Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm01 Structured version   Visualization version   GIF version

Theorem olm01 36812
 Description: Meet with lattice zero is zero. (chm0 29373 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
olm0.b 𝐵 = (Base‘𝐾)
olm0.m = (meet‘𝐾)
olm0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
olm01 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 0 )

Proof of Theorem olm01
StepHypRef Expression
1 olm0.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2758 . 2 (le‘𝐾) = (le‘𝐾)
3 ollat 36789 . . 3 (𝐾 ∈ OL → 𝐾 ∈ Lat)
43adantr 484 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
5 simpr 488 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋𝐵)
6 olop 36790 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
76adantr 484 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
8 olm0.z . . . . 5 0 = (0.‘𝐾)
91, 8op0cl 36760 . . . 4 (𝐾 ∈ OP → 0𝐵)
107, 9syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0𝐵)
11 olm0.m . . . 4 = (meet‘𝐾)
121, 11latmcl 17728 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) ∈ 𝐵)
134, 5, 10, 12syl3anc 1368 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) ∈ 𝐵)
141, 2, 11latmle2 17753 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → (𝑋 0 )(le‘𝐾) 0 )
154, 5, 10, 14syl3anc 1368 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 )(le‘𝐾) 0 )
161, 2, 8op0le 36762 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
176, 16sylan 583 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
181, 2latref 17729 . . . 4 ((𝐾 ∈ Lat ∧ 0𝐵) → 0 (le‘𝐾) 0 )
194, 10, 18syl2anc 587 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0 (le‘𝐾) 0 )
201, 2, 11latlem12 17754 . . . 4 ((𝐾 ∈ Lat ∧ ( 0𝐵𝑋𝐵0𝐵)) → (( 0 (le‘𝐾)𝑋0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 0 )))
214, 10, 5, 10, 20syl13anc 1369 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (( 0 (le‘𝐾)𝑋0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 0 )))
2217, 19, 21mpbi2and 711 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0 (le‘𝐾)(𝑋 0 ))
231, 2, 4, 13, 10, 15, 22latasymd 17733 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150  Basecbs 16541  lecple 16630  meetcmee 17621  0.cp0 17713  Latclat 17721  OPcops 36748  OLcol 36750 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17604  df-poset 17622  df-lub 17650  df-glb 17651  df-join 17652  df-meet 17653  df-p0 17715  df-lat 17722  df-oposet 36752  df-ol 36754 This theorem is referenced by:  olm02  36813  omlfh1N  36834
 Copyright terms: Public domain W3C validator