| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olj01 | Structured version Visualization version GIF version | ||
| Description: An ortholattice element joined with zero equals itself. (chj0 31426 analog.) (Contributed by NM, 19-Oct-2011.) |
| Ref | Expression |
|---|---|
| olj0.b | ⊢ 𝐵 = (Base‘𝐾) |
| olj0.j | ⊢ ∨ = (join‘𝐾) |
| olj0.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| olj01 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olop 39207 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 2 | olj0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | olj0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
| 4 | 2, 3 | op0cl 39177 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝐾 ∈ OL → 0 ∈ 𝐵) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 7 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | ollat 39206 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 9 | 8 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 10 | olj0.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 11 | 2, 10 | latjcl 18398 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) ∈ 𝐵) |
| 12 | 8, 11 | syl3an1 1163 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) ∈ 𝐵) |
| 13 | simp2 1137 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 14 | 2, 7 | latref 18400 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 15 | 8, 14 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 16 | 15 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 17 | 2, 7, 3 | op0le 39179 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 18 | 1, 17 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 19 | 18 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 20 | simp3 1138 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 0 ∈ 𝐵) | |
| 21 | 2, 7, 10 | latjle12 18409 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 0 (le‘𝐾)𝑋) ↔ (𝑋 ∨ 0 )(le‘𝐾)𝑋)) |
| 22 | 9, 13, 20, 13, 21 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 0 (le‘𝐾)𝑋) ↔ (𝑋 ∨ 0 )(le‘𝐾)𝑋)) |
| 23 | 16, 19, 22 | mpbi2and 712 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 )(le‘𝐾)𝑋) |
| 24 | 2, 7, 10 | latlej1 18407 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 0 )) |
| 25 | 8, 24 | syl3an1 1163 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 0 )) |
| 26 | 2, 7, 9, 12, 13, 23, 25 | latasymd 18404 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| 27 | 6, 26 | mpd3an3 1464 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 joincjn 18272 0.cp0 18382 Latclat 18390 OPcops 39165 OLcol 39167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-lat 18391 df-oposet 39169 df-ol 39171 |
| This theorem is referenced by: olj02 39219 olm11 39220 omllaw3 39238 omlspjN 39254 2at0mat0 39519 lhp2at0nle 40029 lhple 40036 cdlemc6 40190 cdleme3c 40224 cdleme7e 40241 cdlemednpq 40293 cdlemefrs29pre00 40389 cdlemefrs29bpre0 40390 cdlemefrs29cpre1 40392 cdleme32fva 40431 cdleme42ke 40479 cdlemg12e 40641 cdlemg31d 40694 trljco 40734 cdlemkid2 40918 dihvalcqat 41233 dihmeetlem7N 41304 dihjatc1 41305 djh01 41406 |
| Copyright terms: Public domain | W3C validator |