![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > olj02 | Structured version Visualization version GIF version |
Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012.) |
Ref | Expression |
---|---|
olj0.b | ⊢ 𝐵 = (Base‘𝐾) |
olj0.j | ⊢ ∨ = (join‘𝐾) |
olj0.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
olj02 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ollat 39169 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
3 | olop 39170 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
4 | olj0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | olj0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
6 | 4, 5 | op0cl 39140 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝐾 ∈ OL → 0 ∈ 𝐵) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
9 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | olj0.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
11 | 4, 10 | latjcom 18517 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = (𝑋 ∨ 0 )) |
12 | 2, 8, 9, 11 | syl3anc 1371 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = (𝑋 ∨ 0 )) |
13 | 4, 10, 5 | olj01 39181 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
14 | 12, 13 | eqtrd 2780 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∨ 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 joincjn 18381 0.cp0 18493 Latclat 18501 OPcops 39128 OLcol 39130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-lat 18502 df-oposet 39132 df-ol 39134 |
This theorem is referenced by: atle 39393 athgt 39413 pmapjat1 39810 atmod1i1m 39815 llnexchb2lem 39825 lhp2at0 39989 lhpelim 39994 4atex2-0aOLDN 40035 cdleme2 40185 cdleme15b 40232 cdleme22cN 40299 cdleme22d 40300 cdleme35d 40409 cdlemeg46frv 40482 cdlemg2fv2 40557 cdlemg2m 40561 cdlemg10bALTN 40593 cdlemh2 40773 cdlemh 40774 cdlemk9 40796 cdlemk9bN 40797 dia2dimlem1 41021 |
Copyright terms: Public domain | W3C validator |