| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oldmj1 | Structured version Visualization version GIF version | ||
| Description: De Morgan's law for join in an ortholattice. (chdmj1 31520 analog.) (Contributed by NM, 6-Nov-2011.) |
| Ref | Expression |
|---|---|
| oldmm1.b | ⊢ 𝐵 = (Base‘𝐾) |
| oldmm1.j | ⊢ ∨ = (join‘𝐾) |
| oldmm1.m | ⊢ ∧ = (meet‘𝐾) |
| oldmm1.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| oldmj1 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oldmm1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | oldmm1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | oldmm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 4 | oldmm1.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 5 | 1, 2, 3, 4 | oldmm4 39329 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) = (𝑋 ∨ 𝑌)) |
| 6 | 5 | fveq2d 6835 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = ( ⊥ ‘(𝑋 ∨ 𝑌))) |
| 7 | olop 39323 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
| 9 | ollat 39322 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 10 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 11 | 1, 4 | opoccl 39303 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 12 | 7, 11 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 13 | 12 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 14 | 1, 4 | opoccl 39303 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 15 | 7, 14 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 16 | 15 | 3adant2 1131 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 17 | 1, 3 | latmcl 18356 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
| 18 | 10, 13, 16, 17 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
| 19 | 1, 4 | opococ 39304 | . . 3 ⊢ ((𝐾 ∈ OP ∧ (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
| 20 | 8, 18, 19 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
| 21 | 6, 20 | eqtr3d 2770 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 occoc 17179 joincjn 18227 meetcmee 18228 Latclat 18347 OPcops 39281 OLcol 39283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-proset 18210 df-poset 18229 df-lub 18260 df-glb 18261 df-join 18262 df-meet 18263 df-lat 18348 df-oposet 39285 df-ol 39287 |
| This theorem is referenced by: oldmj2 39331 oldmj3 39332 cmtbr2N 39362 omlfh1N 39367 omlfh3N 39368 cvrexch 39529 poldmj1N 40037 lhpmod2i2 40147 lhpmod6i1 40148 djajN 41246 |
| Copyright terms: Public domain | W3C validator |