| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olj01 | Structured version Visualization version GIF version | ||
| Description: An ortholattice element joined with zero equals itself. (chj0 31399 analog.) (Contributed by NM, 19-Oct-2011.) |
| Ref | Expression |
|---|---|
| olj0.b | ⊢ 𝐵 = (Base‘𝐾) |
| olj0.j | ⊢ ∨ = (join‘𝐾) |
| olj0.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| olj01 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olop 39180 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 2 | olj0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | olj0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
| 4 | 2, 3 | op0cl 39150 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝐾 ∈ OL → 0 ∈ 𝐵) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 7 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | ollat 39179 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 9 | 8 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 10 | olj0.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 11 | 2, 10 | latjcl 18374 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) ∈ 𝐵) |
| 12 | 8, 11 | syl3an1 1163 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) ∈ 𝐵) |
| 13 | simp2 1137 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 14 | 2, 7 | latref 18376 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 15 | 8, 14 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 16 | 15 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)𝑋) |
| 17 | 2, 7, 3 | op0le 39152 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 18 | 1, 17 | sylan 580 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 19 | 18 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 20 | simp3 1138 | . . . . 5 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 0 ∈ 𝐵) | |
| 21 | 2, 7, 10 | latjle12 18385 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑋 ∧ 0 (le‘𝐾)𝑋) ↔ (𝑋 ∨ 0 )(le‘𝐾)𝑋)) |
| 22 | 9, 13, 20, 13, 21 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑋 ∧ 0 (le‘𝐾)𝑋) ↔ (𝑋 ∨ 0 )(le‘𝐾)𝑋)) |
| 23 | 16, 19, 22 | mpbi2and 712 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 )(le‘𝐾)𝑋) |
| 24 | 2, 7, 10 | latlej1 18383 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 0 )) |
| 25 | 8, 24 | syl3an1 1163 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → 𝑋(le‘𝐾)(𝑋 ∨ 0 )) |
| 26 | 2, 7, 9, 12, 13, 23, 25 | latasymd 18380 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| 27 | 6, 26 | mpd3an3 1464 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 0 ) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18248 0.cp0 18358 Latclat 18366 OPcops 39138 OLcol 39140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18231 df-poset 18250 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-lat 18367 df-oposet 39142 df-ol 39144 |
| This theorem is referenced by: olj02 39192 olm11 39193 omllaw3 39211 omlspjN 39227 2at0mat0 39492 lhp2at0nle 40002 lhple 40009 cdlemc6 40163 cdleme3c 40197 cdleme7e 40214 cdlemednpq 40266 cdlemefrs29pre00 40362 cdlemefrs29bpre0 40363 cdlemefrs29cpre1 40365 cdleme32fva 40404 cdleme42ke 40452 cdlemg12e 40614 cdlemg31d 40667 trljco 40707 cdlemkid2 40891 dihvalcqat 41206 dihmeetlem7N 41277 dihjatc1 41278 djh01 41379 |
| Copyright terms: Public domain | W3C validator |