9015, 89syl5eq 2842 . . . . . . . . . . . 12 (𝜑𝐹 = (Scalar‘𝐵))
9190fveq2d 6545 . . . . . . . . . . 11 (𝜑 → (0g𝐹) = (0g‘(Scalar‘𝐵)))
92 fedgmul.2 . . . . . . . . . . . 12 (𝜑𝐹 ∈ DivRing)
9330, 92, 14drgext0g 30588 . . . . . . . . . . 11 (𝜑 → (0g𝐹) = (0g𝐶))
9491, 93eqtr3d 2832 . . . . . . . . . 10 (𝜑 → (0g‘(Scalar‘𝐵)) = (0g𝐶))
9594adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (0g‘(Scalar‘𝐵)) = (0g𝐶))
9682, 84, 953eqtr3d 2838 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶))
97 fedgmullem1.2 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))
98 breq1 4967 . . . . . . . . . . . . 13 (𝑔 = (𝐺𝑗) → (𝑔 finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶))))
99 fveq1 6540 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝐺𝑗) → (𝑔𝑖) = ((𝐺𝑗)‘𝑖))
10099oveq1d 7034 . . . . . . . . . . . . . . . 16 (𝑔 = (𝐺𝑗) → ((𝑔𝑖)( ·𝑠𝐶)𝑖) = (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))
101100mpteq2dv 5059 . . . . . . . . . . . . . . 15 (𝑔 = (𝐺𝑗) → (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
102101oveq2d 7035 . . . . . . . . . . . . . 14 (𝑔 = (𝐺𝑗) → (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
103102eqeq1d 2796 . . . . . . . . . . . . 13 (𝑔 = (𝐺𝑗) → ((𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶) ↔ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)))
10498, 103anbi12d 630 . . . . . . . . . . . 12 (𝑔 = (𝐺𝑗) → ((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) ↔ ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶))))
105 eqeq1 2798 . . . . . . . . . . . 12 (𝑔 = (𝐺𝑗) → (𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))}) ↔ (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
106104, 105imbi12d 346 . . . . . . . . . . 11 (𝑔 = (𝐺𝑗) → (((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})) ↔ (((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))))
107 fedgmul.3 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ DivRing)
10829, 107eqeltrd 2882 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹s 𝑉) ∈ DivRing)
109 eqid 2794 . . . . . . . . . . . . . . . 16 (𝐹s 𝑉) = (𝐹s 𝑉)
11030, 109sralvec 30586 . . . . . . . . . . . . . . 15 ((𝐹 ∈ DivRing ∧ (𝐹s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec)
11192, 108, 14, 110syl3anc 1364 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ LVec)
112 lveclmod 19568 . . . . . . . . . . . . . 14 (𝐶 ∈ LVec → 𝐶 ∈ LMod)
113111, 112syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ LMod)
114113adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝐶 ∈ LMod)
115 eqid 2794 . . . . . . . . . . . . . . 15 (Base‘𝐶) = (Base‘𝐶)
116 eqid 2794 . . . . . . . . . . . . . . 15 (LBasis‘𝐶) = (LBasis‘𝐶)
117115, 116lbsss 19539 . . . . . . . . . . . . . 14 (𝑋 ∈ (LBasis‘𝐶) → 𝑋 ⊆ (Base‘𝐶))
11847, 117syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ (Base‘𝐶))
119118adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ⊆ (Base‘𝐶))
120 eqid 2794 . . . . . . . . . . . . . . . 16 (LSpan‘𝐶) = (LSpan‘𝐶)
121115, 116, 120islbs4 20658 . . . . . . . . . . . . . . 15 (𝑋 ∈ (LBasis‘𝐶) ↔ (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶)))
12247, 121sylib 219 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑋) = (Base‘𝐶)))
123122simpld 495 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (LIndS‘𝐶))
124123adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ∈ (LIndS‘𝐶))
