Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > olj02 | Structured version Visualization version GIF version |
Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012.) |
Ref | Expression |
---|---|
olj0.b | ⊢ 𝐵 = (Base‘𝐾) |
olj0.j | ⊢ ∨ = (join‘𝐾) |
olj0.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
olj02 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ollat 37154 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
3 | olop 37155 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
4 | olj0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | olj0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
6 | 4, 5 | op0cl 37125 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝐾 ∈ OL → 0 ∈ 𝐵) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
9 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | olj0.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
11 | 4, 10 | latjcom 18080 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = (𝑋 ∨ 0 )) |
12 | 2, 8, 9, 11 | syl3anc 1369 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = (𝑋 ∨ 0 )) |
13 | 4, 10, 5 | olj01 37166 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
14 | 12, 13 | eqtrd 2778 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 joincjn 17944 0.cp0 18056 Latclat 18064 OPcops 37113 OLcol 37115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-lat 18065 df-oposet 37117 df-ol 37119 |
This theorem is referenced by: atle 37377 athgt 37397 pmapjat1 37794 atmod1i1m 37799 llnexchb2lem 37809 lhp2at0 37973 lhpelim 37978 4atex2-0aOLDN 38019 cdleme2 38169 cdleme15b 38216 cdleme22cN 38283 cdleme22d 38284 cdleme35d 38393 cdlemeg46frv 38466 cdlemg2fv2 38541 cdlemg2m 38545 cdlemg10bALTN 38577 cdlemh2 38757 cdlemh 38758 cdlemk9 38780 cdlemk9bN 38781 dia2dimlem1 39005 |
Copyright terms: Public domain | W3C validator |