Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > olm12 | Structured version Visualization version GIF version |
Description: The meet of an ortholattice element with one equals itself. (Contributed by NM, 22-May-2012.) |
Ref | Expression |
---|---|
olm1.b | ⊢ 𝐵 = (Base‘𝐾) |
olm1.m | ⊢ ∧ = (meet‘𝐾) |
olm1.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
olm12 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 1 ∧ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ollat 37227 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
3 | olop 37228 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
5 | olm1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | olm1.u | . . . . 5 ⊢ 1 = (1.‘𝐾) | |
7 | 5, 6 | op1cl 37199 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) |
8 | 4, 7 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 1 ∈ 𝐵) |
9 | simpr 485 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | olm1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
11 | 5, 10 | latmcom 18181 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 1 ∧ 𝑋) = (𝑋 ∧ 1 )) |
12 | 2, 8, 9, 11 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 1 ∧ 𝑋) = (𝑋 ∧ 1 )) |
13 | 5, 10, 6 | olm11 37241 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 1 ) = 𝑋) |
14 | 12, 13 | eqtrd 2778 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 1 ∧ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 meetcmee 18030 1.cp1 18142 Latclat 18149 OPcops 37186 OLcol 37188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-oposet 37190 df-ol 37192 |
This theorem is referenced by: dih1 39300 dihjatc 39431 |
Copyright terms: Public domain | W3C validator |