Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldmj1 | Structured version Visualization version GIF version |
Description: De Morgan's law for join in an ortholattice. (chdmj1 29887 analog.) (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
oldmm1.b | ⊢ 𝐵 = (Base‘𝐾) |
oldmm1.j | ⊢ ∨ = (join‘𝐾) |
oldmm1.m | ⊢ ∧ = (meet‘𝐾) |
oldmm1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
oldmj1 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oldmm1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | oldmm1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | oldmm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | oldmm1.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
5 | 1, 2, 3, 4 | oldmm4 37230 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) = (𝑋 ∨ 𝑌)) |
6 | 5 | fveq2d 6775 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = ( ⊥ ‘(𝑋 ∨ 𝑌))) |
7 | olop 37224 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
8 | 7 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
9 | ollat 37223 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
10 | 9 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
11 | 1, 4 | opoccl 37204 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
12 | 7, 11 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
13 | 12 | 3adant3 1131 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
14 | 1, 4 | opoccl 37204 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
15 | 7, 14 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
16 | 15 | 3adant2 1130 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
17 | 1, 3 | latmcl 18156 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
18 | 10, 13, 16, 17 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
19 | 1, 4 | opococ 37205 | . . 3 ⊢ ((𝐾 ∈ OP ∧ (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
20 | 8, 18, 19 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
21 | 6, 20 | eqtr3d 2782 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 occoc 16968 joincjn 18027 meetcmee 18028 Latclat 18147 OPcops 37182 OLcol 37184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-proset 18011 df-poset 18029 df-lub 18062 df-glb 18063 df-join 18064 df-meet 18065 df-lat 18148 df-oposet 37186 df-ol 37188 |
This theorem is referenced by: oldmj2 37232 oldmj3 37233 cmtbr2N 37263 omlfh1N 37268 omlfh3N 37269 cvrexch 37430 poldmj1N 37938 lhpmod2i2 38048 lhpmod6i1 38049 djajN 39147 |
Copyright terms: Public domain | W3C validator |