| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olj02 | Structured version Visualization version GIF version | ||
| Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012.) |
| Ref | Expression |
|---|---|
| olj0.b | ⊢ 𝐵 = (Base‘𝐾) |
| olj0.j | ⊢ ∨ = (join‘𝐾) |
| olj0.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| olj02 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ollat 39236 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 3 | olop 39237 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 4 | olj0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | olj0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
| 6 | 4, 5 | op0cl 39207 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝐾 ∈ OL → 0 ∈ 𝐵) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 9 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 10 | olj0.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 11 | 4, 10 | latjcom 18462 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = (𝑋 ∨ 0 )) |
| 12 | 2, 8, 9, 11 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = (𝑋 ∨ 0 )) |
| 13 | 4, 10, 5 | olj01 39248 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| 14 | 12, 13 | eqtrd 2771 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 joincjn 18328 0.cp0 18438 Latclat 18446 OPcops 39195 OLcol 39197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-proset 18311 df-poset 18330 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-lat 18447 df-oposet 39199 df-ol 39201 |
| This theorem is referenced by: atle 39460 athgt 39480 pmapjat1 39877 atmod1i1m 39882 llnexchb2lem 39892 lhp2at0 40056 lhpelim 40061 4atex2-0aOLDN 40102 cdleme2 40252 cdleme15b 40299 cdleme22cN 40366 cdleme22d 40367 cdleme35d 40476 cdlemeg46frv 40549 cdlemg2fv2 40624 cdlemg2m 40628 cdlemg10bALTN 40660 cdlemh2 40840 cdlemh 40841 cdlemk9 40863 cdlemk9bN 40864 dia2dimlem1 41088 |
| Copyright terms: Public domain | W3C validator |