Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  latmassOLD Structured version   Visualization version   GIF version

Theorem latmassOLD 39229
Description: Ortholattice meet is associative. (This can also be proved for lattices with a longer proof.) (inass 4194 analog.) (Contributed by NM, 7-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
olmass.b 𝐵 = (Base‘𝐾)
olmass.m = (meet‘𝐾)
Assertion
Ref Expression
latmassOLD ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))

Proof of Theorem latmassOLD
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OL)
2 ollat 39213 . . . . . 6 (𝐾 ∈ OL → 𝐾 ∈ Lat)
32adantr 480 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
4 olop 39214 . . . . . . 7 (𝐾 ∈ OL → 𝐾 ∈ OP)
54adantr 480 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OP)
6 simpr1 1195 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
7 olmass.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 eqid 2730 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
97, 8opoccl 39194 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
105, 6, 9syl2anc 584 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
11 simpr2 1196 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
127, 8opoccl 39194 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
135, 11, 12syl2anc 584 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
14 eqid 2730 . . . . . 6 (join‘𝐾) = (join‘𝐾)
157, 14latjcl 18405 . . . . 5 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
163, 10, 13, 15syl3anc 1373 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
17 simpr3 1197 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
18 olmass.m . . . . 5 = (meet‘𝐾)
197, 14, 18, 8oldmj3 39223 . . . 4 ((𝐾 ∈ OL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵𝑍𝐵) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) 𝑍))
201, 16, 17, 19syl3anc 1373 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) 𝑍))
217, 8opoccl 39194 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
225, 17, 21syl2anc 584 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
237, 14latjass 18449 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))))
243, 10, 13, 22, 23syl13anc 1374 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))))
2524fveq2d 6865 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍))) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
267, 14, 18, 8oldmj4 39224 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
27263adant3r3 1185 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
2827oveq1d 7405 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) 𝑍) = ((𝑋 𝑌) 𝑍))
2920, 25, 283eqtr3rd 2774 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
307, 14latjcl 18405 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)) ∈ 𝐵)
313, 13, 22, 30syl3anc 1373 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)) ∈ 𝐵)
327, 14, 18, 8oldmj2 39222 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
331, 6, 31, 32syl3anc 1373 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
347, 14, 18, 8oldmj4 39224 . . . 4 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑍𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
35343adant3r1 1183 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
3635oveq2d 7406 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))) = (𝑋 (𝑌 𝑍)))
3729, 33, 363eqtrd 2769 1 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  occoc 17235  joincjn 18279  meetcmee 18280  Latclat 18397  OPcops 39172  OLcol 39174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-lat 18398  df-oposet 39176  df-ol 39178
This theorem is referenced by:  latm12  39230  latm32  39231  latmrot  39232  latm4  39233  cmtcomlemN  39248  cmtbr3N  39254  omlfh1N  39258  dalawlem2  39873  dalawlem7  39878  dalawlem11  39882  dalawlem12  39883  lhp2at0  40033  cdleme20d  40313  cdleme23b  40351  cdlemh2  40817  dia2dimlem2  41066  dihmeetbclemN  41305
  Copyright terms: Public domain W3C validator