Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm01 Structured version   Visualization version   GIF version

Theorem olm01 37177
Description: Meet with lattice zero is zero. (chm0 29754 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
olm0.b 𝐵 = (Base‘𝐾)
olm0.m = (meet‘𝐾)
olm0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
olm01 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 0 )

Proof of Theorem olm01
StepHypRef Expression
1 olm0.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2738 . 2 (le‘𝐾) = (le‘𝐾)
3 ollat 37154 . . 3 (𝐾 ∈ OL → 𝐾 ∈ Lat)
43adantr 480 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
5 simpr 484 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋𝐵)
6 olop 37155 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
76adantr 480 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
8 olm0.z . . . . 5 0 = (0.‘𝐾)
91, 8op0cl 37125 . . . 4 (𝐾 ∈ OP → 0𝐵)
107, 9syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0𝐵)
11 olm0.m . . . 4 = (meet‘𝐾)
121, 11latmcl 18073 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) ∈ 𝐵)
134, 5, 10, 12syl3anc 1369 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) ∈ 𝐵)
141, 2, 11latmle2 18098 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → (𝑋 0 )(le‘𝐾) 0 )
154, 5, 10, 14syl3anc 1369 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 )(le‘𝐾) 0 )
161, 2, 8op0le 37127 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
176, 16sylan 579 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
181, 2latref 18074 . . . 4 ((𝐾 ∈ Lat ∧ 0𝐵) → 0 (le‘𝐾) 0 )
194, 10, 18syl2anc 583 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0 (le‘𝐾) 0 )
201, 2, 11latlem12 18099 . . . 4 ((𝐾 ∈ Lat ∧ ( 0𝐵𝑋𝐵0𝐵)) → (( 0 (le‘𝐾)𝑋0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 0 )))
214, 10, 5, 10, 20syl13anc 1370 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (( 0 (le‘𝐾)𝑋0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 0 )))
2217, 19, 21mpbi2and 708 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0 (le‘𝐾)(𝑋 0 ))
231, 2, 4, 13, 10, 15, 22latasymd 18078 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  meetcmee 17945  0.cp0 18056  Latclat 18064  OPcops 37113  OLcol 37115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-oposet 37117  df-ol 37119
This theorem is referenced by:  olm02  37178  omlfh1N  37199
  Copyright terms: Public domain W3C validator