![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldmj1 | Structured version Visualization version GIF version |
Description: De Morgan's law for join in an ortholattice. (chdmj1 31561 analog.) (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
oldmm1.b | ⊢ 𝐵 = (Base‘𝐾) |
oldmm1.j | ⊢ ∨ = (join‘𝐾) |
oldmm1.m | ⊢ ∧ = (meet‘𝐾) |
oldmm1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
oldmj1 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oldmm1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | oldmm1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | oldmm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | oldmm1.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
5 | 1, 2, 3, 4 | oldmm4 39176 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) = (𝑋 ∨ 𝑌)) |
6 | 5 | fveq2d 6924 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = ( ⊥ ‘(𝑋 ∨ 𝑌))) |
7 | olop 39170 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
9 | ollat 39169 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
10 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
11 | 1, 4 | opoccl 39150 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
12 | 7, 11 | sylan 579 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
13 | 12 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
14 | 1, 4 | opoccl 39150 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
15 | 7, 14 | sylan 579 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
16 | 15 | 3adant2 1131 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
17 | 1, 3 | latmcl 18510 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
18 | 10, 13, 16, 17 | syl3anc 1371 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
19 | 1, 4 | opococ 39151 | . . 3 ⊢ ((𝐾 ∈ OP ∧ (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
20 | 8, 18, 19 | syl2anc 583 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
21 | 6, 20 | eqtr3d 2782 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 occoc 17319 joincjn 18381 meetcmee 18382 Latclat 18501 OPcops 39128 OLcol 39130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-lat 18502 df-oposet 39132 df-ol 39134 |
This theorem is referenced by: oldmj2 39178 oldmj3 39179 cmtbr2N 39209 omlfh1N 39214 omlfh3N 39215 cvrexch 39377 poldmj1N 39885 lhpmod2i2 39995 lhpmod6i1 39996 djajN 41094 |
Copyright terms: Public domain | W3C validator |