125 eqid 2794 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
126 eqid 2794 . . . . . . . . . . . . . 14 (Scalar‘𝐶) = (Scalar‘𝐶)
127 eqid 2794 . . . . . . . . . . . . . 14 ( ·𝑠𝐶) = ( ·𝑠𝐶)
128 eqid 2794 . . . . . . . . . . . . . 14 (0g𝐶) = (0g𝐶)
129 eqid 2794 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
130115, 125, 126, 127, 128, 129islinds5 30572 . . . . . . . . . . . . 13 ((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) → (𝑋 ∈ (LIndS‘𝐶) ↔ ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))}))))
131130biimpa 477 . . . . . . . . . . . 12 (((𝐶 ∈ LMod ∧ 𝑋 ⊆ (Base‘𝐶)) ∧ 𝑋 ∈ (LIndS‘𝐶)) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})))
132114, 119, 124, 131syl21anc 834 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → ∀𝑔 ∈ ((Base‘(Scalar‘𝐶)) ↑𝑚 𝑋)((𝑔 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ ((𝑔𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → 𝑔 = (𝑋 × {(0g‘(Scalar‘𝐶))})))
133106, 132, 55rspcdva 3563 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
13497, 133mpand 691 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))})))
135134imp 407 . . . . . . . 8 (((𝜑𝑗𝑌) ∧ (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (0g𝐶)) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))
13676, 78, 96, 135syl21anc 834 . . . . . . 7 ((𝜑𝑗 ∈ (𝑌 ∖ (𝐿 supp (0g‘(Scalar‘𝐵))))) → (𝐺𝑗) = (𝑋 × {(0g‘(Scalar‘𝐶))}))
1371, 136suppss 7714 . . . . . 6 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ (𝐿 supp (0g‘(Scalar‘𝐵))))
13875, 137ssfid 8590 . . . . 5 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin)
139 suppssdm 7697 . . . . . . . . . 10 (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ dom 𝐺
140139, 1fssdm 6401 . . . . . . . . 9 (𝜑 → (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ⊆ 𝑌)
141140sselda 3891 . . . . . . . 8 ((𝜑𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))) → 𝑤𝑌)
142 eleq1w 2864 . . . . . . . . . . . 12 (𝑗 = 𝑤 → (𝑗𝑌𝑤𝑌))
143142anbi2d 628 . . . . . . . . . . 11 (𝑗 = 𝑤 → ((𝜑𝑗𝑌) ↔ (𝜑𝑤𝑌)))
144 fveq2 6541 . . . . . . . . . . . 12 (𝑗 = 𝑤 → (𝐺𝑗) = (𝐺𝑤))
145144breq1d 4974 . . . . . . . . . . 11 (𝑗 = 𝑤 → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶))))
146143, 145imbi12d 346 . . . . . . . . . 10 (𝑗 = 𝑤 → (((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶))) ↔ ((𝜑𝑤𝑌) → (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶)))))
147146, 97chvarv 2369 . . . . . . . . 9 ((𝜑𝑤𝑌) → (𝐺𝑤) finSupp (0g‘(Scalar‘𝐶)))
148147fsuppimpd 8689 . . . . . . . 8 ((𝜑𝑤𝑌) → ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
149141, 148syldan 591 . . . . . . 7 ((𝜑𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))) → ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
150149ralrimiva 3148 . . . . . 6 (𝜑 → ∀𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
151 iunfi 8661 . . . . . 6 (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ ∀𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin) → 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
152138, 150, 151syl2anc 584 . . . . 5 (𝜑 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin)
153 xpfi 8638 . . . . 5 (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) ∈ Fin ∧ 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))) ∈ Fin) → ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin)
