Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm12 Structured version   Visualization version   GIF version

Theorem olm12 39228
Description: The meet of an ortholattice element with one equals itself. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
olm1.b 𝐵 = (Base‘𝐾)
olm1.m = (meet‘𝐾)
olm1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
olm12 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 1 𝑋) = 𝑋)

Proof of Theorem olm12
StepHypRef Expression
1 ollat 39213 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ Lat)
21adantr 480 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
3 olop 39214 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
43adantr 480 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
5 olm1.b . . . . 5 𝐵 = (Base‘𝐾)
6 olm1.u . . . . 5 1 = (1.‘𝐾)
75, 6op1cl 39185 . . . 4 (𝐾 ∈ OP → 1𝐵)
84, 7syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 1𝐵)
9 simpr 484 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋𝐵)
10 olm1.m . . . 4 = (meet‘𝐾)
115, 10latmcom 18429 . . 3 ((𝐾 ∈ Lat ∧ 1𝐵𝑋𝐵) → ( 1 𝑋) = (𝑋 1 ))
122, 8, 9, 11syl3anc 1373 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 1 𝑋) = (𝑋 1 ))
135, 10, 6olm11 39227 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 1 ) = 𝑋)
1412, 13eqtrd 2765 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 1 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  meetcmee 18280  1.cp1 18390  Latclat 18397  OPcops 39172  OLcol 39174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-oposet 39176  df-ol 39178
This theorem is referenced by:  dih1  41287  dihjatc  41418
  Copyright terms: Public domain W3C validator