| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olj02 | Structured version Visualization version GIF version | ||
| Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012.) |
| Ref | Expression |
|---|---|
| olj0.b | ⊢ 𝐵 = (Base‘𝐾) |
| olj0.j | ⊢ ∨ = (join‘𝐾) |
| olj0.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| olj02 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ollat 39260 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 3 | olop 39261 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 4 | olj0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | olj0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
| 6 | 4, 5 | op0cl 39231 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝐾 ∈ OL → 0 ∈ 𝐵) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 9 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 10 | olj0.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 11 | 4, 10 | latjcom 18353 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = (𝑋 ∨ 0 )) |
| 12 | 2, 8, 9, 11 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = (𝑋 ∨ 0 )) |
| 13 | 4, 10, 5 | olj01 39272 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| 14 | 12, 13 | eqtrd 2766 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 joincjn 18217 0.cp0 18327 Latclat 18337 OPcops 39219 OLcol 39221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-oposet 39223 df-ol 39225 |
| This theorem is referenced by: atle 39483 athgt 39503 pmapjat1 39900 atmod1i1m 39905 llnexchb2lem 39915 lhp2at0 40079 lhpelim 40084 4atex2-0aOLDN 40125 cdleme2 40275 cdleme15b 40322 cdleme22cN 40389 cdleme22d 40390 cdleme35d 40499 cdlemeg46frv 40572 cdlemg2fv2 40647 cdlemg2m 40651 cdlemg10bALTN 40683 cdlemh2 40863 cdlemh 40864 cdlemk9 40886 cdlemk9bN 40887 dia2dimlem1 41111 |
| Copyright terms: Public domain | W3C validator |