154138, 152, 153syl2anc 584 . . . 4 (𝜑 → ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin)
155 fveq2 6541 . . . . . . . . . 10 (𝑣 = 𝑗 → (𝐺𝑣) = (𝐺𝑗))
156155fveq1d 6543 . . . . . . . . 9 (𝑣 = 𝑗 → ((𝐺𝑣)‘𝑢) = ((𝐺𝑗)‘𝑢))
157156mpteq2dv 5059 . . . . . . . 8 (𝑣 = 𝑗 → (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)) = (𝑢𝑋 ↦ ((𝐺𝑗)‘𝑢)))
158 fveq2 6541 . . . . . . . . 9 (𝑢 = 𝑖 → ((𝐺𝑗)‘𝑢) = ((𝐺𝑗)‘𝑖))
159158cbvmptv 5064 . . . . . . . 8 (𝑢𝑋 ↦ ((𝐺𝑗)‘𝑢)) = (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))
160157, 159syl6eq 2846 . . . . . . 7 (𝑣 = 𝑗 → (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)) = (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
161160cbvmptv 5064 . . . . . 6 (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) = (𝑗𝑌 ↦ (𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
162 fvexd 6556 . . . . . 6 (𝜑 → (0g‘(Scalar‘𝐶)) ∈ V)
163 fvexd 6556 . . . . . 6 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → ((𝐺𝑗)‘𝑖) ∈ V)
16442, 161, 46, 47, 162, 163suppovss 30108 . . . . 5 (𝜑 → (𝐻 supp (0g‘(Scalar‘𝐶))) ⊆ (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶)))))
16510, 71subrg0 19232 . . . . . . . 8 (𝑉 ∈ (SubRing‘𝐸) → (0g𝐸) = (0g𝐾))
16619, 165syl 17 . . . . . . 7 (𝜑 → (0g𝐸) = (0g𝐾))
16736fveq2d 6545 . . . . . . 7 (𝜑 → (0g𝐾) = (0g‘(Scalar‘𝐶)))
168166, 167eqtr2d 2831 . . . . . 6 (𝜑 → (0g‘(Scalar‘𝐶)) = (0g𝐸))
169168oveq2d 7035 . . . . 5 (𝜑 → (𝐻 supp (0g‘(Scalar‘𝐶))) = (𝐻 supp (0g𝐸)))
1701feqmptd 6604 . . . . . . . 8 (𝜑𝐺 = (𝑣𝑌 ↦ (𝐺𝑣)))
171 eleq1w 2864 . . . . . . . . . . . . 13 (𝑗 = 𝑣 → (𝑗𝑌𝑣𝑌))
172171anbi2d 628 . . . . . . . . . . . 12 (𝑗 = 𝑣 → ((𝜑𝑗𝑌) ↔ (𝜑𝑣𝑌)))
173 fveq2 6541 . . . . . . . . . . . . 13 (𝑗 = 𝑣 → (𝐺𝑗) = (𝐺𝑣))
174173feq1d 6370 . . . . . . . . . . . 12 (𝑗 = 𝑣 → ((𝐺𝑗):𝑋⟶(Base‘𝐸) ↔ (𝐺𝑣):𝑋⟶(Base‘𝐸)))
175172, 174imbi12d 346 . . . . . . . . . . 11 (𝑗 = 𝑣 → (((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘𝐸)) ↔ ((𝜑𝑣𝑌) → (𝐺𝑣):𝑋⟶(Base‘𝐸))))
17610, 20ressbas2 16384 . . . . . . . . . . . . . . . 16 (𝑉 ⊆ (Base‘𝐸) → 𝑉 = (Base‘𝐾))
17722, 176syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑉 = (Base‘𝐾))
17836fveq2d 6545 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝐾) = (Base‘(Scalar‘𝐶)))
179177, 178eqtrd 2830 . . . . . . . . . . . . . 14 (𝜑𝑉 = (Base‘(Scalar‘𝐶)))
180179, 22eqsstrrd 3929 . . . . . . . . . . . . 13 (𝜑 → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
181180adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
18256, 181fssd 6399 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐺𝑗):𝑋⟶(Base‘𝐸))
183175, 182chvarv 2369 . . . . . . . . . 10 ((𝜑𝑣𝑌) → (𝐺𝑣):𝑋⟶(Base‘𝐸))
184183feqmptd 6604 . . . . . . . . 9 ((𝜑𝑣𝑌) → (𝐺𝑣) = (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))
185184mpteq2dva 5058 . . . . . . . 8 (𝜑 → (𝑣𝑌 ↦ (𝐺𝑣)) = (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))))
186170, 185eqtr2d 2831 . . . . . . 7 (𝜑 → (𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) = 𝐺)
187186oveq1d 7034 . . . . . 6 (𝜑 → ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) = (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})))
188186fveq1d 6543 . . . . . . . 8 (𝜑 → ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) = (𝐺𝑤))
189188oveq1d 7034 . . . . . . 7 (𝜑 → (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶))) = ((𝐺𝑤) supp (0g‘(Scalar‘𝐶))))
