Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm02 Structured version   Visualization version   GIF version

Theorem olm02 39356
Description: Meet with lattice zero is zero. (Contributed by NM, 9-Oct-2012.)
Hypotheses
Ref Expression
olm0.b 𝐵 = (Base‘𝐾)
olm0.m = (meet‘𝐾)
olm0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
olm02 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = 0 )

Proof of Theorem olm02
StepHypRef Expression
1 ollat 39332 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ Lat)
21adantr 480 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
3 simpr 484 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋𝐵)
4 olop 39333 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
54adantr 480 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝐾 ∈ OP)
6 olm0.b . . . . 5 𝐵 = (Base‘𝐾)
7 olm0.z . . . . 5 0 = (0.‘𝐾)
86, 7op0cl 39303 . . . 4 (𝐾 ∈ OP → 0𝐵)
95, 8syl 17 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0𝐵)
10 olm0.m . . . 4 = (meet‘𝐾)
116, 10latmcom 18371 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) = ( 0 𝑋))
122, 3, 9, 11syl3anc 1373 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = ( 0 𝑋))
136, 10, 7olm01 39355 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 0 )
1412, 13eqtr3d 2770 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → ( 0 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  meetcmee 18220  0.cp0 18329  Latclat 18339  OPcops 39291  OLcol 39293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-proset 18202  df-poset 18221  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-lat 18340  df-oposet 39295  df-ol 39297
This theorem is referenced by:  cdleme15b  40394
  Copyright terms: Public domain W3C validator