Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  latmassOLD Structured version   Visualization version   GIF version

Theorem latmassOLD 37691
Description: Ortholattice meet is associative. (This can also be proved for lattices with a longer proof.) (inass 4179 analog.) (Contributed by NM, 7-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
olmass.b 𝐵 = (Base‘𝐾)
olmass.m = (meet‘𝐾)
Assertion
Ref Expression
latmassOLD ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))

Proof of Theorem latmassOLD
StepHypRef Expression
1 simpl 483 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OL)
2 ollat 37675 . . . . . 6 (𝐾 ∈ OL → 𝐾 ∈ Lat)
32adantr 481 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
4 olop 37676 . . . . . . 7 (𝐾 ∈ OL → 𝐾 ∈ OP)
54adantr 481 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OP)
6 simpr1 1194 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
7 olmass.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 eqid 2736 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
97, 8opoccl 37656 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
105, 6, 9syl2anc 584 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
11 simpr2 1195 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
127, 8opoccl 37656 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
135, 11, 12syl2anc 584 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
14 eqid 2736 . . . . . 6 (join‘𝐾) = (join‘𝐾)
157, 14latjcl 18328 . . . . 5 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
163, 10, 13, 15syl3anc 1371 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
17 simpr3 1196 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
18 olmass.m . . . . 5 = (meet‘𝐾)
197, 14, 18, 8oldmj3 37685 . . . 4 ((𝐾 ∈ OL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵𝑍𝐵) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) 𝑍))
201, 16, 17, 19syl3anc 1371 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) 𝑍))
217, 8opoccl 37656 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
225, 17, 21syl2anc 584 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
237, 14latjass 18372 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))))
243, 10, 13, 22, 23syl13anc 1372 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))))
2524fveq2d 6846 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍))) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
267, 14, 18, 8oldmj4 37686 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
27263adant3r3 1184 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
2827oveq1d 7372 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) 𝑍) = ((𝑋 𝑌) 𝑍))
2920, 25, 283eqtr3rd 2785 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
307, 14latjcl 18328 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)) ∈ 𝐵)
313, 13, 22, 30syl3anc 1371 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)) ∈ 𝐵)
327, 14, 18, 8oldmj2 37684 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
331, 6, 31, 32syl3anc 1371 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
347, 14, 18, 8oldmj4 37686 . . . 4 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑍𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
35343adant3r1 1182 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
3635oveq2d 7373 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))) = (𝑋 (𝑌 𝑍)))
3729, 33, 363eqtrd 2780 1 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  Basecbs 17083  occoc 17141  joincjn 18200  meetcmee 18201  Latclat 18320  OPcops 37634  OLcol 37636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-lat 18321  df-oposet 37638  df-ol 37640
This theorem is referenced by:  latm12  37692  latm32  37693  latmrot  37694  latm4  37695  cmtcomlemN  37710  cmtbr3N  37716  omlfh1N  37720  dalawlem2  38335  dalawlem7  38340  dalawlem11  38344  dalawlem12  38345  lhp2at0  38495  cdleme20d  38775  cdleme23b  38813  cdlemh2  39279  dia2dimlem2  39528  dihmeetbclemN  39767
  Copyright terms: Public domain W3C validator