190187, 189iuneq12d 4854 . . . . . 6 (𝜑 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶))) = 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶))))
191187, 190xpeq12d 5477 . . . . 5 (𝜑 → (((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ ((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢))) supp (𝑋 × {(0g‘(Scalar‘𝐶))}))(((𝑣𝑌 ↦ (𝑢𝑋 ↦ ((𝐺𝑣)‘𝑢)))‘𝑤) supp (0g‘(Scalar‘𝐶)))) = ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))
192164, 169, 1913sstr3d 3936 . . . 4 (𝜑 → (𝐻 supp (0g𝐸)) ⊆ ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))
193 suppssfifsupp 8697 . . . 4 (((𝐻 ∈ ((Base‘(Scalar‘𝐴)) ↑𝑚 (𝑌 × 𝑋)) ∧ Fun 𝐻 ∧ (0g𝐸) ∈ (Base‘𝐸)) ∧ (((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))) ∈ Fin ∧ (𝐻 supp (0g𝐸)) ⊆ ((𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))})) × 𝑤 ∈ (𝐺 supp (𝑋 × {(0g‘(Scalar‘𝐶))}))((𝐺𝑤) supp (0g‘(Scalar‘𝐶)))))) → 𝐻 finSupp (0g𝐸))
19452, 66, 73, 154, 192, 193syl32anc 1371 . . 3 (𝜑𝐻 finSupp (0g𝐸))
19537fveq2d 6545 . . . 4 (𝜑 → (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐶)))
196195, 168eqtr2d 2831 . . 3 (𝜑 → (0g𝐸) = (0g‘(Scalar‘𝐴)))
197194, 196breqtrd 4990 . 2 (𝜑𝐻 finSupp (0g‘(Scalar‘𝐴)))
198 fedgmullem1.z . . 3 (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
19985, 67, 13, 15, 92, 46drgextgsum 30593 . . 3 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
20047adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑋 ∈ (LBasis‘𝐶))
20113adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubRing‘𝐸))
202 subrgsubg 19231 . . . . . . . . . . . . 13 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ∈ (SubGrp‘𝐸))
203 subgsubm 18055 . . . . . . . . . . . . 13 (𝑈 ∈ (SubGrp‘𝐸) → 𝑈 ∈ (SubMnd‘𝐸))
204201, 202, 2033syl 18 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑈 ∈ (SubMnd‘𝐸))
205113ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐶 ∈ LMod)
20656ffvelrnda 6719 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
207118ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐶))
208207, 61sseldd 3892 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐶))
209115, 126, 127, 125lmodvscl 19341 . . . . . . . . . . . . . . 15 ((𝐶 ∈ LMod ∧ ((𝐺𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑖 ∈ (Base‘𝐶)) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
210205, 206, 208, 209syl3anc 1364 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ (Base‘𝐶))
21115, 20ressbas2 16384 . . . . . . . . . . . . . . . . 17 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
21288, 211syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑈 = (Base‘𝐹))
21331, 34srabase 19640 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐹) = (Base‘𝐶))
214212, 213eqtrd 2830 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝐶))
215214ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑈 = (Base‘𝐶))
216210, 215eleqtrrd 2885 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) ∈ 𝑈)
217216fmpttd 6745 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)):𝑋𝑈)
218200, 204, 217, 15gsumsubm 17812 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
219 eqid 2794 . . . . . . . . . . . . . . . . . 18 (.r𝐸) = (.r𝐸)
22015, 219ressmulr 16454 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ (SubRing‘𝐸) → (.r𝐸) = (.r𝐹))
