Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olj02 Structured version   Visualization version   GIF version

Theorem olj02 39249
Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012.)
Hypotheses
Ref Expression
olj0.b 𝐵 = (Base‘𝐾)
olj0.j = (join‘𝐾)
olj0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
olj02 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = 𝑋)

Proof of Theorem olj02
StepHypRef Expression
1 ollat 39236 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ Lat)
21adantr 480 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
3 olop 39237 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
4 olj0.b . . . . . 6 𝐵 = (Base‘𝐾)
5 olj0.z . . . . . 6 0 = (0.‘𝐾)
64, 5op0cl 39207 . . . . 5 (𝐾 ∈ OP → 0𝐵)
73, 6syl 17 . . . 4 (𝐾 ∈ OL → 0𝐵)
87adantr 480 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0𝐵)
9 simpr 484 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋𝐵)
10 olj0.j . . . 4 = (join‘𝐾)
114, 10latjcom 18462 . . 3 ((𝐾 ∈ Lat ∧ 0𝐵𝑋𝐵) → ( 0 𝑋) = (𝑋 0 ))
122, 8, 9, 11syl3anc 1373 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = (𝑋 0 ))
134, 10, 5olj01 39248 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)
1412, 13eqtrd 2771 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  joincjn 18328  0.cp0 18438  Latclat 18446  OPcops 39195  OLcol 39197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-lat 18447  df-oposet 39199  df-ol 39201
This theorem is referenced by:  atle  39460  athgt  39480  pmapjat1  39877  atmod1i1m  39882  llnexchb2lem  39892  lhp2at0  40056  lhpelim  40061  4atex2-0aOLDN  40102  cdleme2  40252  cdleme15b  40299  cdleme22cN  40366  cdleme22d  40367  cdleme35d  40476  cdlemeg46frv  40549  cdlemg2fv2  40624  cdlemg2m  40628  cdlemg10bALTN  40660  cdlemh2  40840  cdlemh  40841  cdlemk9  40863  cdlemk9bN  40864  dia2dimlem1  41088
  Copyright terms: Public domain W3C validator