Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm12 Structured version   Visualization version   GIF version

Theorem olm12 39210
Description: The meet of an ortholattice element with one equals itself. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
olm1.b 𝐵 = (Base‘𝐾)
olm1.m = (meet‘𝐾)
olm1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
olm12 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 1 𝑋) = 𝑋)

Proof of Theorem olm12
StepHypRef Expression
1 ollat 39195 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ Lat)
21adantr 480 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
3 olop 39196 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
43adantr 480 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
5 olm1.b . . . . 5 𝐵 = (Base‘𝐾)
6 olm1.u . . . . 5 1 = (1.‘𝐾)
75, 6op1cl 39167 . . . 4 (𝐾 ∈ OP → 1𝐵)
84, 7syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 1𝐵)
9 simpr 484 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋𝐵)
10 olm1.m . . . 4 = (meet‘𝐾)
115, 10latmcom 18521 . . 3 ((𝐾 ∈ Lat ∧ 1𝐵𝑋𝐵) → ( 1 𝑋) = (𝑋 1 ))
122, 8, 9, 11syl3anc 1370 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 1 𝑋) = (𝑋 1 ))
135, 10, 6olm11 39209 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)
1412, 13eqtrd 2775 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 1 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  meetcmee 18370  1.cp1 18482  Latclat 18489  OPcops 39154  OLcol 39156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-oposet 39158  df-ol 39160
This theorem is referenced by:  dih1  41269  dihjatc  41400
  Copyright terms: Public domain W3C validator