22113, 220syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝐸) = (.r𝐹))
22231, 34sravsca 19644 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝐹) = ( ·𝑠𝐶))
223221, 222eqtr2d 2831 . . . . . . . . . . . . . . 15 (𝜑 → ( ·𝑠𝐶) = (.r𝐸))
224223ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ( ·𝑠𝐶) = (.r𝐸))
225224oveqd 7036 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))
226225mpteq2dva 5058 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))
227226oveq2d 7035 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))))
22830, 92, 14, 109, 108, 47drgextgsum 30593 . . . . . . . . . . . 12 (𝜑 → (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
229228adantr 481 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝐹 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
230218, 227, 2293eqtr3d 2838 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖))) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
231230oveq1d 7034 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗) = ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))(.r𝐸)𝑗))
23269ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝐸 ∈ Ring)
233180ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘(Scalar‘𝐶)) ⊆ (Base‘𝐸))
234233, 206sseldd 3892 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸))
235214, 88eqsstrrd 3929 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸))
236118, 235sstrd 3901 . . . . . . . . . . . . . . 15 (𝜑𝑋 ⊆ (Base‘𝐸))
237236ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑋 ⊆ (Base‘𝐸))
238237, 61sseldd 3892 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑖 ∈ (Base‘𝐸))
239 eqid 2794 . . . . . . . . . . . . . . . . . 18 (Base‘𝐵) = (Base‘𝐵)
240 eqid 2794 . . . . . . . . . . . . . . . . . 18 (LBasis‘𝐵) = (LBasis‘𝐵)
241239, 240lbsss 19539 . . . . . . . . . . . . . . . . 17 (𝑌 ∈ (LBasis‘𝐵) → 𝑌 ⊆ (Base‘𝐵))
24246, 241syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ⊆ (Base‘𝐵))
24386, 88srabase 19640 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
244242, 243sseqtr4d 3931 . . . . . . . . . . . . . . 15 (𝜑𝑌 ⊆ (Base‘𝐸))
245244ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑌 ⊆ (Base‘𝐸))
246 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗𝑌)
247245, 246sseldd 3892 . . . . . . . . . . . . 13 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → 𝑗 ∈ (Base‘𝐸))
24820, 219ringass 19004 . . . . . . . . . . . . 13 ((𝐸 ∈ Ring ∧ (((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸))) → ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
249232, 234, 238, 247, 248syl13anc 1365 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
250249mpteq2dva 5058 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗)) = (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
251250oveq2d 7035 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))))
252 eqid 2794 . . . . . . . . . . 11 (+g𝐸) = (+g𝐸)
25369adantr 481 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝐸 ∈ Ring)
254242adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → 𝑌 ⊆ (Base‘𝐵))
255243adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → (Base‘𝐸) = (Base‘𝐵))
256254, 255sseqtr4d 3931 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑌 ⊆ (Base‘𝐸))
257 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → 𝑗𝑌)
258256, 257sseldd 3892 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → 𝑗 ∈ (Base‘𝐸))
