Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olj01 Structured version   Visualization version   GIF version

Theorem olj01 37239
Description: An ortholattice element joined with zero equals itself. (chj0 29859 analog.) (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
olj0.b 𝐵 = (Base‘𝐾)
olj0.j = (join‘𝐾)
olj0.z 0 = (0.‘𝐾)
Assertion
Ref Expression
olj01 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)

Proof of Theorem olj01
StepHypRef Expression
1 olop 37228 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ OP)
2 olj0.b . . . . 5 𝐵 = (Base‘𝐾)
3 olj0.z . . . . 5 0 = (0.‘𝐾)
42, 3op0cl 37198 . . . 4 (𝐾 ∈ OP → 0𝐵)
51, 4syl 17 . . 3 (𝐾 ∈ OL → 0𝐵)
65adantr 481 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0𝐵)
7 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
8 ollat 37227 . . . 4 (𝐾 ∈ OL → 𝐾 ∈ Lat)
983ad2ant1 1132 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝐾 ∈ Lat)
10 olj0.j . . . . 5 = (join‘𝐾)
112, 10latjcl 18157 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) ∈ 𝐵)
128, 11syl3an1 1162 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) ∈ 𝐵)
13 simp2 1136 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋𝐵)
142, 7latref 18159 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
158, 14sylan 580 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
16153adant3 1131 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)𝑋)
172, 7, 3op0le 37200 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
181, 17sylan 580 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
19183adant3 1131 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 0 (le‘𝐾)𝑋)
20 simp3 1137 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 0𝐵)
212, 7, 10latjle12 18168 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵0𝐵𝑋𝐵)) → ((𝑋(le‘𝐾)𝑋0 (le‘𝐾)𝑋) ↔ (𝑋 0 )(le‘𝐾)𝑋))
229, 13, 20, 13, 21syl13anc 1371 . . . 4 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → ((𝑋(le‘𝐾)𝑋0 (le‘𝐾)𝑋) ↔ (𝑋 0 )(le‘𝐾)𝑋))
2316, 19, 22mpbi2and 709 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 )(le‘𝐾)𝑋)
242, 7, 10latlej1 18166 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)(𝑋 0 ))
258, 24syl3an1 1162 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → 𝑋(le‘𝐾)(𝑋 0 ))
262, 7, 9, 12, 13, 23, 25latasymd 18163 . 2 ((𝐾 ∈ OL ∧ 𝑋𝐵0𝐵) → (𝑋 0 ) = 𝑋)
276, 26mpd3an3 1461 1 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 0 ) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  0.cp0 18141  Latclat 18149  OPcops 37186  OLcol 37188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-oposet 37190  df-ol 37192
This theorem is referenced by:  olj02  37240  olm11  37241  omllaw3  37259  omlspjN  37275  2at0mat0  37539  lhp2at0nle  38049  lhple  38056  cdlemc6  38210  cdleme3c  38244  cdleme7e  38261  cdlemednpq  38313  cdlemefrs29pre00  38409  cdlemefrs29bpre0  38410  cdlemefrs29cpre1  38412  cdleme32fva  38451  cdleme42ke  38499  cdlemg12e  38661  cdlemg31d  38714  trljco  38754  cdlemkid2  38938  dihvalcqat  39253  dihmeetlem7N  39324  dihjatc1  39325  djh01  39426
  Copyright terms: Public domain W3C validator