Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > latm12 | Structured version Visualization version GIF version |
Description: A rearrangement of lattice meet. (in12 4121 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
olmass.b | ⊢ 𝐵 = (Base‘𝐾) |
olmass.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latm12 | ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ (𝑌 ∧ 𝑍)) = (𝑌 ∧ (𝑋 ∧ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ollat 36882 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 484 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) |
3 | simpr1 1195 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
4 | simpr2 1196 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
5 | olmass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | olmass.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
7 | 5, 6 | latmcom 17813 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
8 | 2, 3, 4, 7 | syl3anc 1372 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
9 | 8 | oveq1d 7197 | . 2 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = ((𝑌 ∧ 𝑋) ∧ 𝑍)) |
10 | 5, 6 | latmassOLD 36898 | . 2 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = (𝑋 ∧ (𝑌 ∧ 𝑍))) |
11 | simpr3 1197 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
12 | 4, 3, 11 | 3jca 1129 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) |
13 | 5, 6 | latmassOLD 36898 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 ∧ 𝑋) ∧ 𝑍) = (𝑌 ∧ (𝑋 ∧ 𝑍))) |
14 | 12, 13 | syldan 594 | . 2 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 ∧ 𝑋) ∧ 𝑍) = (𝑌 ∧ (𝑋 ∧ 𝑍))) |
15 | 9, 10, 14 | 3eqtr3d 2782 | 1 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ (𝑌 ∧ 𝑍)) = (𝑌 ∧ (𝑋 ∧ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ‘cfv 6349 (class class class)co 7182 Basecbs 16598 meetcmee 17683 Latclat 17783 OLcol 36843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-proset 17666 df-poset 17684 df-lub 17712 df-glb 17713 df-join 17714 df-meet 17715 df-lat 17784 df-oposet 36845 df-ol 36847 |
This theorem is referenced by: latm4 36902 omlfh1N 36927 dalawlem6 37545 |
Copyright terms: Public domain | W3C validator |