25920, 219ringcl 19001 . . . . . . . . . . . 12 ((𝐸 ∈ Ring ∧ ((𝐺𝑗)‘𝑖) ∈ (Base‘𝐸) ∧ 𝑖 ∈ (Base‘𝐸)) → (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
260232, 234, 238, 259syl3anc 1364 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖) ∈ (Base‘𝐸))
261168breq2d 4976 . . . . . . . . . . . . . 14 (𝜑 → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g𝐸)))
262261adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑗𝑌) → ((𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝐺𝑗) finSupp (0g𝐸)))
26397, 262mpbid 233 . . . . . . . . . . . 12 ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g𝐸))
26420, 253, 200, 238, 182, 263rmfsupp2 30512 . . . . . . . . . . 11 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)) finSupp (0g𝐸))
26520, 71, 252, 219, 253, 200, 258, 260, 264gsummulc1 19046 . . . . . . . . . 10 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ ((((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)(.r𝐸)𝑗))) = ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
266251, 265eqtr3d 2832 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))) = ((𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)𝑖)))(.r𝐸)𝑗))
26783oveq1d 7034 . . . . . . . . 9 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = ((𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))(.r𝐸)𝑗))
268231, 266, 2673eqtr4rd 2841 . . . . . . . 8 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))))
26986, 88sravsca 19644 . . . . . . . . . 10 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
270269adantr 481 . . . . . . . . 9 ((𝜑𝑗𝑌) → (.r𝐸) = ( ·𝑠𝐵))
271270oveqd 7036 . . . . . . . 8 ((𝜑𝑗𝑌) → ((𝐿𝑗)(.r𝐸)𝑗) = ((𝐿𝑗)( ·𝑠𝐵)𝑗))
272 fvexd 6556 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑌𝑖𝑋) → ((𝐺𝑗)‘𝑖) ∈ V)
273 ovexd 7053 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑌𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ V)
27442a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖)))
275 fedgmullem.d . . . . . . . . . . . . . . 15 𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))
276275a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗)))
27746, 47, 272, 273, 274, 276offval22 7642 . . . . . . . . . . . . 13 (𝜑 → (𝐻𝑓 (.r𝐸)𝐷) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))))
278277oveqd 7036 . . . . . . . . . . . 12 (𝜑 → (𝑗(𝐻𝑓 (.r𝐸)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖))
279278ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝐻𝑓 (.r𝐸)𝐷)𝑖) = (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖))
280 ovexd 7053 . . . . . . . . . . . 12 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) ∈ V)
281 eqid 2794 . . . . . . . . . . . . 13 (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))) = (𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
282281ovmpt4g 7156 . . . . . . . . . . . 12 ((𝑗𝑌𝑖𝑋 ∧ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) ∈ V) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
283246, 61, 280, 282syl3anc 1364 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑗(𝑗𝑌, 𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))𝑖) = (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))
284279, 283eqtr2d 2831 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)) = (𝑗(𝐻𝑓 (.r𝐸)𝐷)𝑖))
