Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olj02 Structured version   Visualization version   GIF version

Theorem olj02 39205
Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012.)
Hypotheses
Ref Expression
olj0.b 𝐵 = (Base‘𝐾)
olj0.j = (join‘𝐾)
olj0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
olj02 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = 𝑋)

Proof of Theorem olj02
StepHypRef Expression
1 ollat 39192 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ Lat)
21adantr 480 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
3 olop 39193 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
4 olj0.b . . . . . 6 𝐵 = (Base‘𝐾)
5 olj0.z . . . . . 6 0 = (0.‘𝐾)
64, 5op0cl 39163 . . . . 5 (𝐾 ∈ OP → 0𝐵)
73, 6syl 17 . . . 4 (𝐾 ∈ OL → 0𝐵)
87adantr 480 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0𝐵)
9 simpr 484 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋𝐵)
10 olj0.j . . . 4 = (join‘𝐾)
114, 10latjcom 18353 . . 3 ((𝐾 ∈ Lat ∧ 0𝐵𝑋𝐵) → ( 0 𝑋) = (𝑋 0 ))
122, 8, 9, 11syl3anc 1373 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = (𝑋 0 ))
134, 10, 5olj01 39204 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)
1412, 13eqtrd 2764 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Basecbs 17120  joincjn 18217  0.cp0 18327  Latclat 18337  OPcops 39151  OLcol 39153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-oposet 39155  df-ol 39157
This theorem is referenced by:  atle  39415  athgt  39435  pmapjat1  39832  atmod1i1m  39837  llnexchb2lem  39847  lhp2at0  40011  lhpelim  40016  4atex2-0aOLDN  40057  cdleme2  40207  cdleme15b  40254  cdleme22cN  40321  cdleme22d  40322  cdleme35d  40431  cdlemeg46frv  40504  cdlemg2fv2  40579  cdlemg2m  40583  cdlemg10bALTN  40615  cdlemh2  40795  cdlemh  40796  cdlemk9  40818  cdlemk9bN  40819  dia2dimlem1  41043
  Copyright terms: Public domain W3C validator