| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olj01 | Structured version Visualization version GIF version | ||
| Description: An ortholattice element joined with zero equals itself. (chj0 31463 analog.) (Contributed by NM, 19-Oct-2011.) |
| Ref | Expression |
|---|---|
| olj0.b | ⊢ 𝐵 = (Base‘𝐾) |
| olj0.j | ⊢ ∨ = (join‘𝐾) |
| olj0.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| olj01 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olop 39156 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 2 | olj0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | olj0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
| 4 | 2, 3 | op0cl 39126 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝐾 ∈ OL → 0 ∈ 𝐵) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 7 | eqid 2734 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | ollat 39155 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 9 | 8 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 10 | olj0.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 11 | 2, 10 | latjcl 18458 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) ∈ 𝐵) |
| 12 | 8, 11 | syl3an1 1163 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) ∈ 𝐵) |
| 13 | simp2 1137 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 14 | 2, 7 | latref 18460 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 15 | 8, 14 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 16 | 15 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 17 | 2, 7, 3 | op0le 39128 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 18 | 1, 17 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 19 | 18 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 20 | simp3 1138 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 0 ∈ 𝐵) | |
| 21 | 2, 7, 10 | latjle12 18469 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 0 (le‘𝐾)𝑋) ↔ (𝑋 ∨ 0 )(le‘𝐾)𝑋)) |
| 22 | 9, 13, 20, 13, 21 | syl13anc 1373 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 0 (le‘𝐾)𝑋) ↔ (𝑋 ∨ 0 )(le‘𝐾)𝑋)) |
| 23 | 16, 19, 22 | mpbi2and 712 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 )(le‘𝐾)𝑋) |
| 24 | 2, 7, 10 | latlej1 18467 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 0 )) |
| 25 | 8, 24 | syl3an1 1163 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 0 )) |
| 26 | 2, 7, 9, 12, 13, 23, 25 | latasymd 18464 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| 27 | 6, 26 | mpd3an3 1463 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 lecple 17284 joincjn 18332 0.cp0 18442 Latclat 18450 OPcops 39114 OLcol 39116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-proset 18315 df-poset 18334 df-lub 18365 df-glb 18366 df-join 18367 df-meet 18368 df-p0 18444 df-lat 18451 df-oposet 39118 df-ol 39120 |
| This theorem is referenced by: olj02 39168 olm11 39169 omllaw3 39187 omlspjN 39203 2at0mat0 39468 lhp2at0nle 39978 lhple 39985 cdlemc6 40139 cdleme3c 40173 cdleme7e 40190 cdlemednpq 40242 cdlemefrs29pre00 40338 cdlemefrs29bpre0 40339 cdlemefrs29cpre1 40341 cdleme32fva 40380 cdleme42ke 40428 cdlemg12e 40590 cdlemg31d 40643 trljco 40683 cdlemkid2 40867 dihvalcqat 41182 dihmeetlem7N 41253 dihjatc1 41254 djh01 41355 |
| Copyright terms: Public domain | W3C validator |