| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > latmmdiN | Structured version Visualization version GIF version | ||
| Description: Lattice meet distributes over itself. (inindi 4183 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| olmass.b | ⊢ 𝐵 = (Base‘𝐾) |
| olmass.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmmdiN | ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ (𝑌 ∧ 𝑍)) = ((𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ollat 39231 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) |
| 3 | simpr1 1195 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 4 | olmass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | olmass.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 6 | 4, 5 | latmidm 18372 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) |
| 7 | 2, 3, 6 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑋) = 𝑋) |
| 8 | 7 | oveq1d 7356 | . 2 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑋) ∧ (𝑌 ∧ 𝑍)) = (𝑋 ∧ (𝑌 ∧ 𝑍))) |
| 9 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ OL) | |
| 10 | simpr2 1196 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 11 | simpr3 1197 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 12 | 4, 5 | latm4 39251 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑋) ∧ (𝑌 ∧ 𝑍)) = ((𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑍))) |
| 13 | 9, 3, 3, 10, 11, 12 | syl122anc 1381 | . 2 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑋) ∧ (𝑌 ∧ 𝑍)) = ((𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑍))) |
| 14 | 8, 13 | eqtr3d 2767 | 1 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ (𝑌 ∧ 𝑍)) = ((𝑋 ∧ 𝑌) ∧ (𝑋 ∧ 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 meetcmee 18210 Latclat 18329 OLcol 39192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-proset 18192 df-poset 18211 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-lat 18330 df-oposet 39194 df-ol 39196 |
| This theorem is referenced by: omlfh1N 39276 |
| Copyright terms: Public domain | W3C validator |