Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olj01 Structured version   Visualization version   GIF version

Theorem olj01 36514
 Description: An ortholattice element joined with zero equals itself. (chj0 29283 analog.) (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
olj0.b 𝐵 = (Base‘𝐾)
olj0.j = (join‘𝐾)
olj0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
olj01 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)

Proof of Theorem olj01
StepHypRef Expression
1 olop 36503 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ OP)
2 olj0.b . . . . 5 𝐵 = (Base‘𝐾)
3 olj0.z . . . . 5 0 = (0.‘𝐾)
42, 3op0cl 36473 . . . 4 (𝐾 ∈ OP → 0𝐵)
51, 4syl 17 . . 3 (𝐾 ∈ OL → 0𝐵)
65adantr 484 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0𝐵)
7 eqid 2801 . . 3 (le‘𝐾) = (le‘𝐾)
8 ollat 36502 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ Lat)
983ad2ant1 1130 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝐾 ∈ Lat)
10 olj0.j . . . . 5 = (join‘𝐾)
112, 10latjcl 17656 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) ∈ 𝐵)
128, 11syl3an1 1160 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) ∈ 𝐵)
13 simp2 1134 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋𝐵)
142, 7latref 17658 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
158, 14sylan 583 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
16153adant3 1129 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)𝑋)
172, 7, 3op0le 36475 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
181, 17sylan 583 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
19183adant3 1129 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 0 (le‘𝐾)𝑋)
20 simp3 1135 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 0𝐵)
212, 7, 10latjle12 17667 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵0𝐵𝑋𝐵)) → ((𝑋(le‘𝐾)𝑋0 (le‘𝐾)𝑋) ↔ (𝑋 0 )(le‘𝐾)𝑋))
229, 13, 20, 13, 21syl13anc 1369 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → ((𝑋(le‘𝐾)𝑋0 (le‘𝐾)𝑋) ↔ (𝑋 0 )(le‘𝐾)𝑋))
2316, 19, 22mpbi2and 711 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 )(le‘𝐾)𝑋)
242, 7, 10latlej1 17665 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)(𝑋 0 ))
258, 24syl3an1 1160 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)(𝑋 0 ))
262, 7, 9, 12, 13, 23, 25latasymd 17662 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) = 𝑋)
276, 26mpd3an3 1459 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  Basecbs 16478  lecple 16567  joincjn 17549  0.cp0 17642  Latclat 17650  OPcops 36461  OLcol 36463 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-proset 17533  df-poset 17551  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-lat 17651  df-oposet 36465  df-ol 36467 This theorem is referenced by:  olj02  36515  olm11  36516  omllaw3  36534  omlspjN  36550  2at0mat0  36814  lhp2at0nle  37324  lhple  37331  cdlemc6  37485  cdleme3c  37519  cdleme7e  37536  cdlemednpq  37588  cdlemefrs29pre00  37684  cdlemefrs29bpre0  37685  cdlemefrs29cpre1  37687  cdleme32fva  37726  cdleme42ke  37774  cdlemg12e  37936  cdlemg31d  37989  trljco  38029  cdlemkid2  38213  dihvalcqat  38528  dihmeetlem7N  38599  dihjatc1  38600  djh01  38701
 Copyright terms: Public domain W3C validator