Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olj01 Structured version   Visualization version   GIF version

Theorem olj01 39223
Description: An ortholattice element joined with zero equals itself. (chj0 31460 analog.) (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
olj0.b 𝐵 = (Base‘𝐾)
olj0.j = (join‘𝐾)
olj0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
olj01 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)

Proof of Theorem olj01
StepHypRef Expression
1 olop 39212 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ OP)
2 olj0.b . . . . 5 𝐵 = (Base‘𝐾)
3 olj0.z . . . . 5 0 = (0.‘𝐾)
42, 3op0cl 39182 . . . 4 (𝐾 ∈ OP → 0𝐵)
51, 4syl 17 . . 3 (𝐾 ∈ OL → 0𝐵)
65adantr 480 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0𝐵)
7 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
8 ollat 39211 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ Lat)
983ad2ant1 1133 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝐾 ∈ Lat)
10 olj0.j . . . . 5 = (join‘𝐾)
112, 10latjcl 18364 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) ∈ 𝐵)
128, 11syl3an1 1163 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) ∈ 𝐵)
13 simp2 1137 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋𝐵)
142, 7latref 18366 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
158, 14sylan 580 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
16153adant3 1132 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)𝑋)
172, 7, 3op0le 39184 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
181, 17sylan 580 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
19183adant3 1132 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 0 (le‘𝐾)𝑋)
20 simp3 1138 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 0𝐵)
212, 7, 10latjle12 18375 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵0𝐵𝑋𝐵)) → ((𝑋(le‘𝐾)𝑋0 (le‘𝐾)𝑋) ↔ (𝑋 0 )(le‘𝐾)𝑋))
229, 13, 20, 13, 21syl13anc 1374 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → ((𝑋(le‘𝐾)𝑋0 (le‘𝐾)𝑋) ↔ (𝑋 0 )(le‘𝐾)𝑋))
2316, 19, 22mpbi2and 712 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 )(le‘𝐾)𝑋)
242, 7, 10latlej1 18373 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)(𝑋 0 ))
258, 24syl3an1 1163 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)(𝑋 0 ))
262, 7, 9, 12, 13, 23, 25latasymd 18370 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) = 𝑋)
276, 26mpd3an3 1464 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17139  lecple 17187  joincjn 18236  0.cp0 18346  Latclat 18356  OPcops 39170  OLcol 39172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18219  df-poset 18238  df-lub 18269  df-glb 18270  df-join 18271  df-meet 18272  df-p0 18348  df-lat 18357  df-oposet 39174  df-ol 39176
This theorem is referenced by:  olj02  39224  olm11  39225  omllaw3  39243  omlspjN  39259  2at0mat0  39524  lhp2at0nle  40034  lhple  40041  cdlemc6  40195  cdleme3c  40229  cdleme7e  40246  cdlemednpq  40298  cdlemefrs29pre00  40394  cdlemefrs29bpre0  40395  cdlemefrs29cpre1  40397  cdleme32fva  40436  cdleme42ke  40484  cdlemg12e  40646  cdlemg31d  40699  trljco  40739  cdlemkid2  40923  dihvalcqat  41238  dihmeetlem7N  41309  dihjatc1  41310  djh01  41411
  Copyright terms: Public domain W3C validator