Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm02 Structured version   Visualization version   GIF version

Theorem olm02 37230
Description: Meet with lattice zero is zero. (Contributed by NM, 9-Oct-2012.)
Hypotheses
Ref Expression
olm0.b 𝐵 = (Base‘𝐾)
olm0.m = (meet‘𝐾)
olm0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
olm02 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = 0 )

Proof of Theorem olm02
StepHypRef Expression
1 ollat 37206 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ Lat)
21adantr 480 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
3 simpr 484 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋𝐵)
4 olop 37207 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
54adantr 480 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
6 olm0.b . . . . 5 𝐵 = (Base‘𝐾)
7 olm0.z . . . . 5 0 = (0.‘𝐾)
86, 7op0cl 37177 . . . 4 (𝐾 ∈ OP → 0𝐵)
95, 8syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0𝐵)
10 olm0.m . . . 4 = (meet‘𝐾)
116, 10latmcom 18162 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) = ( 0 𝑋))
122, 3, 9, 11syl3anc 1369 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = ( 0 𝑋))
136, 10, 7olm01 37229 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 0 )
1412, 13eqtr3d 2781 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  Basecbs 16893  meetcmee 18011  0.cp0 18122  Latclat 18130  OPcops 37165  OLcol 37167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-proset 17994  df-poset 18012  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-lat 18131  df-oposet 37169  df-ol 37171
This theorem is referenced by:  cdleme15b  38268
  Copyright terms: Public domain W3C validator