285284mpteq2dva 5058 . . . . . . . . 9 ((𝜑𝑗𝑌) → (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗))) = (𝑖𝑋 ↦ (𝑗(𝐻𝑓 (.r𝐸)𝐷)𝑖)))
286285oveq2d 7035 . . . . . . . 8 ((𝜑𝑗𝑌) → (𝐸 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)(.r𝐸)(𝑖(.r𝐸)𝑗)))) = (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻𝑓 (.r𝐸)𝐷)𝑖))))
287268, 271, 2863eqtr3d 2838 . . . . . . 7 ((𝜑𝑗𝑌) → ((𝐿𝑗)( ·𝑠𝐵)𝑗) = (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻𝑓 (.r𝐸)𝐷)𝑖))))
288287mpteq2dva 5058 . . . . . 6 (𝜑 → (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗)) = (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻𝑓 (.r𝐸)𝐷)𝑖)))))
289288oveq2d 7035 . . . . 5 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐸 Σg (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻𝑓 (.r𝐸)𝐷)𝑖))))))
290 ringcmn 19021 . . . . . . 7 (𝐸 ∈ Ring → 𝐸 ∈ CMnd)
29169, 290syl 17 . . . . . 6 (𝜑𝐸 ∈ CMnd)
29269adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝐸 ∈ Ring)
29338, 180eqsstrd 3928 . . . . . . . . . 10 (𝜑 → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
294293adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘(Scalar‘𝐴)) ⊆ (Base‘𝐸))
295 simprl 767 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘(Scalar‘𝐴)))
296294, 295sseldd 3892 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑙 ∈ (Base‘𝐸))
297 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐴))
29812, 22srabase 19640 . . . . . . . . . 10 (𝜑 → (Base‘𝐸) = (Base‘𝐴))
299298adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (Base‘𝐸) = (Base‘𝐴))
300297, 299eleqtrrd 2885 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → 𝑘 ∈ (Base‘𝐸))
30120, 219ringcl 19001 . . . . . . . 8 ((𝐸 ∈ Ring ∧ 𝑙 ∈ (Base‘𝐸) ∧ 𝑘 ∈ (Base‘𝐸)) → (𝑙(.r𝐸)𝑘) ∈ (Base‘𝐸))
302292, 296, 300, 301syl3anc 1364 . . . . . . 7 ((𝜑 ∧ (𝑙 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑘 ∈ (Base‘𝐴))) → (𝑙(.r𝐸)𝑘) ∈ (Base‘𝐸))
30320, 219ringcl 19001 . . . . . . . . . . . 12 ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
304232, 238, 247, 303syl3anc 1364 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
305298ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (Base‘𝐸) = (Base‘𝐴))
306304, 305eleqtrd 2884 . . . . . . . . . 10 (((𝜑𝑗𝑌) ∧ 𝑖𝑋) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
307306anasss 467 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑌𝑖𝑋)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
308307ralrimivva 3157 . . . . . . . 8 (𝜑 → ∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
309275fmpo 7625 . . . . . . . 8 (∀𝑗𝑌𝑖𝑋 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴) ↔ 𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
310308, 309sylib 219 . . . . . . 7 (𝜑𝐷:(𝑌 × 𝑋)⟶(Base‘𝐴))
311 inidm 4117 . . . . . . 7 ((𝑌 × 𝑋) ∩ (𝑌 × 𝑋)) = (𝑌 × 𝑋)
312302, 65, 310, 48, 48, 311off 7285 . . . . . 6 (𝜑 → (𝐻𝑓 (.r𝐸)𝐷):(𝑌 × 𝑋)⟶(Base‘𝐸))
31369adantr 481 . . . . . . . 8 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝐸 ∈ Ring)
314 simpr 485 . . . . . . . . 9 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐴))
315298adantr 481 . . . . . . . . 9 ((𝜑𝑢 ∈ (Base‘𝐴)) → (Base‘𝐸) = (Base‘𝐴))
316314, 315eleqtrrd 2885 . . . . . . . 8 ((𝜑𝑢 ∈ (Base‘𝐴)) → 𝑢 ∈ (Base‘𝐸))
31720, 219, 71ringlz 19027 . . . . . . . 8 ((𝐸 ∈ Ring ∧ 𝑢 ∈ (Base‘𝐸)) → ((0g𝐸)(.r𝐸)𝑢) = (0g𝐸))
318313, 316, 317syl2anc 584 . . . . . . 7 ((𝜑𝑢 ∈ (Base‘𝐴)) → ((0g𝐸)(.r𝐸)𝑢) = (0g𝐸))
