![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > olm01 | Structured version Visualization version GIF version |
Description: Meet with lattice zero is zero. (chm0 30732 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
olm0.b | ⊢ 𝐵 = (Base‘𝐾) |
olm0.m | ⊢ ∧ = (meet‘𝐾) |
olm0.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
olm01 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olm0.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2733 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | ollat 38072 | . . 3 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
4 | 3 | adantr 482 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
5 | simpr 486 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | olop 38073 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
7 | 6 | adantr 482 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
8 | olm0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
9 | 1, 8 | op0cl 38043 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
11 | olm0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
12 | 1, 11 | latmcl 18390 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∧ 0 ) ∈ 𝐵) |
13 | 4, 5, 10, 12 | syl3anc 1372 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) ∈ 𝐵) |
14 | 1, 2, 11 | latmle2 18415 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∧ 0 )(le‘𝐾) 0 ) |
15 | 4, 5, 10, 14 | syl3anc 1372 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 )(le‘𝐾) 0 ) |
16 | 1, 2, 8 | op0le 38045 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
17 | 6, 16 | sylan 581 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
18 | 1, 2 | latref 18391 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 0 ∈ 𝐵) → 0 (le‘𝐾) 0 ) |
19 | 4, 10, 18 | syl2anc 585 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾) 0 ) |
20 | 1, 2, 11 | latlem12 18416 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵)) → (( 0 (le‘𝐾)𝑋 ∧ 0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 ∧ 0 ))) |
21 | 4, 10, 5, 10, 20 | syl13anc 1373 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (( 0 (le‘𝐾)𝑋 ∧ 0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 ∧ 0 ))) |
22 | 17, 19, 21 | mpbi2and 711 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)(𝑋 ∧ 0 )) |
23 | 1, 2, 4, 13, 10, 15, 22 | latasymd 18395 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5148 ‘cfv 6541 (class class class)co 7406 Basecbs 17141 lecple 17201 meetcmee 18262 0.cp0 18373 Latclat 18381 OPcops 38031 OLcol 38033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-proset 18245 df-poset 18263 df-lub 18296 df-glb 18297 df-join 18298 df-meet 18299 df-p0 18375 df-lat 18382 df-oposet 38035 df-ol 38037 |
This theorem is referenced by: olm02 38096 omlfh1N 38117 |
Copyright terms: Public domain | W3C validator |