| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olj01 | Structured version Visualization version GIF version | ||
| Description: An ortholattice element joined with zero equals itself. (chj0 31498 analog.) (Contributed by NM, 19-Oct-2011.) |
| Ref | Expression |
|---|---|
| olj0.b | ⊢ 𝐵 = (Base‘𝐾) |
| olj0.j | ⊢ ∨ = (join‘𝐾) |
| olj0.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| olj01 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olop 39386 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 2 | olj0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | olj0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
| 4 | 2, 3 | op0cl 39356 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝐾 ∈ OL → 0 ∈ 𝐵) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 7 | eqid 2733 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | ollat 39385 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 9 | 8 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 10 | olj0.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 11 | 2, 10 | latjcl 18353 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) ∈ 𝐵) |
| 12 | 8, 11 | syl3an1 1163 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) ∈ 𝐵) |
| 13 | simp2 1137 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 14 | 2, 7 | latref 18355 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 15 | 8, 14 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 16 | 15 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 17 | 2, 7, 3 | op0le 39358 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 18 | 1, 17 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 19 | 18 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 20 | simp3 1138 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 0 ∈ 𝐵) | |
| 21 | 2, 7, 10 | latjle12 18364 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 0 (le‘𝐾)𝑋) ↔ (𝑋 ∨ 0 )(le‘𝐾)𝑋)) |
| 22 | 9, 13, 20, 13, 21 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 0 (le‘𝐾)𝑋) ↔ (𝑋 ∨ 0 )(le‘𝐾)𝑋)) |
| 23 | 16, 19, 22 | mpbi2and 712 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 )(le‘𝐾)𝑋) |
| 24 | 2, 7, 10 | latlej1 18362 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 0 )) |
| 25 | 8, 24 | syl3an1 1163 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 0 )) |
| 26 | 2, 7, 9, 12, 13, 23, 25 | latasymd 18359 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| 27 | 6, 26 | mpd3an3 1464 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 lecple 17175 joincjn 18225 0.cp0 18335 Latclat 18345 OPcops 39344 OLcol 39346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-proset 18208 df-poset 18227 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-lat 18346 df-oposet 39348 df-ol 39350 |
| This theorem is referenced by: olj02 39398 olm11 39399 omllaw3 39417 omlspjN 39433 2at0mat0 39697 lhp2at0nle 40207 lhple 40214 cdlemc6 40368 cdleme3c 40402 cdleme7e 40419 cdlemednpq 40471 cdlemefrs29pre00 40567 cdlemefrs29bpre0 40568 cdlemefrs29cpre1 40570 cdleme32fva 40609 cdleme42ke 40657 cdlemg12e 40819 cdlemg31d 40872 trljco 40912 cdlemkid2 41096 dihvalcqat 41411 dihmeetlem7N 41482 dihjatc1 41483 djh01 41584 |
| Copyright terms: Public domain | W3C validator |