Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmj1 Structured version   Visualization version   GIF version

Theorem oldmj1 39239
Description: De Morgan's law for join in an ortholattice. (chdmj1 31499 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
oldmm1.b 𝐵 = (Base‘𝐾)
oldmm1.j = (join‘𝐾)
oldmm1.m = (meet‘𝐾)
oldmm1.o = (oc‘𝐾)
Assertion
Ref Expression
oldmj1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))

Proof of Theorem oldmj1
StepHypRef Expression
1 oldmm1.b . . . 4 𝐵 = (Base‘𝐾)
2 oldmm1.j . . . 4 = (join‘𝐾)
3 oldmm1.m . . . 4 = (meet‘𝐾)
4 oldmm1.o . . . 4 = (oc‘𝐾)
51, 2, 3, 4oldmm4 39238 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) ( 𝑌))) = (𝑋 𝑌))
65fveq2d 6821 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘( ‘(( 𝑋) ( 𝑌)))) = ( ‘(𝑋 𝑌)))
7 olop 39232 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ OP)
873ad2ant1 1133 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
9 ollat 39231 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ Lat)
1093ad2ant1 1133 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
111, 4opoccl 39212 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
127, 11sylan 580 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
13123adant3 1132 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
141, 4opoccl 39212 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
157, 14sylan 580 . . . . 5 ((𝐾 ∈ OL ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
16153adant2 1131 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
171, 3latmcl 18338 . . . 4 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
1810, 13, 16, 17syl3anc 1373 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( 𝑌)) ∈ 𝐵)
191, 4opococ 39213 . . 3 ((𝐾 ∈ OP ∧ (( 𝑋) ( 𝑌)) ∈ 𝐵) → ( ‘( ‘(( 𝑋) ( 𝑌)))) = (( 𝑋) ( 𝑌)))
208, 18, 19syl2anc 584 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘( ‘(( 𝑋) ( 𝑌)))) = (( 𝑋) ( 𝑌)))
216, 20eqtr3d 2767 1 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 𝑌)) = (( 𝑋) ( 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2110  cfv 6477  (class class class)co 7341  Basecbs 17112  occoc 17161  joincjn 18209  meetcmee 18210  Latclat 18329  OPcops 39190  OLcol 39192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18192  df-poset 18211  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-lat 18330  df-oposet 39194  df-ol 39196
This theorem is referenced by:  oldmj2  39240  oldmj3  39241  cmtbr2N  39271  omlfh1N  39276  omlfh3N  39277  cvrexch  39438  poldmj1N  39946  lhpmod2i2  40056  lhpmod6i1  40057  djajN  41155
  Copyright terms: Public domain W3C validator