| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olm01 | Structured version Visualization version GIF version | ||
| Description: Meet with lattice zero is zero. (chm0 31473 analog.) (Contributed by NM, 8-Nov-2011.) |
| Ref | Expression |
|---|---|
| olm0.b | ⊢ 𝐵 = (Base‘𝐾) |
| olm0.m | ⊢ ∧ = (meet‘𝐾) |
| olm0.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| olm01 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olm0.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2733 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | ollat 39332 | . . 3 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 5 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | olop 39333 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
| 8 | olm0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
| 9 | 1, 8 | op0cl 39303 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 11 | olm0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 12 | 1, 11 | latmcl 18348 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∧ 0 ) ∈ 𝐵) |
| 13 | 4, 5, 10, 12 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) ∈ 𝐵) |
| 14 | 1, 2, 11 | latmle2 18373 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∧ 0 )(le‘𝐾) 0 ) |
| 15 | 4, 5, 10, 14 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 )(le‘𝐾) 0 ) |
| 16 | 1, 2, 8 | op0le 39305 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 17 | 6, 16 | sylan 580 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 18 | 1, 2 | latref 18349 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 0 ∈ 𝐵) → 0 (le‘𝐾) 0 ) |
| 19 | 4, 10, 18 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾) 0 ) |
| 20 | 1, 2, 11 | latlem12 18374 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵)) → (( 0 (le‘𝐾)𝑋 ∧ 0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 ∧ 0 ))) |
| 21 | 4, 10, 5, 10, 20 | syl13anc 1374 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (( 0 (le‘𝐾)𝑋 ∧ 0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 ∧ 0 ))) |
| 22 | 17, 19, 21 | mpbi2and 712 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)(𝑋 ∧ 0 )) |
| 23 | 1, 2, 4, 13, 10, 15, 22 | latasymd 18353 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 lecple 17170 meetcmee 18220 0.cp0 18329 Latclat 18339 OPcops 39291 OLcol 39293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-proset 18202 df-poset 18221 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-lat 18340 df-oposet 39295 df-ol 39297 |
| This theorem is referenced by: olm02 39356 omlfh1N 39377 |
| Copyright terms: Public domain | W3C validator |