Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > olm01 | Structured version Visualization version GIF version |
Description: Meet with lattice zero is zero. (chm0 29373 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
olm0.b | ⊢ 𝐵 = (Base‘𝐾) |
olm0.m | ⊢ ∧ = (meet‘𝐾) |
olm0.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
olm01 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olm0.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2758 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | ollat 36789 | . . 3 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
4 | 3 | adantr 484 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
5 | simpr 488 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | olop 36790 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
7 | 6 | adantr 484 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
8 | olm0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
9 | 1, 8 | op0cl 36760 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
11 | olm0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
12 | 1, 11 | latmcl 17728 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∧ 0 ) ∈ 𝐵) |
13 | 4, 5, 10, 12 | syl3anc 1368 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) ∈ 𝐵) |
14 | 1, 2, 11 | latmle2 17753 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∧ 0 )(le‘𝐾) 0 ) |
15 | 4, 5, 10, 14 | syl3anc 1368 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 )(le‘𝐾) 0 ) |
16 | 1, 2, 8 | op0le 36762 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
17 | 6, 16 | sylan 583 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
18 | 1, 2 | latref 17729 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 0 ∈ 𝐵) → 0 (le‘𝐾) 0 ) |
19 | 4, 10, 18 | syl2anc 587 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾) 0 ) |
20 | 1, 2, 11 | latlem12 17754 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵)) → (( 0 (le‘𝐾)𝑋 ∧ 0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 ∧ 0 ))) |
21 | 4, 10, 5, 10, 20 | syl13anc 1369 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (( 0 (le‘𝐾)𝑋 ∧ 0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 ∧ 0 ))) |
22 | 17, 19, 21 | mpbi2and 711 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)(𝑋 ∧ 0 )) |
23 | 1, 2, 4, 13, 10, 15, 22 | latasymd 17733 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 lecple 16630 meetcmee 17621 0.cp0 17713 Latclat 17721 OPcops 36748 OLcol 36750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-proset 17604 df-poset 17622 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-lat 17722 df-oposet 36752 df-ol 36754 |
This theorem is referenced by: olm02 36813 omlfh1N 36834 |
Copyright terms: Public domain | W3C validator |