![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > olm02 | Structured version Visualization version GIF version |
Description: Meet with lattice zero is zero. (Contributed by NM, 9-Oct-2012.) |
Ref | Expression |
---|---|
olm0.b | ⊢ 𝐵 = (Base‘𝐾) |
olm0.m | ⊢ ∧ = (meet‘𝐾) |
olm0.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
olm02 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∧ 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ollat 39194 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
3 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
4 | olop 39195 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
6 | olm0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
7 | olm0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
8 | 6, 7 | op0cl 39165 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
9 | 5, 8 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
10 | olm0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
11 | 6, 10 | latmcom 18520 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∧ 0 ) = ( 0 ∧ 𝑋)) |
12 | 2, 3, 9, 11 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = ( 0 ∧ 𝑋)) |
13 | 6, 10, 7 | olm01 39217 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) |
14 | 12, 13 | eqtr3d 2776 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∧ 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 meetcmee 18369 0.cp0 18480 Latclat 18488 OPcops 39153 OLcol 39155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-proset 18351 df-poset 18370 df-lub 18403 df-glb 18404 df-join 18405 df-meet 18406 df-p0 18482 df-lat 18489 df-oposet 39157 df-ol 39159 |
This theorem is referenced by: cdleme15b 40257 |
Copyright terms: Public domain | W3C validator |