![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldmj1 | Structured version Visualization version GIF version |
Description: De Morgan's law for join in an ortholattice. (chdmj1 31558 analog.) (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
oldmm1.b | ⊢ 𝐵 = (Base‘𝐾) |
oldmm1.j | ⊢ ∨ = (join‘𝐾) |
oldmm1.m | ⊢ ∧ = (meet‘𝐾) |
oldmm1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
oldmj1 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oldmm1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | oldmm1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | oldmm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | oldmm1.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
5 | 1, 2, 3, 4 | oldmm4 39202 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) = (𝑋 ∨ 𝑌)) |
6 | 5 | fveq2d 6911 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = ( ⊥ ‘(𝑋 ∨ 𝑌))) |
7 | olop 39196 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
8 | 7 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
9 | ollat 39195 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
10 | 9 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
11 | 1, 4 | opoccl 39176 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
12 | 7, 11 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
13 | 12 | 3adant3 1131 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
14 | 1, 4 | opoccl 39176 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
15 | 7, 14 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
16 | 15 | 3adant2 1130 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
17 | 1, 3 | latmcl 18498 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
18 | 10, 13, 16, 17 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
19 | 1, 4 | opococ 39177 | . . 3 ⊢ ((𝐾 ∈ OP ∧ (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
20 | 8, 18, 19 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
21 | 6, 20 | eqtr3d 2777 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 occoc 17306 joincjn 18369 meetcmee 18370 Latclat 18489 OPcops 39154 OLcol 39156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18352 df-poset 18371 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-lat 18490 df-oposet 39158 df-ol 39160 |
This theorem is referenced by: oldmj2 39204 oldmj3 39205 cmtbr2N 39235 omlfh1N 39240 omlfh3N 39241 cvrexch 39403 poldmj1N 39911 lhpmod2i2 40021 lhpmod6i1 40022 djajN 41120 |
Copyright terms: Public domain | W3C validator |