Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldmj1 | Structured version Visualization version GIF version |
Description: De Morgan's law for join in an ortholattice. (chdmj1 29792 analog.) (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
oldmm1.b | ⊢ 𝐵 = (Base‘𝐾) |
oldmm1.j | ⊢ ∨ = (join‘𝐾) |
oldmm1.m | ⊢ ∧ = (meet‘𝐾) |
oldmm1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
oldmj1 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oldmm1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | oldmm1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | oldmm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | oldmm1.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
5 | 1, 2, 3, 4 | oldmm4 37161 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) = (𝑋 ∨ 𝑌)) |
6 | 5 | fveq2d 6760 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = ( ⊥ ‘(𝑋 ∨ 𝑌))) |
7 | olop 37155 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
8 | 7 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
9 | ollat 37154 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
10 | 9 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
11 | 1, 4 | opoccl 37135 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
12 | 7, 11 | sylan 579 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
13 | 12 | 3adant3 1130 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
14 | 1, 4 | opoccl 37135 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
15 | 7, 14 | sylan 579 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
16 | 15 | 3adant2 1129 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
17 | 1, 3 | latmcl 18073 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
18 | 10, 13, 16, 17 | syl3anc 1369 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
19 | 1, 4 | opococ 37136 | . . 3 ⊢ ((𝐾 ∈ OP ∧ (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
20 | 8, 18, 19 | syl2anc 583 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
21 | 6, 20 | eqtr3d 2780 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 occoc 16896 joincjn 17944 meetcmee 17945 Latclat 18064 OPcops 37113 OLcol 37115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-lat 18065 df-oposet 37117 df-ol 37119 |
This theorem is referenced by: oldmj2 37163 oldmj3 37164 cmtbr2N 37194 omlfh1N 37199 omlfh3N 37200 cvrexch 37361 poldmj1N 37869 lhpmod2i2 37979 lhpmod6i1 37980 djajN 39078 |
Copyright terms: Public domain | W3C validator |