31948, 73, 73, 65, 310, 194, 318offinsupp1 30143 . . . . . 6 (𝜑 → (𝐻𝑓 (.r𝐸)𝐷) finSupp (0g𝐸))
32020, 71, 291, 46, 47, 312, 319gsumxp 18816 . . . . 5 (𝜑 → (𝐸 Σg (𝐻𝑓 (.r𝐸)𝐷)) = (𝐸 Σg (𝑗𝑌 ↦ (𝐸 Σg (𝑖𝑋 ↦ (𝑗(𝐻𝑓 (.r𝐸)𝐷)𝑖))))))
32112, 22sravsca 19644 . . . . . . . 8 (𝜑 → (.r𝐸) = ( ·𝑠𝐴))
322 ofeq 7272 . . . . . . . 8 ((.r𝐸) = ( ·𝑠𝐴) → ∘𝑓 (.r𝐸) = ∘𝑓 ( ·𝑠𝐴))
323321, 322syl 17 . . . . . . 7 (𝜑 → ∘𝑓 (.r𝐸) = ∘𝑓 ( ·𝑠𝐴))
324323oveqd 7036 . . . . . 6 (𝜑 → (𝐻𝑓 (.r𝐸)𝐷) = (𝐻𝑓 ( ·𝑠𝐴)𝐷))
325324oveq2d 7035 . . . . 5 (𝜑 → (𝐸 Σg (𝐻𝑓 (.r𝐸)𝐷)) = (𝐸 Σg (𝐻𝑓 ( ·𝑠𝐴)𝐷)))
326289, 320, 3253eqtr2rd 2837 . . . 4 (𝜑 → (𝐸 Σg (𝐻𝑓 ( ·𝑠𝐴)𝐷)) = (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))
327 ovexd 7053 . . . . 5 (𝜑 → (𝐻𝑓 ( ·𝑠𝐴)𝐷) ∈ V)
328 fedgmullem1.a . . . . . 6 (𝜑𝑍 ∈ (Base‘𝐴))
329328elfvexd 6575 . . . . 5 (𝜑𝐴 ∈ V)
33011, 327, 67, 329, 22gsumsra 30485 . . . 4 (𝜑 → (𝐸 Σg (𝐻𝑓 ( ·𝑠𝐴)𝐷)) = (𝐴 Σg (𝐻𝑓 ( ·𝑠𝐴)𝐷)))
331326, 330eqtr3d 2832 . . 3 (𝜑 → (𝐸 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))) = (𝐴 Σg (𝐻𝑓 ( ·𝑠𝐴)𝐷)))
332198, 199, 3313eqtr2d 2836 . 2 (𝜑𝑍 = (𝐴 Σg (𝐻𝑓 ( ·𝑠𝐴)𝐷)))
333197, 332jca 512 1 (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻𝑓 ( ·𝑠𝐴)𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2080  wral 3104  Vcvv 3436  cdif 3858  wss 3861  {csn 4474   ciun 4827   class class class wbr 4964  cmpt 5043   × cxp 5444  Fun wfun 6222  wf 6224  cfv 6228  (class class class)co 7019  cmpo 7021  𝑓 cof 7268   supp csupp 7684  𝑚 cmap 8259  Fincfn 8360   finSupp cfsupp 8682  Basecbs 16312  s cress 16313  +gcplusg 16394  .rcmulr 16395  Scalarcsca 16397   ·𝑠 cvsca 16398  0gc0g 16542   Σg cgsu 16543  SubMndcsubmnd 17773  Grpcgrp 17861  SubGrpcsubg 18027  CMndccmn 18633  Ringcrg 18987  DivRingcdr 19192  SubRingcsubrg 19221  LModclmod 19324  LSpanclspn 19433  LBasisclbs 19536  LVecclvec 19564  subringAlg csra 19630  LIndSclinds 20631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-int 4785  df-iun 4829  df-iin 4830  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-se 5406  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-isom 6237  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-of 7270  df-om 7440  df-1st 7548  df-2nd 7549  df-supp 7685  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-1o 7956  df-oadd 7960  df-er 8142  df-map 8261  df-ixp 8314  df-en 8361  df-dom 8362  df-sdom 8363  df-fin 8364  df-fsupp 8683  df-sup 8755  df-oi 8823  df-card 9217  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-nn 11489  df-2 11550  df-3 11551  df-4 11552  df-5 11553  df-6 11554  df-7 11555  df-8 11556  df-9 11557  df-n0 11748  df-z 11832  df-dec 11949  df-uz 12094  df-fz 12743  df-fzo 12884  df-seq 13220  df-hash 13541  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-hom 16418  df-cco 16419  df-0g 16544  df-gsum 16545  df-prds 16550  df-pws 16552  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-mulg 17982  df-subg 18030  df-ghm 18097  df-cntz 18188  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-drng 19194  df-subrg 19223  df-lmod 19326  df-lss 19394  df-lsp 19434  df-lmhm 19484  df-lbs 19537  df-lvec 19565  df-sra 19634  df-rgmod 19635  df-nzr 19720  df-dsmm 20558  df-frlm 20573  df-uvc 20609  df-lindf 20632  df-linds 20633
This theorem is referenced by:  fedgmul  30623
  Copyright terms: Public domain W3C validator