Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  latmassOLD Structured version   Visualization version   GIF version

Theorem latmassOLD 35117
Description: Ortholattice meet is associative. (This can also be proved for lattices with a longer proof.) (inass 3982 analog.) (Contributed by NM, 7-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
olmass.b 𝐵 = (Base‘𝐾)
olmass.m = (meet‘𝐾)
Assertion
Ref Expression
latmassOLD ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))

Proof of Theorem latmassOLD
StepHypRef Expression
1 simpl 474 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OL)
2 ollat 35101 . . . . . 6 (𝐾 ∈ OL → 𝐾 ∈ Lat)
32adantr 472 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
4 olop 35102 . . . . . . 7 (𝐾 ∈ OL → 𝐾 ∈ OP)
54adantr 472 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OP)
6 simpr1 1248 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
7 olmass.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 eqid 2764 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
97, 8opoccl 35082 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
105, 6, 9syl2anc 579 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
11 simpr2 1250 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
127, 8opoccl 35082 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
135, 11, 12syl2anc 579 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
14 eqid 2764 . . . . . 6 (join‘𝐾) = (join‘𝐾)
157, 14latjcl 17318 . . . . 5 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
163, 10, 13, 15syl3anc 1490 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
17 simpr3 1252 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
18 olmass.m . . . . 5 = (meet‘𝐾)
197, 14, 18, 8oldmj3 35111 . . . 4 ((𝐾 ∈ OL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵𝑍𝐵) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) 𝑍))
201, 16, 17, 19syl3anc 1490 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) 𝑍))
217, 8opoccl 35082 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
225, 17, 21syl2anc 579 . . . . 5 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
237, 14latjass 17362 . . . . 5 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))))
243, 10, 13, 22, 23syl13anc 1491 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))))
2524fveq2d 6378 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(join‘𝐾)((oc‘𝐾)‘𝑍))) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
267, 14, 18, 8oldmj4 35112 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
27263adant3r3 1235 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
2827oveq1d 6856 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) 𝑍) = ((𝑋 𝑌) 𝑍))
2920, 25, 283eqtr3rd 2807 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
307, 14latjcl 17318 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)) ∈ 𝐵)
313, 13, 22, 30syl3anc 1490 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)) ∈ 𝐵)
327, 14, 18, 8oldmj2 35110 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
331, 6, 31, 32syl3anc 1490 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))))
347, 14, 18, 8oldmj4 35112 . . . 4 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑍𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
35343adant3r1 1233 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
3635oveq2d 6857 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌)(join‘𝐾)((oc‘𝐾)‘𝑍)))) = (𝑋 (𝑌 𝑍)))
3729, 33, 363eqtrd 2802 1 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  cfv 6067  (class class class)co 6841  Basecbs 16131  occoc 16223  joincjn 17211  meetcmee 17212  Latclat 17312  OPcops 35060  OLcol 35062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-op 4340  df-uni 4594  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-id 5184  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-proset 17195  df-poset 17213  df-lub 17241  df-glb 17242  df-join 17243  df-meet 17244  df-lat 17313  df-oposet 35064  df-ol 35066
This theorem is referenced by:  latm12  35118  latm32  35119  latmrot  35120  latm4  35121  cmtcomlemN  35136  cmtbr3N  35142  omlfh1N  35146  dalawlem2  35760  dalawlem7  35765  dalawlem11  35769  dalawlem12  35770  lhp2at0  35920  cdleme20d  36200  cdleme23b  36238  cdlemh2  36704  dia2dimlem2  36953  dihmeetbclemN  37192
  Copyright terms: Public domain W3C validator