|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meetat | Structured version Visualization version GIF version | ||
| Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012.) | 
| Ref | Expression | 
|---|---|
| m.b | ⊢ 𝐵 = (Base‘𝐾) | 
| m.m | ⊢ ∧ = (meet‘𝐾) | 
| m.z | ⊢ 0 = (0.‘𝐾) | 
| m.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| Ref | Expression | 
|---|---|
| meetat | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 𝑃 ∨ (𝑋 ∧ 𝑃) = 0 )) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ollat 39214 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 2 | 1 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Lat) | 
| 3 | simp2 1138 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 4 | simp3 1139 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 5 | m.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | m.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 5, 6 | atbase 39290 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | 
| 8 | 4, 7 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐵) | 
| 9 | eqid 2737 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 10 | m.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 11 | 5, 9, 10 | latmle2 18510 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → (𝑋 ∧ 𝑃)(le‘𝐾)𝑃) | 
| 12 | 2, 3, 8, 11 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ∧ 𝑃)(le‘𝐾)𝑃) | 
| 13 | olop 39215 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 14 | 13 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ OP) | 
| 15 | 5, 10 | latmcl 18485 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → (𝑋 ∧ 𝑃) ∈ 𝐵) | 
| 16 | 2, 3, 8, 15 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ∧ 𝑃) ∈ 𝐵) | 
| 17 | m.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 18 | 5, 9, 17, 6 | leatb 39293 | . . 3 ⊢ ((𝐾 ∈ OP ∧ (𝑋 ∧ 𝑃) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃)(le‘𝐾)𝑃 ↔ ((𝑋 ∧ 𝑃) = 𝑃 ∨ (𝑋 ∧ 𝑃) = 0 ))) | 
| 19 | 14, 16, 4, 18 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃)(le‘𝐾)𝑃 ↔ ((𝑋 ∧ 𝑃) = 𝑃 ∨ (𝑋 ∧ 𝑃) = 0 ))) | 
| 20 | 12, 19 | mpbid 232 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 𝑃 ∨ (𝑋 ∧ 𝑃) = 0 )) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 lecple 17304 meetcmee 18358 0.cp0 18468 Latclat 18476 OPcops 39173 OLcol 39175 Atomscatm 39264 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-lat 18477 df-oposet 39177 df-ol 39179 df-covers 39267 df-ats 39268 | 
| This theorem is referenced by: meetat2 39298 | 
| Copyright terms: Public domain | W3C validator |