Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  latm12 Structured version   Visualization version   GIF version

Theorem latm12 39277
Description: A rearrangement of lattice meet. (in12 4176 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
olmass.b 𝐵 = (Base‘𝐾)
olmass.m = (meet‘𝐾)
Assertion
Ref Expression
latm12 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑌 (𝑋 𝑍)))

Proof of Theorem latm12
StepHypRef Expression
1 ollat 39260 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ Lat)
21adantr 480 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
3 simpr1 1195 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
4 simpr2 1196 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
5 olmass.b . . . . 5 𝐵 = (Base‘𝐾)
6 olmass.m . . . . 5 = (meet‘𝐾)
75, 6latmcom 18369 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
82, 3, 4, 7syl3anc 1373 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) = (𝑌 𝑋))
98oveq1d 7361 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = ((𝑌 𝑋) 𝑍))
105, 6latmassOLD 39276 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
11 simpr3 1197 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
124, 3, 113jca 1128 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌𝐵𝑋𝐵𝑍𝐵))
135, 6latmassOLD 39276 . . 3 ((𝐾 ∈ OL ∧ (𝑌𝐵𝑋𝐵𝑍𝐵)) → ((𝑌 𝑋) 𝑍) = (𝑌 (𝑋 𝑍)))
1412, 13syldan 591 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑋) 𝑍) = (𝑌 (𝑋 𝑍)))
159, 10, 143eqtr3d 2774 1 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑌 (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  meetcmee 18218  Latclat 18337  OLcol 39221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-lat 18338  df-oposet 39223  df-ol 39225
This theorem is referenced by:  latm4  39280  omlfh1N  39305  dalawlem6  39923
  Copyright terms: Public domain W3C validator