Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm02 Structured version   Visualization version   GIF version

Theorem olm02 35312
Description: Meet with lattice zero is zero. (Contributed by NM, 9-Oct-2012.)
Hypotheses
Ref Expression
olm0.b 𝐵 = (Base‘𝐾)
olm0.m = (meet‘𝐾)
olm0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
olm02 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = 0 )

Proof of Theorem olm02
StepHypRef Expression
1 ollat 35288 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ Lat)
21adantr 474 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
3 simpr 479 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋𝐵)
4 olop 35289 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
54adantr 474 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
6 olm0.b . . . . 5 𝐵 = (Base‘𝐾)
7 olm0.z . . . . 5 0 = (0.‘𝐾)
86, 7op0cl 35259 . . . 4 (𝐾 ∈ OP → 0𝐵)
95, 8syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0𝐵)
10 olm0.m . . . 4 = (meet‘𝐾)
116, 10latmcom 17428 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) = ( 0 𝑋))
122, 3, 9, 11syl3anc 1496 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = ( 0 𝑋))
136, 10, 7olm01 35311 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 0 )
1412, 13eqtr3d 2863 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  cfv 6123  (class class class)co 6905  Basecbs 16222  meetcmee 17298  0.cp0 17390  Latclat 17398  OPcops 35247  OLcol 35249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-proset 17281  df-poset 17299  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-p0 17392  df-lat 17399  df-oposet 35251  df-ol 35253
This theorem is referenced by:  cdleme15b  36350
  Copyright terms: Public domain W3C validator