| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > latmmdir | Structured version Visualization version GIF version | ||
| Description: Lattice meet distributes over itself. (inindir 4201 analog.) (Contributed by NM, 6-Jun-2012.) |
| Ref | Expression |
|---|---|
| olmass.b | ⊢ 𝐵 = (Base‘𝐾) |
| olmass.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latmmdir | ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = ((𝑋 ∧ 𝑍) ∧ (𝑌 ∧ 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ollat 39201 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) |
| 3 | simpr3 1197 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 4 | olmass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | olmass.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 6 | 4, 5 | latmidm 18439 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵) → (𝑍 ∧ 𝑍) = 𝑍) |
| 7 | 2, 3, 6 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 ∧ 𝑍) = 𝑍) |
| 8 | 7 | oveq2d 7405 | . 2 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ (𝑍 ∧ 𝑍)) = ((𝑋 ∧ 𝑌) ∧ 𝑍)) |
| 9 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ OL) | |
| 10 | simpr1 1195 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 11 | simpr2 1196 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 12 | 4, 5 | latm4 39221 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ (𝑍 ∧ 𝑍)) = ((𝑋 ∧ 𝑍) ∧ (𝑌 ∧ 𝑍))) |
| 13 | 9, 10, 11, 3, 3, 12 | syl122anc 1381 | . 2 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ (𝑍 ∧ 𝑍)) = ((𝑋 ∧ 𝑍) ∧ (𝑌 ∧ 𝑍))) |
| 14 | 8, 13 | eqtr3d 2767 | 1 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = ((𝑋 ∧ 𝑍) ∧ (𝑌 ∧ 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 meetcmee 18279 Latclat 18396 OLcol 39162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-proset 18261 df-poset 18280 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-lat 18397 df-oposet 39164 df-ol 39166 |
| This theorem is referenced by: dalem24 39686 cdleme0e 40206 cdleme7c 40234 djajN 41126 |
| Copyright terms: Public domain | W3C validator |